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Abstract

In this paper we present a multi-scale dictionary learning paradigm for sparse and redundant signal

representations. The appeal of such a dictionary is obvious - in many cases data naturally comes at

different scales. A multi-scale dictionary should be able to combine the advantages of generic multi-

scale representations (such as Wavelets), with the power of learnt dictionaries, in capturing the intrinsic

characteristics of a family of signals. Using such a dictionary would allow representing the data in a

more efficient, i.e. sparse, manner, allowing applications to take a more global look at the signal. In this

work we aim to achieve this goal without incurring the costs of an explicit dictionary with large atoms.

The K-SVD using Wavelets approach presented here applies dictionary learning in the analysis domain

of a fixed multi-scale operator. This way, sub-dictionaries at different data scales, consisting of small

atoms, are trained. These dictionaries can then be efficiently used in sparse coding for various image

processing applications, potentially outperforming both single-scale trained dictionaries and multi-scale

analytic ones. In this paper we demonstrate this construction and discuss its potential through several

experiments performed on fingerprint and coastal scenery images.
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I. INTRODUCTION

A. General

Sparse representations of signals over redundant dictionaries is an evolving field with state of

the art results in many signal and image processing tasks. The basic assumption of this model

is that natural signals can be expressed as a sparse combination of atom signals. Formally, for

a signal y ∈ IRn×1, this can be described by y = Dx, where D ∈ IRn×K is a dictionary that

contains the atoms as its columns, and x ∈ IRK×1 is the representation vector.

Given the signal, finding its representation is done using the following sparse approximation

problem:

min
x

∥x∥00 subject to ∥y −Dx∥2 ≤ ϵ, (1)

where ϵ is a permitted deviation in the representation accuracy, and the expression ∥x∥00 is a

count of the number of non-zeroes in the vector x. The process of solving the above optimization

problem is commonly referred to as “sparse-coding”.

While the sparse-coding problem in itself is generally NP-hard, approximate solutions can

be found by a wide variety of algorithms. Such methods include “pursuit” algorithms such

as matching pursuit (MP) [1] and orthogonal matching pursuit (OMP) [2]. Another popular

alternative is to substitute this problem with a simpler one by replacing the ℓ0-norm with an

ℓp-norm with p = 1 or p ≤ 1 as is done in the basis pursuit [3] and FOCUSS [4] algorithms.

A fundamental question in practicing the above model is the choice of dictionary to be used

[5]. Most approaches to this problem can be divided into one of two categories: the analytic

approach and the learning based approach. In the analytic approach a mathematical model of the

data is formulated, leading to an implicit dictionary described by it’s algorithm rather than by an

explicit matrix. These dictionaries include the Fourier transform, the DCT, Hadamard, Wavelets,

Curvelets and Countourlets among others. The dictionaries generated by these approaches are

highly structured and have fast implementation. A common theme among many of these methods

is a multi-scale approach to signal representation.

In contrast, the second approach infers the dictionary from a set of training examples. The
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dictionaries learnt are typically represented as explicit matrices. Dictionary learning algorithms

range from the well-known and simple PCA, through the seminal work by Olshausen and Field

[6], the MOD [7] and K-SVD [8] follow-up methods, and all the way to generalizations of the

PCA (e.g. GPCA [9]). All these methods target the same goal – finding a direct sparsifying

transform [5]. This approach yields dictionaries more finely fitted to the data, thus producing

better performance in many applications. However, this comes at a price of unstructured dictio-

naries, which are more costly to apply. Complexity constraints limit such learnt dictionaries and

specifically the atom size that can be learnt. This constraint is the reason why low-dimensional

(a typical dimension is of the order of 100) patch-based processing is so often practiced when

using such dictionaries.

In this paper we present an attempt to merge the two approaches described above to create

a truly multi-scale learnt dictionary, hopefully gaining the advantages of both methods. In a

nut-shell, we propose training the dictionary, in parts, over the analysis range of an analytic

multi-scale transform, applied to the training set.

B. Related Work

The idea of learning multi-scale dictionaries is not new. In [10], [11], [12] the Wavelet pyramid

structure is maintained (thus achieving multi-scale learning). The Wavelet parameters are trained

so that the Wavelet coefficients conform with a sparsity inducing prior distribution. The results

are Wavelet-like filters that give a slightly sparser representation for the training images.

In [13], [14] the first steps are taken towards more general multi-scale learnt dictionaries. Using

a Quadtree structure, different sized blocks are used to make up one joint global dictionary. This

dictionary is learnt and used in a similar manner as in the K-SVD algorithm. Although different

sized atoms are used, the computational constraint limits the maximal atom size used, just as in

the single-scale approach.

The work reported in [15] could be interpreted as yet another way to train a multi-scale

dictionary. This work suggests to form the effective learnt dictionary as a multiplication of a
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fixed and fast transform (we will refer to it as the core dictionary) by a sparse matrix1. The

meaning of this structure is that every atom in the effective dictionary is a linear combination

of few and arbitrary atoms from the core dictionary. The learning procedure is a variant of the

K-SVD (termed Sparse-K-SVD), where the dictionary update stage amounts also to a series of

sparse coding problems.

