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RIP-Based Near-Oracle Performance Guarantees for
SP, CoSaMP, and IHT

Raja Giryes and Michael Elad

Abstract—This correspondence presents an average case denoising per-
formance analysis for SP, CoSaMP, and IHT algorithms. This analysis con-
siders the recovery of a noisy signal, with the assumptions that it is cor-
rupted by an additive random zero-mean white Gaussian noise and has a

-sparse representation with respect to a known dictionary �. The pro-
posed analysis is based on the RIP, establishing a near-oracle performance
guarantee for each of these algorithms. Beyond bounds for the reconstruc-
tion error that hold with high probability, in this work we also provide a
bound for the average error.

Index Terms—Additive white noise, compressed sensing, Gaussian noise,
signal denoising, signal reconstruction, signal representations.

I. INTRODUCTION

The area of sparse approximation is an emerging field that has re-
ceived much attention in the last decade. In one of the most basic
problems posed in this field, we consider a noisy measurement vector
� � � of the form � � �� � �, where � � � is the signal’s rep-
resentation with respect to the dictionary� � ��� , where � � �.
The vector � � � is an additive noise, assumed to be either an adver-
sarial disturbance, or a random white Gaussian noise with zero mean
and variance ��.1 We further assume that the columns of � are nor-
malized, and that the representation vector � is �-sparse, or nearly
so.2 Our goal is to find the �-sparse vector � that approximates the
true representation of the measured signal �. Solving this problem di-
rectly is quite hard and problematic [2]. For this reason, approximation
algorithms were proposed—these are often referred to as pursuit algo-
rithms. We measure the quality of the approximate solution �� by the
mean-square error (MSE)

MSE���� � � ��� ����� (I.1)

where the expectation is taken over the distribution of the noise (� is
assumed to be deterministic). Naturally, we desire pursuit algorithms
that are guaranteed to lead to as small as possible reconstruction error.

When analyzing the performance of pursuit algorithms, two features
that characterize the dictionary � are often used. The first is the mu-
tual-coherence � of a matrix�—the largest absolute normalized inner
product between different columns from �. The second is the RIP—it
is said that � satisfies the �-RIP condition with parameter �� if it is
the smallest value that satisfies

��� ��� ����
�
� �����

�
� �� � ��� ����

�
(I.2)

for any �-sparse vector � [3], [4].
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1More details about the difference between adversarial and random noise can
be found in [1].

2Has �-dominant elements.

Turning to pursuit algorithms, one popular approach is based on ��
relaxation and known as basis pursuit (BP) [5]. Another ��-based re-
laxation algorithm is the Dantzig selector (DS), as proposed in [6]. For
the case of an adversarial noise these techniques satisfy bounds on the
reconstruction error in the form of a constant factor ���	
� � �� mul-
tiplying the noise power,

��� ����
�
� ��	
� � ����

�
	 (I.3)

One such example is the work by Candès and Tao, reported in [4],
which analyzed the BP error. This work has shown that if the dictionary
� satisfies �� � ��� � ��� 
 �, then the BP MSE is bounded as in
(I.3). This condition has been improved several times. As far as we
know, the tightest known condition is ��� � �

��
�
�
� 	���� [7].

A different pursuit approach is the greedy strategy [8], leading to al-
gorithms such as thresholding and orthogonal matching pursuit (OMP).
Unlike the BP, these algorithms were shown to be more sensitive, in-
capable of providing a uniform guarantee for the reconstruction when
� is proportional to �[9].

The last family of pursuit methods we mention here are the greedy-
like algorithms. As opposed to the greedy strategies, these algorithms
enable removal of elements from the detected support. Algorithms be-
longing to this group are regularized OMP (ROMP) [10], compressive
sampling matching pursuit (CoSaMP) [11], subspace-pursuit (SP) [12],
and iterative hard thresholding (IHT) [13].

