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On the Uniqueness of Nonnegative Sparse Solutions
to Underdetermined Systems of Equations
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Abstract—An underdetermined linear system of equationsAAAxxx =
bbbwith nonnegativity constraintxxx � 0 is considered. It is shown that
for matrices AAA with a row-span intersecting the positive orthant, if
this problem admits a sufficiently sparse solution, it is necessarily
unique. The bound on the required sparsity depends on a coher-
ence property of the matrix AAA. This coherence measure can be im-
proved by applying a conditioning stage on AAA, thereby strength-
ening the claimed result. The obtained uniqueness theorem relies
on an extended theoretical analysis of the `0�`1 equivalence devel-
oped here as well, considering a matrix AAA with arbitrary column
norms, and an arbitrary monotone element-wise concave penalty
replacing the `1-norm objective function. Finally, from a numer-
ical point of view, a greedy algorithm—a variant of the matching
pursuit—is presented, such that it is guaranteed to find this sparse
solution. It is further shown how this algorithm can benefit from
well-designed conditioning of AAA.

Index Terms—Basis pursuit, greedy algorithm, `1, linear system,
positive orthant, sparse solution, uniqueness.

I. INTRODUCTION

T HIS paper is devoted to the theoretical analysis of under-
determined linear system of equations of the form

( with and ) with nonnegativity con-
straint . Such problems are frequently encountered in
signal and image processing, in handling of multispectral data,
considering nonnegative factorization for recognition, and more
(see [2], [14], [18], [20], [21], [24] for representative work).
In this paper, we do not dwell on the applicative side of this
problem and instead concentrate on the theoretical behavior of
such systems.

When considering an underdetermined linear system (i.e.,
) with a full rank matrix , the removal of the nonnega-

tivity requirement leads to an infinite set of feasible solu-
tions. How is this set reduced when we further require a nonneg-
ative solution? How can solutions be effectively found in prac-
tice? Assuming there could be several possible solutions, the
common practice is the definition of an optimization problem
of the form

subject to and (1-1)
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where measures the quality of the candidate solutions. Pos-
sible choices for this penalty could be various entropy mea-
sures, or general -norms for various in the range .
Popular choices are (minimum -norm), (min-
imum -norm), and (enforcing sparsity). For example,
recent work reported in [7]–[9] proves that the and
choices lead to the same result, provided that this result is sparse
enough. This work also provides bounds on the required spar-
sity that guarantee such equivalence.

Clearly, if the set of feasible solutions and
contains only one element, then all the above choices of
will lead to the same solution. In such a case, the above-dis-
cussed equivalence becomes an example of a much wider
phenomenon. Surprisingly, this is exactly what happens when a
sufficiently sparse solution exists, and when one considers ma-
trices with a row-span intersecting the positive orthant. The
main result shown of this paper proves the uniqueness of such
a sparse solution, and provides a bound on below which
such a solution is guaranteed to be unique.

There are several known results reporting an interesting be-
havior of sparse solutions of a general underdetermined linear
system of equations, when minimum of -norm is imposed on
the solution (this is the Basis Pursuit algorithm) [1], [3], [13].
These results assume that the columns of the coefficient matrix
have a unit -norm, stating that the minimal -norm solution
coincides with the sparsest one for sparse enough solutions. As
mentioned above, a similar claim is made in [7]–[9] for nonneg-
ative solutions, leading to stronger bounds.

In this work, we extend the basis pursuit analysis, presented
in [3], [13], to the case of a matrix with arbitrary column norms
and an arbitrary monotone element-wise concave penalty re-
placing the -norm objective function. A generalized theorem
of the same flavor is obtained. Using this result, we get condi-
tions of uniqueness of sparse solution of nonnegative system of
equations, as mentioned above. Interestingly, there is no need in
a sparsifying measure such as the penalty—a nonnegativity
constraint is sufficient to lead to the unique (and sparsest) solu-
tion in these cases.

The bound on the required sparsity for guaranteed unique-
ness depends on a coherence property of the matrix that
undergoes a conditioning stage. This conditioning allows for
a left multiplication by any invertible matrix, and a right
multiplication by a diagonal positive matrix of specific na-
ture. These give some degrees of freedom in improving the
coherence measure and strengthening the uniqueness claim.
We demonstrate this property, and present some preliminary
ways to exploit it.