While the work in [15] used this construction for working with somewhat larger patches

using the redundant DCT as the core dictionary, one could envision applying the same algorithm

with a Wavelet (or any other multi-scale transform) core dictionary, thereby leading to a highly

structured and learnt multi-scale dictionary. We note that the work in [15] did not address such

an option, and in particular did not consider the numerical complexities that such large matrices

give rise to.

The approach presented in our paper bares some similarity to the work in [15], as we too

create atoms by combining core Wavelet atoms. However, our construction forces a close spatial

proximity between the combined core-atoms, leading to a more constrained structure that directly

targets the spatial redundancy that Wavelet coefficients tend to exhibit when handling images.

More on the relation between these two algorithms will be given after we introduce our algorithm.

Another line of similar work is found in [17], [18]. The work in [17] suggests combining

Bandlets with a multi-scale Wavelet transform. This idea is used in [18] for compression, using

either fixed or learnt (PCA) union of ortho-bases dictionaries. We take a somewhat similar

approach, combining Wavelets with learnt dictionaries.

C. This Paper

All the above-mentioned recent attempts to tie multi-scale representations to dictionary learn-

ing are innovative, but unfortunately they all lead to marginal improvements over existing non-

multi-scale methods. This may be explained by the heavily constrained structures these methods

force.
1Interestingly, a similar dictionary construction is used in [16], but for a different purpose, of approximating a desired frame

by combinations over another core-dictionary.
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In this paper we present a way to construct multi-scale learnt dictionaries and apply them in an

efficient and effective manner. We train the dictionary by learning patch-based dictionaries (using

K-SVD) in the analysis domain of the Wavelet transform. When using the overall dictionary, the

atoms are effectively interpolated by the inverse Wavelet transform, creating a truly multi-scale

learnt dictionary that has the potential to outperform both multi-scale analytic transforms and

single-scale learnt dictionaries. Due to its specific structure, sparse coding can be done very

easily and with local operations only, while handling arbitrarily high-dimensional signals. In this

work we present the core algorithm proposed, and demonstrate it through several examples that

show its potential.

The paper is organized as follows. In Section II we describe the background to our work,

discussing both multi-scale representations and single-scale dictionary learning. In Section III we

motivate and present the construction of multi-scale learnt dictionaries in the analysis domain of

a multi-scale transform. Section IV includes experiments comparing our methodology to standard

Wavelets and single-scale learnt dictionaries. We test these representation options by evaluating

the M-term approximation performance, core-denoising of images, and compressed sensing. In

all these tests we demonstrate the potential of our approach to better represent image-content.

Section V concludes this paper.

II. BACKGROUND

A. Multi Scale Image Representations

Multi-scale analysis for images took a center stage in image processing since the 1980’s,

starting with the Gaussian and Laplacian pyramids (first suggested by Burt and Adelson [19]),

and the Gabor Transform. In the 1990’s Wavelets [20] became the premier multi-scale analysis

tool in signal processing. Being however better suited for single dimensional signals, their

usefulness in image processing was limited. To overcome the Wavelet shortcomings in handling

two dimensional signals, more advanced “Wavelet like” decompositions were developed starting

in the late 1990’s and into the 2000’s. Several different families of multi-scale decompositions

are available for us to consider:
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1) Laplacian Pyramid [19], [21],

2) Steerable Pyramid [22],

3) Standard Wavelet decompositions [20],

4) Wavelet Packet decompositions [23],

5) Advanced multi-scale decompositions - Contourlets [24], [25], Curvelets [26], [27], Ridgelets

[28], Shearlets [29], Bandlets [30], [17], [18] and more.

While all these decompositions create multi-scale representations of an image, they all suffer

from the curse of generality. Designed to handle any and all images, these decompositions can

not, and do not, handle any subset of images optimally.

Of the above decompositions, the Curvelet, Contourlet, Shearlets and Bandlets decompositions

feature some sort of optimality for two dimensional signals. This optimality is usually measured

by the decay of the the M-term approximation error, the distance ∥y−yM∥2 between the signal

y and it’s approximation yM , using the M strongest representation coefficients. A low M-term

approximation error would suggest that these representations are well suited for many image

processing applications. However, even in these cases, optimality is shown only for specific

classes of images, such as piece-wise smooth images, which do not necessarily reflect true

image content.