Interestingly, unlike the greedy methods, the greedy-like approach
was found to be closer in spirit to BP and DS, in the sense that it leads to
uniform guarantees on the bounded MSE. ROMP was the first of these
algorithms to be analyzed [10], leading to the more strict requirement
��� 
 �����

�	
�
. CoSaMP [11] and SP [12], which came later, have

similar RIP conditions without the ���� factor. IHT was also shown
to have a uniform guarantee for bounded error of the same flavor [13].
This correspondence focuses on this specific family of methods, as it
poses an interesting compromise between the simplicity of the greedy
methods and the proven strength of the relaxed algorithms.

Until now, our discussion dealt with the performance of the different
pursuit methods in the presence of an adversarial noise. The guaran-
tees in this case are of the form of (I.3) with a constant larger than 2.
These results guarantee stability of the different algorithms but no ef-
fective denoising is to be expected. To obtain better results, one must
change the perspective and consider the noise to be random, rather than
adversarial.

We first consider an oracle estimator that knows the support of�, i.e.,
the locations of the � nonzeros in this vector. The oracle estimator is
easily given by ������� � �

	
�
�, where � is the support of � and�� is

a submatrix of� that contains only the columns involved in the support
� . In the case of a zero-mean white Gaussian noise with variance ��,
the oracle’s MSE is given by [6]

MSE��������� � ����� ������ �
��

�
� � ���

� � ��
	 (I.4)

This is the smallest possible error, and it is proportional to the number
of nonzeros � multiplied by ��. It is natural to ask how close do we
get to this best error by practical pursuit methods that do not assume
the knowledge of the support. The first to answer such a question were
Candès and Tao in the analysis of the DS algorithm [6]. Requiring
��� � ��� 
 �, the reconstruction result of DS, ����, was shown
to obey

��� ������� � ���
���� � � ���� ���

�
� (I.5)
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with probability exceeding � � � ��� � �� ���� � �����, where
��� � �

����� �
.3 Up to a constant and a ���� factor, this bound

is the same as the oracle’s one in (I.4). The ���� factor in (I.5) in
unavoidable, as proven in [1] and therefore this bound is optimal up to a
constant factor. We note that here and in other existing work on sparsity
based recovery algorithms, the derived bounds with high-probability
are compared to the oracle’s expected error, as given in (I.4).

A similar bound for BP was presented in [14], showing that by re-
quiring ��� � 	��� � �, the reconstruction result of BP satisfies
the bound in (I.5) with probability exceeding � � ������ and with
a different constant ��� . This result is weaker than the one obtained
for DS.

Mutual-Coherence based results for DS and BP were derived in [15],
[16], but we shall not dwell on those results here—for more information
on how they compare to the above, see [16].

We mentioned that the greedy-like algorithms, SP, CoSaMP, and
IHT, enjoy a uniform recovery bound in the adversarial noise case.
In this correspondence, we extend these results and present RIP-based
near-oracle performance guarantees for these algorithms that resemble
the ones obtained for DS and BP. We show that the proposed guaran-
tees are valid also for the expectation of the error and not only with high
probability. In Section II we develop, based on results from [11]–[13],
the RIP-based near oracle performance bounds for the SP, CoSaMP
and IHT techniques. We also derive an average bound from the given
probabilistic bound that guarantees near-oracle performance for the ex-
pectation of the error. In Section III we extend the above results, by
considering the nearly sparse case.

II. NEAR ORACLE PERFORMANCE OF THE ALGORITHMS

We begin with a short description of the notation we use. The support
of � is denoted by 
������ (a set with the locations of the nonzero el-
ements of �) and 
������ �� is the support of the� largest magnitude
elements in �. Similar to �� , �� is a vector composed of the entries
of the vector � over the set 	 . 	� symbolizes the complementary set
of 	 and 	 � �	 is the set of all elements contained in 	 but not in �	 .
The projection of a vector � on the subspace spanned by the columns
of the matrix� (assumed to have more rows than columns) is����.
The residual is ������. 	 denotes the set of the nonzero places of
the original signal �; As such, �	 � � � when � is �-sparse. 	� is the
subset of columns of size � in � that gives the maximum correlation
with the noise vector �, namely, 	� � ����

� � �� �	� ���
� ���.