0018-9448/$25.00 © 2008 IEEE
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Returning to the practical side of things, and assuming that
we are interested in the sparsest (and possibly the only) feasible
solution

subject to and (1-2)

there are several possible numerical methods for solving this
problem. In this paper, we present a variant of the orthogonal
matching pursuit (OMP) for this task. We provide a theoretical
analysis of this algorithm that follows the one shown in [4],
[6], [22] and shows that it is guaranteed to lead to the desired
solution, if it is indeed sparse enough.

The structure of this paper is as follows: In Section II, we
extend the basis pursuit analysis to the case of arbitrary mono-
tone element-wise concave penalty and matrix with arbitrary
column norms. This analysis relies on a special definition of co-
herence measure of the matrix . In Section III, we develop the
main theoretical result in this paper, claiming that a sufficiently
sparse solution of is unique. We also intro-
duce a conditioning stage that improves the coherence of the
involved matrix, and thus strengthen the uniqueness claim. Sec-
tion IV presents the OMP variant for the nonnegative problem,
along with empirical and theoretical analysis of its performance.

II. BASIS PURSUIT: AN EXTENDED RESULT

A. General

In this section, we develop a theorem claiming that a suf-
ficiently sparse solution of a general underdetermined linear
system1 is necessarily a minimizer of a separable con-
cave function. It extends previous results from [3], [12], [15] in
the following ways.

• It does not assume normalization of the columns in . Note
that the work reported in [12] also allows for varying norms
by pre-weighting the measure—here our approach is
different because of the following differences.

• It relies on a different feature of the matrix —a one-sided
coherence measure. As we shall see in Section IV, this
generally implies a weaker bound.

• The objective function is more general than the -norm
used in [3]. In fact, it is similar to the one proposed by Gri-
bonval and Nielsen in [15], but due to the above changes,
the analysis is rather different.

The result presented in this section constitutes a moderate con-
tribution over the above-mentioned literature, and its impor-
tance is mainly in serving as grounds for the analysis of the non-
negativity constraint that follows in Section III.

B. The One-Sided Coherence and Its Use

For an arbitrary matrix with columns we define
its one-sided coherence as

(2-1)

1In this section, we introduce a different notation for the linear system:DDDzzz =
bbb, instead ofAAAxxx = bbb. The reason for this change will be clarified in Section III.

Defining the Gram matrix , its elements satisfy

(2-2)

Note that the coherence measure used extensively in past
work for the analysis of the Matching and the Basis Pursuit al-
gorithms [3], [5], [6], [11], [13], [22], [23] is different, defined
as a two-sided expression of the form2

(2-3)

The relation between the two is given in the following lemma.

Lemma 1: For any , the inequality
holds true.

Proof: Assume that the pair of columns are those
leading to the two-sided coherence value . Thus, we have

(2-4)

Assuming with no loss of generality that , we
have

(2-5)

as claimed.

Despite the fact that the two-sided coherence is smaller (and
thus better, as we shall see shortly), the analysis in this paper
calls for the one-sided version. We start our analysis with char-
acterizing the null-space of using this measure.

Lemma 2: Any vector from the null-space of satisfies

(2-6)

where is defined as

Proof: Multiplying the null-space condition by
, and using , we get . The th row of this

equation

(2-7)

gives us

(2-8)

Taking the absolute value of both sides, we obtain

(2-9)

2This definition is for matrices with arbitrary column norms. In the case of `
normalized columns, as assumed in the above-mentioned citation, the denomi-
nator simply vanishes.
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where the last inequality is due to (2-2). Adding a term
to both sides, we obtain

(2-10)
implying

(2-11)

Thus, , as claimed.

C. Sufficient Sparsity Guarantees Unique Global Optimality

Theorem 1: Consider the following optimization problem:

s.t. (2-12)

with a concave semi-monotone increasing function3 . A
sparse (with nonzeros) feasible solution (i.e., ) is a
unique global optimum of the above optimization problem, if

(2-13)

where is given by (2-6).

We shall provide a brief and shortened proof of this theorem
below, as it is quite similar to proofs found in [3], [15].