That said, many useful applications have been found for these decompositions. A key feature

that makes these transforms appealing is their tendency to sparsify specific image content. We

shall build on this important property and target it directly by merging a learning procedure

on top of an existing multi-scale transform. In that respect, our work follows the intuition of

the Bandlets, as advocated by Stephane Mallat and his co-authors: Rather than seek the direct

transform to get the ultimate sparsification of our signals, start by using an existing transform

that does reasonably well in that respect, and then add another layer of processing that squeezes

more over the already simplified signals.
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Parameters: K (number of atoms), n (size of signals)
Initialization: Set the dictionary matrix D̂ ∈ IRn×K (using examples, or a pre-chosen matrix)
Loop: Repeat until convergence (or according to a stopping rule)

• Sparse Coding: Fix D̂ and use OMP to compute the representation vector xi for each
example yi (i = 1, 2, . . . , N ) by solving:

min
xi

∥yi −Dxi∥22 subject to ∥xi∥00 ≤ T (3)

• Dictionary Update: update each atom dk (k = 1, 2, . . . , K) in turn by:
– Select ωk, the group of examples that use atom dk.
– For each example j in ωk, compute its residual ej,k without the contribution of dk.
– Create residual matrix Ek as the matrix whose columns are ej,k.
– Update the atom dk and weights xk

j by minimizing:

(dk, x
k
j ) = argmin

x,d
∥Ek − dxT∥2F subject to ∥d∥2 = 1 (4)

This one-rank approximation is performed by truncated SVD of Ek.

Fig. 1. The Single-scale K-SVD algorithm. The description assumes a fixed number of non-zeroes T in every representation,
which could be replaced with a fixed representation error.

B. Learning Signal/Image Dictionaries

Learnt image dictionaries have been of much interest in recent years. Two prominent examples

are the MOD algorithm [7] and the K-SVD algorithm [8], [31], [32]. Both these algorithms try

to minimize the representation error:

argmin
D,X

∥Y −DX∥2F subject to ∥xi∥00 ≤ T ∀i, (2)

where Y = [y1 y2 ... yN ] ∈ IRn×N denote the set of training examples, D is the dictionary, and

X ∈ IRK×N the sparse representation matrix (xi are the columns of X).

For a given (and necessarily low) signal dimension, such a dictionary can be trained using for

example the K-SVD algorithm (Figure 1). The problem with this algorithm (and others similar

to it) is that the atoms (columns of the dictionary D) are of the same size as the signal they

represent. While in theory this gives the learning algorithm maximal freedom to shape the atoms

to describe different scales of the data, in practice, due to limited computational resources, this

severely limits the size of the signals represented.
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Any attempt to increase the signal dimension n beyond few hundreds immediately implies

an intolerable amount of computations for the training phase, and an unrealistic size of training

set to use. Even if the training has been done somehow, using such a dictionary in applications

is prohibitive, as any multiplication by this dictionary (as an explicit matrix) leads to high-

complexity algorithms. As said above, this is the prime reason for the popular patch-based

processing that is commonly practiced with learned dictionaries in recent years.

Using these algorithms for larger images, in practice, means breaking the input image into

blocks and treating each block independently. When these blocks have large overlap the end

result is a very redundant representation of the original image. While this representation may be

very useful for purposes of denoising [33], it is counter intuitive to our goal of representing the

complete signal with a sparse combination of atoms. On the other hand, small, or no, overlap

of the blocks leads to boundary issues when reconstructing the image.

Dictionary learning algorithms that attempt to learn small, shift invariant, atoms from large

signals also exist [32], [34], [35]. One such algorithm is the MoTIF algorithm [34], [35]. In

this algorithm small atoms are learnt from larger training signals, however the main driving

force is not sparsity of the representation. Instead, the algorithm forces the learnt atoms to be as

different from one another as possible by penalizing correlation between them. This approach

works well when the atoms are indeed very dissimilar, however this is not the case in most

natural signals/images, where we expect many atoms to have a relatively high correlation with

each other. Most MoTIF atoms will thus be “difference” atoms that are only relevant when used

in conjunction with a “base” atom during coding.

III. DICTIONARY LEARNING IN THE WAVELET DOMAIN

A. The Core Approach

The Wavelet transform gives a sparse representation of the original signal to some degree. What

we would like to do is squeeze out some of the redundancy left by the Wavelet decomposition,

specifically the spatial correlation between Wavelet coefficients in the same band, or between

bands, thus producing sparser image representations than plain Wavelet decompositions.
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Following the work reported in [15], we begin our derivation by looking at the learning

problem expressed by the following modification to Equation (2):

argmin
D,X

∥Y −WSDX∥2F subject to ∥xi∥00 ≤ T ∀i. (5)

Here D denotes the learnt dictionary, X the (sparse) representation vectors, and Y are the

training set images. The matrix WS denotes the Wavelet synthesis operator (inverse Wavelet),

or equivalently the Wavelet atom dictionary. This model suggests that the data can be expressed

by a sparse combination of atoms, which are themselves combinations of atoms from a fixed

multi-scale core dictionary, e.g Wavelet. This problem is however intractable, in general, for

reasonably sized data, without additional constraints or assumptions on the unknown D. In [15],

the assumption chosen is that D has very sparse columns. This implies that the overall dictionary

atoms are linear combination of few (and arbitrary) Wavelet atoms.