Before we turn to derive the bounds for the three techniques, we
start with a short description of them. SP [12] holds a temporal solu-
tion with � nonzero entries, and in each iteration it adds an additional
set of � candidate nonzeros that are most correlated with the residual,
and prunes this list back to� elements by choosing the dominant ones.
CoSaMP [11], in a similar way to SP, holds a temporal solution with
� nonzero entries, with the difference that in each iteration it adds an
additional set of �� (instead of �) candidate nonzeros that are most
correlated with the residual. Another difference between the two algo-
rithms is that after the pruning step in SP we use a matrix inversion in
order to calculate a new projection for the� dominant elements, while
in CoSaMP we just take the biggest� elements. A detailed description
of these two algorithms can be found in [11], [12], and [17].

IHT [13] uses a different strategy than SP and CoSaMP—it applies
only multiplications by � and ��, and a hard thresholding operator,
���� , that takes the �-largest elements. The IHT iteration is simply

��	
�� � ��	��
�� ��
��� ����	��
���

�


 (II.1)

3In [6], a slightly different constant was presented.

For all three methods, different stopping criteria can be used as de-
scribed in [11]–[13].

We turn now to derive the bounds. We first present bounds for the
case where � is an adversarial noise using the same techniques used
in [11]–[13]. In these works the reconstruction error was bounded by
a constant times the noise power in the same form as in (I.3). We pro-
pose a bound that is a constant times ���

� ���. Its proof is based on
the proofs in [11]–[13]. The full development appears in [17]. Armed
with the new bound, we change perspective and look at the case where
� is a zero-mean white Gaussian noise vector with variance ��, and
derive a near-oracle performance result of the same form as in (I.5),
using tools developed in [6]. The following theorem presents bounds
for SP, CoSaMP and IHT for the adversarial noise case. 	 	 stands for
the support found at the �th iteration, and �	 is the �th iteration result.

Theorem 2.1: For a �-sparse vector �, under the condition �
� �
�, SP solution at the �th iteration satisfies

�
��� �

� ��	 ���� � � � �
�� ���
� ��� � (II.2)

and CoSaMP and IHT solutions at the �th iteration satisfy

� � ��	
�
� ��	 ���� � �� � �����

� ��� 
 (II.3)

In addition, after at most �� � ����
���
� �

iterations, the

solution �� leads to an accuracy

�� ��	
�
� � ���

� ��� (II.4)

where � � 	, � � �
�	� and ��� � � �
��� �� ��

���� �
� ��
��

for SP; � � �, � � �
� and ������� �
������ ��

���� �
� 	�
� for

CoSaMP; and � � 	, � � ��
��

and �
�� � � for IHT.
The bounds for CoSaMP and IHT in this theorem are similar to the

bounds in [11, Theorem 4.1] and [13, Theorem 5] and have almost the
same constants. The difference is that we replaced ����� with ���

� ��
�

�

in the bounds. The exact details of the derivation appear in an extended
version of this correspondence [17].

The corresponding result for SP appears in Theorem 9 in [12]. How-
ever, we cannot use directly the constant given there as we have done
for CoSaMP and IHT. The result there states that ��� ���� �� �

��
�� ����, where � �

�� �
��� ��

� ���� �
. The occurrence of ��� in the

denominator makes this constant very large, and it goes to infinity for
very small values of ��� . Thus, we use a variation of [12, Theorem 10]
for obtaining the following:

Theorem 2.2: For a �-sparse vector �, the SP solution at the �th
iteration satisfies the recurrence inequality

�
��� �

�
������ � ����

��� �����
�
��� �

�
�� ���� � �����

��� �����
���

� ��� 
 (II.5)

For ��� � �
�	�, this leads to

�
��� �

� �
� �
��� �

� �
�����
� ��� 
 (II.6)

Using this theorem and elements from the proof techniques pre-
sented in [11] lead to the result in Theorem 2.1. The exact steps appear
in the proof of [17, Corollary 3.2].