Proof: We are going to show that under the conditions of
the theorem, any feasible nonzero perturbation (such
that ) increases the objective function

(2-14)

We start from the observation that , and therefore by
Lemma 2 we have

(2-15)

Taking into account monotonicity of , decrease of the ob-
jective function is possible when the nonzero elements are
reduced. Maximal reduction takes place when is decreased
by the maximal possible value: or to zero if .
Due to concavity of , the function decrease will be larger when

, comparing to , because in the latter case,
reduction of the argument will fall into the area of lower slope
of . With nonzeros in , the overall possible decrease of the
objective function is therefore

amount of maximal decrease (2-16)

3We assume without loss of generality (w.l.o.g.) that'(0) = 0. Also,8t > 0,
we assume the following properties: (i) nontriviality—'(t) > 0; (ii) mono-
tonicity—' (t) � 0; and (iii) concavity—' (t) � 0. While these conditions
are stated in terms of derivatives, they can be easily replaced with more general
statements that avoid continuity assumption.

The remaining elements of , which correspond to the posi-
tions of zeros in , will cause an increase in the objective func-
tion. The minimal total increase happens if the remaining total
amplitude

(2-17)

falls to the area of possibly lowest slope of . Due to the con-
cavity of , this will happen if we assign the maximum pos-
sible amplitude to each element until the
remaining total amplitude is gone, avoiding creation of small
elements with high slope of . Thus, the number of these ele-
ments is

(2-18)

leading to the increase of the objective function by

amount of minimal increase (2-19)

In order for to be a unique global minimizer, the change of the
objective function should be positive, i.e., by (2-16) and (2-19)
we get the condition

(2-20)

which is satisfied for as claimed.

III. INTRODUCING THE NONNEGATIVITY CONSTRAINT

We now turn to the main result of this paper, showing that if
a system of equations with nonnegativity constraint has
a sufficiently sparse solution, then it is a unique one. This claim
is shown to be true for a specific class of matrices : such that
their row-span intersects the positive orthant. In this section, we
also show how to better condition the linear system in order to
strengthen this uniqueness theorem.

A. Canonization of the System

We start with a system of linear of equations with nonnega-
tivity constraint

(3-1)

Suppose that the span of the rows of intersects the positive
orthant, i.e., a strictly positive vector can be obtained as a
linear combination of the rows of

s.t. (3-2)

We refer to this class of matrices hereafter as . This class
includes all the purely positive or negative matrices, any matrix
with at least one strictly positive or negative row, and more.
Assuming that , we can find a suitable (there could
be infinitely many in general) and a corresponding . Define the
diagonal and strictly positive definite matrix . By
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changing the variables we obtain an equivalent system
of the form

(3-3)

where . There is a one-to-one correspondence be-
tween the solution sets

and (3-4)

and the cardinalities of the corresponding solutions are equal.
An interesting and important property of the new system

is the following: Multiplying (3-1) by , we have

(3-5)

where . This implies

(3-6)

i.e., the sum of the entries of any solution in
is the constant . The nonnegativity

constraint implies further that these set of solutions satisfy
. This property will be found useful in developing the

next result.

B. Main Result

Theorem 2: Given the system , such that
all its solutions satisfy , if is a solution to this
problem with4 , then is the unique solution, i.e.,

is a singleton.
Proof: Taking into account nonnegativity of , we rewrite

the condition differently, as . The vector
is a sparse (with less than nonzeros) feasible solution of
the linear programming problem

subject to (3-7)

Notice that we do not specify the constraint because
any feasible solution of this problem must satisfy this condition
anyhow. Also, we do not add a nonnegativity constraint—the
problem is defined as described above, and we simply observe
that is a feasible solution.

By Theorem 1, is necessarily the unique global minimizer
of (3-7), i.e., any other feasible vector satisfying has
larger -norm, . Hence, being nonnegative, it cannot
satisfy , and therefore it cannot be a solution of ,

.

We add the following brief discussion to get more intuition
on the above theorem. Assume that a very sparse vector has
been found to be a feasible solution of , . At least
locally, if we aim to find other feasible solutions, we must use
a deviation vector that lies in the null-space of , i.e., .
Positivity of the alternative solution forces us to require
that at the off-support of , all entries of are nonnegative. Thus,
the above theorem is parallel to the claim that such constrained
vector is necessarily the trivial zero.

We now turn to present the consequence of the above theorem
to the original system we start from.

4The definition of t is given in Section II.