Assuming that WS is square and unitary (i.e orthogonal Wavelet with periodic extension), we

can equivalently write:

argmin
D,X

∥WAY −DX∥2F subject to ∥xi∥00 ≤ T ∀i, (6)

where WA denotes the Wavelet analysis operator. This formulation suggests that we can train our

dictionary not in the image domain but in the analysis domain of the multi-scale decomposition

operator, specifically the Wavelet transform.

A natural way to view the Wavelet analysis domain is not as a single vector of coefficients,

but rather as a collection of coefficient “images” or bands. The different Wavelet coefficient

images contain data at different scales and orientations (horizontal,vertical and diagonal). As

such it makes sense that separate dictionaries be used to represent these images. We achieve this

by training our dictionary in parts, training separate sub-dictionaries Db for each Wavelet band

(or group of bands):

∀b argmin
Db,Xb

∥(WAY)b −DbXb∥2F subject to ∥xi,b∥00 ≤ T ∀i, (7)
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where subscript b denotes the different Wavelet coefficient bands.

While the learning process can be applied as is on small images, this is computationally

impossible with larger images (the coefficient band images for the first decomposition level are

for instance one forth the size of the original image). We solve this problem by returning to the

patch-based approach, prevalent in many image processing methods.

This approach makes sense from another perspective as well – the coefficient images them-

selves have local structure - adjacent Wavelet coefficients tend to be correlated. Figure 2 demon-

strates this. Capturing this structure is the essence of the learning process.
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Fig. 2. Several bands taken from the Wavelet transform of an arbitrary image. As can be seen, there is a large amount of
correlation between the Wavelet coefficients, suggesting that more can be done to sparsely represent the image content.

In contrast to patch-based approaches in the image domain that emphasize only the local

correlation between pixels, in this approach even a small patch in the deeper decomposition
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Parameters: The following parameters should be chosen:
• Wavelet type to use,
• S – number of decomposition levels (scales),
• K – number of atoms per dictionary, and
• n – size of the dictionaries’ atoms.

Initialization: Set the dictionary matrices for all bands, D̂b ∈ IRn×K , b = 1, 2, . . . , 3S + 1.
Wavelet Decomposition: Decompose each of the training-set images using the chosen 2D-
Wavelet transform, each into 3S + 1 bands.
For each band:

• Extract Patches: Extract maximally overlapping patches of size
√
n ×

√
n from the

same band of all training set decompositions.
• K-SVD: Apply K-SVD separately for each decomposition band to train the sub-

dictionary D̂b. This process should be repeated 3S + 1 times, once per each band.
Algorithm Output: The set D̂b ∈ IRn×K , b = 1, 2, . . . , 3S +1, combined with the Wavelet
transform used, define the effective multiscale dictionary learned.

Fig. 3. The proposed multi-scaled dictionary learning – K-SVD applied to each band in the Wavelet domain

levels affects a large area in the image domain. This allows our approach to have a more global,

as well as local, outlook. The complete learning algorithm is described in Figure 3.

In effect, the effective dictionary we created is WsD, replacing the standard Wavelet dictionary

Ws. The “effective” atoms are thus interpolated versions of the atoms in the learnt dictionary D,

interpolated by the Wavelet synthesis process. This dictionary enjoys the multi-scale capabilities

of the Wavelet transform while adding to it information specific to the training domain. Note that

in the training we use maximally overlapping patches. This creates a “richness” in the training

data that generates a level of shift-invariance in the resulting dictionary. Some effective atoms

from different scales and bands, obtained by training on a corpus of fingerprint images, are

presented in Figure 4. In order to visualize a single effective atom, all the coefficients, except

one, are set to zero. The coefficients are then multiplied by the learnt dictionary and passed

through a Wavelet synthesis process.

While the idea presented here seems quite simple – applying dictionary learning in the

transform domain – it leads to an elegant way of creating a truly multiscale dictionary, while still

retaining reasonable computational cost for both learning the dictionary and using it in practice.
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Fig. 4. Some effective atoms from different levels/bands trained on fingerprint images and using a 3 level Haar Wavelet transform.
A separate sub-dictionary was trained for each band. Top row - approximation band. 2nd row - coarsest level horizontal and
vertical bands and so on.

One of the most appealing aspects of this structure is the ease with which sparse coding is

performed. Before we turn to describe this, we first discuss several flexibilities and options that

could be incorporated into the above scheme.

B. Options and Flexibilities in the Proposed Scheme

In the above algorithm, the degrees of freedom are the choice of the Wavelet filters, the

depth of the Wavelet decomposition and the size of the sub-dictionaries (number of atoms and

their size). An obvious extension would be to allow the sub-dictionaries to have different sizes

at different scales and orientations. This may be warranted for specific data types where the

variability needed to be expressed by the dictionary is high in some bands (requiring a higher

level of redundancy in the dictionary to allow for sparse coding) while it is low in others.