Now that we have a bound for SP, CoSaMP, and IHT for the ad-
versarial case, we proceed and consider a bound for the random noise
case, which leads to a near-oracle performance guarantee for these
techniques.
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TABLE I
NEAR ORACLE PERFORMANCE GUARANTEES FOR THE DS, BP, SP, COSAMP, AND IHT ALGORITHMS

Theorem 2.3: For a �-sparse vector �, assuming that � is
a zero-mean white Gaussian noise vector with variance ��,
if the condition ��� � � holds, then with probability ex-
ceeding � � � ��� � �� ���� � ����� we obtain after at most

�� � ����
���
� �

iterations

��� 	���� � 
���� � �� ���� ���
� (II.7)

where 	 � � and � � �
�� for SP; 	 � � and � � �
� for CoSaMP;
and 	 � � and � � ��

��
for IHT, and � is the appropriate constant

from Theorem 2.1.
Proof: Following [6, Sec. III], it holds true that

� ���
�

���
� �� � � � 
�� � �� ����

� ��� � �� ���� ���
��




Combining this with (II.4) while bearing in mind that ���� � � gives
the above.

The results obtained for the greedy-like techniques are similar to the
ones posed for DS and BP, but with different constants. In Table I, we
summarize the performance guarantees of these algorithms. A compar-
ison between the methods’ constants is made in [17]. However, note
that the bounds are not tight, and thus these constants cannot truly pre-
dict which method behaves better. Also, we should emphasize that the
SP and CoSaMP methods are just templates, and parameters such as K
or 2K could be tuned and will affect the constants in the error bounds.

In [16], similar guarantees are presented for OMP and thresholding
with better constants. However, these results hold under mutual-coher-
ence based conditions, which are more restricting. Their validity relies
on the magnitude of the entries of � and the noise power, which is
not the case for the results presented in this section for the greedy-like
methods.

The importance of the obtained bounds is in showing that using the
greedy-like methods we can recover signals with an effective reduc-
tion of the additive noise. In the case of an adversarial noise, such a
guarantee does not exist. Furthermore, the obtained results suggest that
the reconstruction results’ error behaves like the oracle’s error up to a
���� and a constant factor.

So far we have seen that with high probability the greedy-like algo-
rithms achieve near oracle performance. It is interesting to ask whether
we can derive a similar bound on the expected error. The next theorem
shows that the answer to this question is positive.4

Theorem 2.4: For a �-sparse vector �, assuming that � is
a zero-mean white Gaussian noise vector with variance �� and
that, � � �5 if the condition ��� � � holds, then after at most

�� � ����
���
� �

iterations

 ��� 	���� � ����� � �� ���� ���
� (II.8)

4Similar result for DS appears in [1].
5The assumption that � � � is noncrucial for the proof and is used only for

getting a better constant.

where 	 � � and � � �
�� for SP; 	 � � and � � �
� for CoSaMP;
and 	 � � and � � ��

��
for IHT. The constant � is the one from

Theorem 2.1.
Proof: Utilizing simple rules of probability theory with the result

of Theorem 2.3 as a first step and of Theorem 2.1 as a second step give

 ��� 	����
� � ���

�

���
� �� � � 
�� � �� ����

� 
���� � �� ���� ���
�

�
��� �� ����������	 
���

��� 	����
� 
���� � �� ���� ���

�

� �
�

��� �� ����������	 
���

���
	 ���� 
 (II.9)

The facts that the supremum in the last inequality is over � elements
and that the support of � 6 is of size � leads to


��� �� ����������	 
���

���
	 ����

� � �  �� ����������	 
���

�� ��
�� ��������
���

	 ����

� �� � �� ����������	 
���
���

���
�

 (II.10)

Since the columns of � are normalized and � is a zero-mean white
Gaussian noise with variance ��, we have that ��

�� � ���� ���.
Using the symmetry of the Gaussian distribution, we have that

�� �����������	 
���
���

���
�

� 

�

��
�

�����	 
���

���

���

�
�

��

� 
� 
�� � �� �����
�

�
�

��
�

�����	 
���

��

���

�
�

��

� 
� 
�� � �� ����������	
� 
��

�
�
��
��

� 
��



�

�� � �� �����

�����	

 (II.11)

The last inequality follows from the fact that �
���

�
�

�

��
� � �

���
�
� and that the maximum of ��

� in

the range �� � 
�� � �� ������� is achieved in the point
� � � � 
�� � �� ���� . The equalities holds due to simple arith-
metic and changing of variables in the integral with � � 

�
.