Corollary 1: We are given the system , ,
and . We canonize this system to obtain the matrix

as shown in Section III-A. Then, if is a solution to this
problem with , then is the unique solution, i.e.,

is a singleton.
Proof: Due to Theorem 2 we know that there is only one

solution to the canonical system , . Thus, due to
the bijective relation to the original system , this
uniqueness follows.

Note that the condition for this uniqueness is posed in terms
of the coherence property of the canonic matrix . Furthermore,
the fact that implies that there exists to drive this
canonization process. However, there could be many possible
such vectors, and each may lead to a different coherence. This
brings us to the next discussion on better conditioning of the
system.

C. Reducing the Coherence of the System Matrix

When converting (3-1) into (3-3), we use with
being a diagonal matrix based on an arbitrary positive vector

from the linear span of rows of . Thus, there is a flexibility
in forming the canonic system due to the choice of this linear
combination, governed by . Naturally, we would like to choose

so as to minimize .
There is yet another way to manipulate the coherence mea-

sure and sharpen the claim of Theorem 2 and Corollary 1. After
canonization, one can multiply the linear system by
any invertible matrix , and get a new and equivalent system

which has the same set of solutions. Furthermore,
the property remains true for this system as well,
and thus Theorem 2 is still valid, although with a bound using

.
In general, one could pose an optimization problem of mini-

mizing the coherence using the best possible and

s.t. (3-8)

Multiplying the vector by a constant does not change the
result, and therefore the ill-posed constraint can be
changed to . This optimization problem is nonconvex
and requires a numerical technique for its solution. Having
chosen , the optimization over the choice of could be done
using the algorithm presented in [10]. Fixing , one could
devise a way to optimize the objective with respect to . This
way, a block-coordinate-descent method could be envisioned.

Assuming the optimal values and could be found
somehow, this implies that there is a fundamental bound on
the required sparsity of the solution that depends only on

, and which guarantees uniqueness. Could this fundamental
bound be found (or approximated) theoretically? We leave this
and related problems for a future work, and refer hereafter to a
specific case of positive matrices.

D. Positive Matrices

For a positive matrix , the simple choice leads to a
that normalizes (in -norm) the columns of .

An efficient coherence reduction can be obtained in this case by
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Fig. 1. One-sided centered versus plain coherence for random matrices of size n�2n with varying n in the range [50; 1000]. The vertical bars show the estimated
standard deviation.

subtracting the mean of each column from its entries. This is
achieved by

(3-9)

Note that the matrix is noninvertible, and thus we should use
instead, with being a small positive constant

.
In order to illustrate the effect of this conditioning by , we

present the following test. We construct random matrices of
size , where is in the range , and the en-
tries are drawn independently from a uniform distribution in the
range —thus obtaining positive matrices. By normalizing
the columns to a unit -norm we obtain the canonical matrices

. Naturally, the measures and are random vari-
ables, with mean and standard deviation being a function of .

Note that past study of matrices with zero-mean Gaussian en-
tries leads to the conclusion that is asymptotically propor-
tional to up to a log factor [5], [19]. Can the same be said
about and ? Fig. 1 shows the obtained coherence
measures averaged over 100 experiments for each value of .
Without the multiplication by , the coherence tends toward a
higher (and fixed!) value, being . The multiplication by
causes a reduction of the coherence, behaving like . Note
that we do not provide proofs for these properties, as these are
deviations from the main point of this paper.

IV. ORTHOGONAL MATCHING PURSUIT PERFORMANCE

A. Approximation Algorithm

We have defined an optimization task of interest, in
(1-2) but this problem is very hard to solve in general. We could
replace the -norm by an , and solve a linear programming
problem. This is commonly done in a quest for sparse solutions
of general linear systems, with good theoretical foundations. In
fact, based on Theorem 2, one could replace the with any
other norm, or just solve a nonnegative feasibility problem, and
still get the same result, if it is indeed sparse enough. However,

when this is not the case, we may deviate strongly from the
desired solution of .

An alternative to the measure is a greedy algorithm. We
present this option in this section and study its performance,
both empirically and theoretically. Specifically, we consider the
use of the OMP algorithm [16], [17], finding the sparsest and
nonnegative solution to one atom at a time. The algo-
rithm is described in Fig. 2, operating on the canonic pair .
This is a modified version of the regular OMP that takes into ac-
count the nonnegativity of the sought solution.