Other options arise from the fact that in the above algorithm, each Wavelet decomposition

level and each directional band is treated separately and has it’s own sub-dictionary. This, of
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course, in not mandatory. Two additional options may have merit:

1) Grouping by decomposition level - a single sub-dictionary is trained for all bands at

the same Wavelet decomposition level. The rational is that each such sub-dictionary will

express all the data at the same scale.

2) Grouping by directional band - a single sub-dictionary could be trained for all bands of the

same orientation in all different scales. The rational for this approach is that the directional

features are self similar at different scales, and this should be exploited in our construction.

In a way, this directly extends what analytic multi-scale transform are naturally doing.

An advantage of both these approaches is that they increase the amount of data available for

training of each sub-dictionary. In some scenarios, there is very little data to train on, especially

at the lower decomposition levels. While these options affect which data is used to train each

sub-dictionary, and which sub-dictionary is associated with each band, the atoms themselves still

represent two dimensional patches in the Wavelet coefficient domain.

A different direction we can take is departing from the two dimensional patch approach, and

create multi-band atoms. These atoms are created by concatenating two dimensional patches

from different decomposition bands in such a way that all the 2D patches are mapped to the

same location in the image. We offer two options for this construction:

1) Grouping by decomposition level - group same-sized patches from all three bands at

each decomposition level. Thus, the sub-dictionary could be trained on 3D patches of

size
√
n ×

√
n × 3, containing three

√
n ×

√
n matched patches merged together. The

rational is that a correlation exists, not only spatially within each band, but also between

“brother”-bands at the same scale, and this should be utilized.

2) Grouping by directionality - group patches from all bands with the same direction. For

orthogonal Wavelets we have three directions - horizontal, vertical and diagonal, but for

redundant Wavelets (or other transforms such as Contourlets there may be more). Each

sub-dictionary could be trained on pyramidal patches, containing matched patches of sizes
√
n×

√
n (for the course level), 2

√
n×2

√
n, 4

√
n×4

√
n ... The rational for this approach
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is that sharp image features (edges), are composed of many frequency components. The

multi-scale transform actually partitions the same edge into multiple bands. The pyramidal

atom merges the partitions back together.

Another option available to us is to replace the standard orthogonal Wavelet transform (with

periodic extension) by non-unitary transforms such as bi-orthogonal Wavelet and more advanced

transforms such as Contourlets or Curvelets. While these decompositions generally give a sparser

representation of the data, especially for images, there is still redundancy in the representation

that can be reduced by using our scheme. However, losing the unitary property means that

Equation (5) and Equation (6) are no longer equivalent, and this will affect the way the sparse-

coding should be performed. In this work we will restrict our study to unitary Wavelet transforms,

leaving the more general transforms for a future work.

C. Relation to Sparse K-SVD Algorithm

As already mentioned, a work closely related to ours is the one introducing the Sparse K-

SVD algorithm [15]. Both works share the same starting point – Equation (5). However, in

Sparse K-SVD the effective dictionary is given by the multiplication BA, where B is a core

dictionary and A is a sparse matrix. Thus, the Sparse-K-SVD seeks effective atoms that are

sparse combinations of atoms from the core dictionary. Put formally, the Sparse-K-SVD defines

the following optimization task

argmin
B,X

∥Y −BAX∥2F subject to
∥xi∥00 ≤ t ∀i

∥aj∥00 ≤ p ∀j
, (8)

In comparison, our approach also creates effective atoms by combining core atoms from a fixed

dictionary. However, in our work we combine atoms that are in close spatial (or scale) proximity.

Adding such a constraint to Sparse K-SVD would be difficult and cumbersome, and our paradigm

bypassed these difficulties while leading to simple and elegant learning procedure.

More specifically, the computational complexity of Sparse K-SVD algorithm is much higher

than in our approach. This limits the Sparse K-SVD algorithm to relatively small fixed dictio-
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naries which translates to working again on relatively small patches. Our work in the analysis

domain, decoupling the multi-scale structure from the learning procedure, enables a much simpler

construction and allows working with a much larger core dictionary, e.g. the Wavelet dictionary.

D. Sparse Coding

Assuming that we have been able to train a multi-scale dictionary somehow, one of the

main issues we face is using it in applications. Every sparse coding algorithm requires a

multiplication by the dictionary and its adjoint, as part of the numerical process of computing the

representation. A major problem with explicit multi-scale dictionaries, limiting their usefulness,

is the prohibitively high cost of applying them for sparse coding. Atoms with large support simply

require too many operations to be effective. This is where the proposed multi-scale dictionary

approach shows it’s advantage.

The sparse representation of an image y with respect to a dictionary D is the solution x of

the problem

(P0,ϵ) min
x

∥x∥00 subject to ∥y −Dx∥2 ≤ ϵ, (9)

where we aim at getting the sparsest representation that explains y as Dx with an error that is

at most ϵ. In our approach we replace this problem by

(PW
0,ϵ)synth min

x
∥x∥00 subject to ∥y −WSDx∥2 ≤ ϵ (10)

in the synthesis domain, or equivalently,

(PW
0,ϵ)analysis min

x
∥x∥00 subject to ∥WAy −Dx∥2 ≤ ϵ, (11)

in the analysis domain.