By summing all the above and observing that �
� 
���

� � when
� � �, we get the desired result.

We note that though the proof is presented only for the greedy-like
algorithms, as this is the scope of this correspondence, it can be easily
used to extend the results of the other algorithms that guarantee near-
oracle performance with high probability.

6We assume with no loss of generality that � � ��� � � � � ��.
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III. EXTENSION TO THE NONEXACT SPARSE CASE

In thecasewhere� isnotexactly�-sparse,ouranalysishas tochange.
Following the work reported in [11], we have the following error bounds
for all algorithms (with the different RIP conditions and constants):

Theorem 3.1: If � is a zero-mean white Gaussian noise vector with
variance ��, then after at most

�
� � ���

�

���
�

��

�
�

�

iterations and under the appropriate RIP conditions, the reconstruction
result, ��, of SP, CoSaMP and IHT, satisfies

� ��� ����
�
� ����� 	 �
 ���� ���

�

	��� ��� �� �� 	
��
�

��� �� ��
�

(III.1)

where � denotes the support of the � largest elements in � and � is
the constant from Theorem 2.1.

Proof: Reference [11, Proposition 3.5] provides us with the fol-
lowing claim:

����
�
� �

� 	 	� ���
�
	

��
�

���
�


 (III.2)

When � is a nonexact �-sparse vector we get that the effective error in
our results becomes �� � �	������ 
. Thus, using the error bounds
of the algorithms (II.4) with the inequality in (III.2) and the relation
��� ���

�
� ��� � ���

�
	 ��� �� ��, we have

� ��� ����
�
� � � ���

� ���
�
	 ��� �� ��

�

� �
�
� ���

� ��
�
	
�
�		� ����� �� 
��	

�

�
����� ��

�

� �
�
� ���

� ��
�
	 �� 	 	�
 ��� �� ��

	
� 	 	��

�
��� �� �� 	

�

�
��� �� ��

�


 (III.3)

Using the fact that �� � � and similar steps to those taken in Theorem
2.4 gives

� ��� ����
�
� ����� 	 �
 ���� ���

�

	 �
� �

�
	�		� ����� ��	

�		��
�

����� ��
�


 (III.4)

Since the RIP condition for all the algorithms satisfies 	� � �
 and
� � �, plugging this into (III.4) gives (III.1), which concludes the
proof.

Embarking from (III.3) and using (III.4) for the first term, we obtain
also the inequality

� ��� ����
�
� ���� 	 �
 ���� ���

�

	 ��� �� �� 	 � �
�
�
���� �� 


�

�


 (III.5)

Remark 3.2: For a �-sparse vector �, by applying the SP, CoSaMP,
and IHT algorithms with� �

�
������ � �
 �� is the indicator func-

tion and �� is the th element in �), one can easily get from (III.5) a
bound of the form� ��� ����

�
� ���	�
�� ���� � ������� � �

�


This bound is proportional to a better oracle that for small elements of
� estimates 0. Unlike the regular oracle that uses the support of the
original vector �, this oracle uses the support that minimizes the MSE.
Its MSE is lower bounded by �
 ������� � �

�
 [1], [6].

IV. CONCLUSION

In this correspondence, we have presented near-oracle perfor-
mance guarantees for three greedy-like algorithms—subspace pursuit,
CoSaMP, and iterative hard-thresholding. The approach taken in our
analysis is an RIP-based (as opposed to mutual-coherence) and uses
the existing worst case guarantees of these algorithms. Our study
leads to uniform guarantees for the three algorithms explored, i.e.,
the near-oracle error bounds are dependent only on the dictionary
properties (RIP constant) and the sparsity level of the sought solution.
In addition, those bounds hold also for the MSE of the reconstruction
and not only with high probability for the squared error, as was done in
previous works for other algorithms. We have also presented a simple
extension of our results to the case where the representation is only
approximately sparse.
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