When using the OMP, one can either operate on the original
system , or its canonic version (and with better
conditioning by ). While the solutions of all these are equiv-
alent, how well will the OMP perform in the different settings?
In Sections IV-B and -C we offer two kinds of answers—an
empirical one and a theoretical one. We start with an empirical
evidence.

B. Experimental Results

We experiment with random nonnegative and canonic ma-
trices , as in Section III-D. We consider a fixed size ,
and generate 1000 random sparse representations with varying
cardinalities in the range – , checking the performance of
the OMP in recovering them. We test both the OMP on the
plain system (note that the first canonization step that leads to

-normalized columns has no impact on the OMP behavior)
and the conditioned one with the centering by . The imple-
mented OMP is as described in Fig. 2. The Update Solution step
is implemented using Matlab’s instruction.

For comparison, we also test the Basis Pursuit (BP), solving
the problem

s.t. (4-1)

When there exists only one solution, this method necessarily
finds it exactly. On the other hand, when there are several pos-
sible solutions, it does not necessarily find the sparsest one, thus
leading to errors. Note that this alternative requires many more
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Fig. 2. The Orthogonal Matching Pursuit (OMP) algorithm for solving P .

Fig. 3. Performance comparison between regular and centered OMP. This graph shows the relative and average number of wrongly detected atoms as a function
of the original cardinality.

computations, as its complexity is much5 higher. Also, condi-
tioning of the form discussed above does not affect its solutions.

Fig. 3 shows the relative average number of wrong atoms de-
tected in the tested algorithms. Fig. 4 shows the average number

5As an example, the Matlab run-time ratio BP-versus-OMP for 1000 exam-
ples was found to be roughly 500=kzzzk .

of badly represented signals (i.e., those not satisfying ).
As can be seen in both graphs, the conditioned OMP performs
much better. We also see, as expected, that BP outperforms both
greedy options and yielding very low error rate, with the ob-
vious added cost in complexity. Notice that the BP’s represen-
tation error is zero simply because BP always finds a solution
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Fig. 4. Performance comparison between regular and centered OMP. This graph shows the average number of wrongly represented signals from the test set.

to satisfy , whereas the OMP is operated with a fixed
(assumed to be known) number of atoms.

C. Theoretical Study

Turning to a theoretical assessment of the OMP, we follow
previous results developed in [6], [22], we state the following
theorem without proof.6

Theorem 3: For the linear system of equations
(where ), if a nonnegative solution exists such that

(4-2)

then OMP (as described in Fig. 2) is guaranteed to find it exactly.

The above theorem is quite weak in general since may
be too large. For example, in the nonnegative case, tends
to , implying that we can handle only empty supports. One
may apply the very same analysis to the conditioned problem,
and obtain a better result.

Theorem 4: For the linear system of equations
(where , is invertible), if a nonnegative
solution exists such that

(4-3)

then OMP (as described in Fig. 2) is guaranteed to find it exactly.

Considering the nonnegative case, as in the experiments
above, the centered OMP is indeed performing much better,
and theoretically we see that this is an expected phenomenon.
However, as mentioned in past work on the analysis of pursuit
algorithms, we should note that the bounds we provide here
are far worse compared to the actual (empirical) performance,
as they tend to be over-pessimistic. In the experiments re-

6The proof is similar to the one given in [6], [22].

ported in the previous section we have and
, implying that at best one can recover sup-

ports of cardinality . Clearly, the OMP succeeds far
beyond this point.

V. CONCLUSION

Linear systems of equations with a positivity constraint come
up often in applications in signal and image processing. Solving
such systems is usually done by adding conditions such as min-
imal length, maximal entropy, maximal sparsity, and so on.
In this work, we have shown that if a sparse enough solution
exists, then it is the only one, implying that all the mentioned
measures lead to the same solution. We also have proposed an
effective conditioning for improving the chances of such linear
system to be handled well by greedy algorithms.

There are several directions in which this work should/could
be extended, and several intriguing questions that form the
grounds for such extended work. What is the optimal choice
for the canonization parameters? Answering this may lead to
stronger bounds for the discovered uniqueness. Also, as there
is a clear gap between the proved bound and the empirical
behavior, can we strengthen the bounds by relying on a proba-
bilistic analysis? These questions and more promise a fruitful
path for more work on this topic.
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