All these problems are NP hard in general, and approximate solutions can be found using

various methods. The two most prevalent approaches in sparse coding are greedy methods (such

as OMP) and relaxation based methods. The proposed dictionary that combines Wavelets and

K-SVD can easily be used in both.
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In the greedy methods, signals are coded by adding coefficients one at a time until a stopping

criterion is met. This is typically done in the signal domain. We propose instead to first apply the

multi-scale decomposition WA to the image. Then, patches (atom sized) in the analysis domain

can be coded using the appropriate sub-dictionary, by using the sparse coding greedy algorithm

of choice. These operations are done using the small atoms in the sub-dictionary, at the same

cost as when using a single-scale dictionary.

The stopping criterion can be calculated locally per patch, independently of the other patches,

or using a more global look. In such a local approach, the k-th patch from the band b, denoted

by [WAy]
k
b , will be allocated a fixed number of non-zero coefficients ℓ (or a per-patch noise

threshold), based on

(Pw
0 )

k
b min

x

∥∥[WAy]
k
b −Dxk

b

∥∥2
2

subject to ∥xk
b∥00 ≤ ℓ, (12)

and this should be repeated for all patches k from all bands b.

A global counterpart approach can also be proposed, where patches are coded in conjunction

with the coding of the other patches. In this case, we seek the sparse representation vector x

that solves

(Pw
0 )

global min
x

∑
b

∑
k

∥∥[Way]
k
b −Dxk

b

∥∥2
2

subject to
∑
b

∑
k

∥xk
b∥00 ≤ ℓ, (13)

Patches will essentially “compete” for additional coefficients, until a global criteria is met (either

a fixed number of non-zero coefficients coding the whole image or a global noise threshold).

The process can be viewed as if we have competing local pursuits running on all the patches,

together acting as a sort of global pursuit. At each step we will compare the gain (in terms

of the residual energy) obtained by “activating” an additional coefficient for each patch, thus

allowing the local pursuit to add another coefficient to the patch’s representation. In other words,

we let each local pursuit show us what can be gained by letting it code with one more non-zero

coefficient, and then choose the best one. We are thus considering a set of size |
∑

b

∑
k 1| of

possibilities (i.e., the number of overall patches in the complete Wavelet domain). The patch
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that gives maximum benefit will then have an additional coefficient allocated to it. Since the

multi-scale transform is energy preserving all these operations and comparisons can be done

purely in the analysis domain, without need to apply the synthesis operator.

Once an atom has been chosen to be added to a certain patch, a least-squares step is required to

update the patch’s representation (in OMP), followed by updating the residual. Since the patches

in the same band are non-overlapping and the Wavelet transform is orthogonal (so one band’s

representation does not affect the others), these steps are all local. In addition, when moving to

the next iteration of the algorithm for choosing the next atom, one need not reevaluate all the

|
∑

b

∑
k 1| inner-products, but only update the last patch’s gain (how that patch will reduce the

residual by having another coefficient allocated to it).

While the algorithm described above is an extension to pursuit algorithms that add coefficients

one at a time, such as OMP, our scheme can also be similarly adapted to pursuit methods such

as CoSaMP [36] and Subspace Pursuit [37] that activate coefficients in groups.

As for the relaxation based approach, the obtained optimization task can be solved numerically

by algorithms such as iterative shrinkage. There are two operations that need to be computed

efficiently in order for this process to be feasible – the multiplication by the dictionary Deq and

multiplication by it’s transpose DT
eq. Multiplication by the complete equivalent dictionary Deq

is simply done by multiplying each explicit sub-dictionary by the appropriate (sub)-coefficient

vector, aggregating the results for all patches k and bands b, and applying the synthesis multi-

scale operator (i.e. the inverse Wavelet transform)

ŷ = Deqx = Ws

(∪
b

∪
k

Dbx
k
b

)
. (14)

Multiplication by the transpose DT
eq is also a simple procedure. For unitary transforms this

operation is the inverse transform. For orthogonal Wavelets this is simply the forward (analysis)

Wavelet transform. We note that for non-orthogonal Wavelets the transpose of the synthesis

operation can still be computed efficiently by using the Wavelet analysis operator. In this case

the synthesis and analysis filters are no longer equal, and thus the analysis operator is applied
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with the synthesis filters instead of the standard analysis ones. Multiplication by DT
eq is thus

computed by applying the (forward) Wavelet transform to the signal followed by breaking each

Wavelet coefficient image into atom sized blocks and multiplying each block by the appropriate

(explicit) sub-dictionary transposed.

In the experiments that follow we shall use both the greedy and the relaxation methods, and

demonstrate their effectiveness.

IV. EXPERIMENTS

In the following experiments we aim to demonstrate the advantages that our multi-scale learnt

dictionary has, compared to standard multi-scale representations and compared to single-scale

patch processing in the image domain. We show that by replacing standard Wavelet dictionaries

with learnt ones, based on the same multi-scale structure described above, we get an improved

representation. We also show that compared to the single-scale patch processing in the image

domain, we obtain a more compact representation and better denoising.

A. M-term Approximation

To demonstrate the potential of our scheme to various image processing applications we start

by looking at the M-term approximation error, as a measure of how well our dictionary describes

the particular features of a set of images.

An input image representation, using a trained dictionary, can be created by the following

steps:

• Apply the Wavelet transform to the image.

• Each coefficient band (at each level) should be broken into non-overlapping blocks.

• Using the global approach and local OMP coding, a sparse representation of the transformed

image is found with L non-zeros.

• Each band’s representation is thus an M ×N sparse matrix, M being the number of atoms

in the appropriate sub-dictionary and N being the number of non-overlapping blocks in the

band.
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• The total image representation is the collection of the representations of all the bands.

From this representation the image can be then reconstructed by:

• Multiplying each block’s representation vector by the appropriate sub-dictionary.

• Reconstructing the Wavelet coefficient images for each band and level by tiling the non-

overlapping blocks.

• Applying the inverse Wavelet transform.

We trained dictionaries on two sets of images with different characteristics, and using different

Wavelets commonly used in various image processing tasks. We trained one dictionary on 50

fingerprint images (Figure 5 presents three of them), and using a 2D separable 16-tap Symlet

Wavelet transform (Matlab ’sym8’) three layers deep. A second dictionary was trained on 20

coastal scenery images [38] (Figure 6 presents three of them), using Daubachies 8-tap Wavelets

(Matlab ’db4’) also three layers deep. These transforms produce ten coefficient bands from

each input image: horizontal, vertical, and diagonal coefficient images for each level, plus an

approximation image at the last level. A separate sub-dictionary was trained for each band, 10

sub-dictionaries in total. Each sub-dictionary is a 64 × 64 matrix, i.e 64 atoms, each of size

8× 8. The training samples used were maximally overlapped blocks extracted from the training

set Wavelet coefficient images.

Fig. 5. Training Images - fingerprint data set.

We compare our reconstruction to a Wavelet clipping scheme, where small Wavelet coefficients

are nullified, and to single-scale K-SVD, where non-overlapping image patches are coded using

a dictionary trained on the same input images.

For both data sets, our reconstruction gives, for the same number of active coefficients, sig-
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Fig. 6. Training Images - coastal scenery data set.

nificantly higher image quality at low bit-rates (see Figure 7 for an example from the fingerprint

data set, and 8 for an example from the coastal scenery data set). In Figure 9 we show PSNR

as a function of the number of active (non-zero) coefficients for all three schemes. The results

shown are the average PSNR over 15 test images for the fingerprints and 10 images for the

coastal scenery images.

Fig. 7. M-Term approximation of fingerprint image using 3 level sym8 Wavelet. From left to right - input image, Wavelet
reconstruction (PSNR=20.68dB), Single-scale K-SVD reconstruction (PSNR=20.44dB), K-SVD on Wavelet reconstruction
(PSNR=26.20dB). All reconstructions have 3300 active coefficients for an 448× 448 image.

Fig. 8. M-Term approximation of coastal scenery image using 3 level db4 Wavelet. From left to right - input image, Wavelet
reconstruction (PSNR=28.36dB), Single-scale K-SVD reconstruction (PSNR=27.82dB), K-SVD on Wavelet reconstruction
(PSNR=30.43dB). All reconstructions have 32000 active coefficients for an 1152× 1728 image (only a 400× 400 segment of
the images is shown).

At the low end of the graph, we can see that our reconstruction continues to give good quality

images even with a very low number of coefficients. At these levels, both Wavelet clipping and

single-scale K-SVD distort the image beyond recognition. The effect is much more prominent in
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Fig. 9. M-Term approximation - PSNR as function of number of active coefficients. Left - fingerprint images (averaged over
15 test images), Right - coastal scenery images (averaged over 10 test images). For fingerprint images a 3-level ’sym8’ Wavelet
is used, and for coastal scenery images a 3-level ’db4’ Wavelet. All dictionaries are 64× 64.

the scenery images which exhibit true multi-scale, compared to the fingerprint images which are

mostly single scale. At the high end of the graph the Wavelet clipping gives better quality. Both

these results stem from the fact that we train the dictionary specifically to represent the signal

well using few active coefficients. Thus for a very sparse representation our scheme performs

better. When we test for a much denser representation, our scheme seems inferior. However, our

construction is still valid in this case, except that the dictionary needs to be trained for a denser

representation to begin with.

We note that these comparisons are fair one since both our representation, the Wavelet

representation and the single-scale K-SVD representation are all non-redundant. Needless to

say, these tests were all done on images outside the training set.

B. M-term Approximation of Noisy Images

We can use the M-term approximation, described above, as a form of rudimentary denoising.

We can seek (by exhaustive search) the best threshold to denoise the images by performing hard

thresholding. In the following experiment we add noise (σ = 20) to fingerprint and scenery

images, and plot the denoising achieved by the M-term approximation in our scheme, as a

function of the number of non-zero coefficients. We compare our result to a simplified version

on K-SVD denoising in the image domain. In this scheme a dictionary is trained on image patches
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Fig. 10. M-Term denoising - PSNR as function of number of active coefficients. Additive Gaussian white noise (σ = 20) is
cleaned by sparse coding of non-overlapping patches in the Wavelet and image domains. All dictionaries are 64× 256. Left -
fingerprint images (averaged over 15 test images), Right - coastal scenery images (averaged over 10 test images). For fingerprint
images a 3-level ’dmey’ Wavelet is used, and for coastal scenery images a 6-level ’dmey’ Wavelet. All dictionaries are 64×256.

(from the same training data set). The noisy image is broken into non-overlapping patches and

global coding is applied in a similar manner to our construction.

We used the discrete Meyer (Matlab ’dmey’) Wavelet transform with three levels of decom-

position for the fingerprint images and six levels deep for the scenery images. To make the

comparison fair, all the dictionaries used are 64× 256 (with only one dictionary trained for all

Wavelet bands together).

The results (Fig. 10) show that our scheme reaches about the same PSNR level (±0.3dB)

but this is achieved at a fraction (1
3
− 1

2
) of the number of non-zero coefficients compared to

the single-scale approach. The effect is much more dramatic for the coastal scenery images

which exhibit true multi-scale, but is also seen for the fingerprint images. We note that this

configuration (one dictionary trained to represent all bands) is biased against our scheme. The

dictionary training procedure, as is, will tend to focus more on the approximation band, and will

therefore not represent the directional bands particularly well. Adding a higher redundancy to

our dictionary (by training per band sub-dictionaries) improves the result, while the coding cost

of the coefficients remains the same. The graph also shows the denoising results for Wavelet

coefficient hard-thresholding. These results are significantly inferior, but the comparison is not

really fair as the Wavelet dictionary on its own is non-redundant.
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This process, coding non-overlapping patches, is a simplified or naive denoising scheme.

A complete state-of-the-art denoising solution would be considerably more complex and may

include among other things:

• coding and averaging overlapping patches,

• circular shifting of the input image (taking advantage of the fact that the wavelet transform

is not shift-invariant),

• per-band parameter optimization.

The fact that our scheme achieves the same level of denoising using significantly fewer coef-

ficients leads us to believe that a full denoising solution based on our scheme will be able to

consistently outperform single-scale approaches. This is currently part of ongoing work.

C. Compressed Sensing

In the compressed sensing scenario [39] a signal f is sampled by a linear measurement process

that computes inner products between the signal and a collection of random vectors (whose

number is significantly smaller than the signal dimension),

y = Φf . (15)

Assuming the signal f can be expressed as a sparse combination x of atoms from a sparsifying

dictionary D,

y = ΦDx, (16)

the signal can be reconstructed by minimum l0 or l1 norm reconstruction. In our test we used

l1 norm minimization,

x̂ = argmin
x

1

2
∥y −ΦDx∥22 + λ∥x∥1. (17)

We compare three options for the sparisfying basis D,

• A standard Wavelet base,

• Wavelet + Overcomplete DCT (ODCT) Dictionary,
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• Wavelet + Trained Dictionary.

We used the separable surrogate functionals (SSF) method [40], [41] to minimize (17).

Our test and training images were again fingerprint images (a different database). We used

16-tap orthogonal Symlet Wavelet (Matlab ’sym8’) as the Wavelet base in all tests. The input

image was 4096 pixels, and 1024 measurements were taken. The SSF algorithm was allowed to

run for 10000 iterations. The results are shown in Figure 11. The “Wavelt+ODCT” shows a clear

advantage over plain Wavelet, and is in turn outperformed by the “Wavelet+Trained Dictionary”.
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Fig. 11. Compressed Sensing test - PSNR vs. λ.

V. CONCLUSIONS

In this paper we presented a novel construction of a multi-scale learnt dictionary. This dic-

tionary combines the multi-scale properties of the Wavelet transform with the data matching

capabilities of learnt dictionaries. The learnt dictionary is trained, in parts, in the analysis domain

of the Wavelet transform. This allows for a simple and efficient learning process. The multi-

scale dictionary can then be seamlessly incorporated in a variety of sparse coding schemes. The

benefits of the multi-scale dictionary are demonstrated both in M-term representation and for

sample applications, denoising and compressed sensing. Our work on the subject is far from

done. We believe this approach has potential for many other image processing tasks such as
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inpainting and compression. Another topic of ongoing research is replacing the unitary Wavelet

transform with more advanced redundant multi-scale representations.
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