
Optimized Projection                 
Directions                          

for Compressed Sensing

Michael Elad
The Computer Science Department
The Technion – Israel Institute of technology
Haifa 32000, Israel

The IV Workshop on SIP & IT
Holon Institute of Technology

June 20th, 2007



Optimized Projection                                         
Directions for                                             
Compressed Sensing

2/34

What is This Talk About? 

Compressed Sensing (CS): 

An emerging field of research, 

Deals with combined of sensing-compression,

Offering novel sampling results for signals,

Leans on sparse & redundant modeling of signals,

Key players: Candes, Tao, Romberg, Donoho, Tropp, Baraniuk, 
Gilbert, DeVore, Strauss, Cohen, …

A key ingredient in the use of Compressed-Sensing is 

Linear Projections
In this talk we focus on this issue, offering a way to          

design these projections to yield better CS performance.  
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Agenda

1. What is Compressed-Sensing (CS)? 
Little-bit of Background 

2. The Choice of Projections for CS
Criteria for Optimality

3. The Obtained Results
Simulations

4. What Next? 
Conclusions & Open problems 

This lecture is based     
on the paper:

M. Elad, "Optimized 
Projections for 

Compressed-Sensing", to 
appear in IEEE Trans.    
on Signal Processing.



Optimized Projection                                         
Directions for                                             
Compressed Sensing

4/34

Typical Acquisition

The Typical Signal Acquisition Scenario

Sample a signal very densely, and then compress the             
information for storage or transmission

A typical               
example

This 6.1 Mega-Pixels digital camera senses 
6.1e+6 samples to construct an image.

The image is then compressed using JPEG 
to an average size smaller than 1MB – a 
compression ratio of ~20.
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Compressed–Sensing?  

A natural question 
to ask is

Could the two processes                                         Could the two processes                                         
(sensing & compressing)                                         (sensing & compressing)                                         

be combined be combined 

The answer is YES! The answer is YES! 

This is what Compressed-Sensing (CS) is all about.
[Candes, Romberg, & Tao `04, Donoho `06, Candes ‘06,  Tsaig &Donoho `06]



Optimized Projection                                         
Directions for                                             
Compressed Sensing

6/34

How CS could be Done?  

A signal of 
interest

Sense        
all the n 
samples

Compress 
the                

raw data

Decompress 
for later 

processing

Instead of the traditional …

Sense       
p<<n values

Reconstruct x
from            for 
later processing

Apply the following …

nx ℜ∈

( ){ }p 1ii xf =

( ){ }p 1ii xf =

These p values 
represent the 

signal in a 
compressed 

form
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Few Fundamental Questions

A signal of 
interest

Sense       
p<<n values

Reconstruct x
from            for 
later processing

nx ℜ∈ ( ){ }p 1ii xf =

( ){ }p 1ii xf =

Few Questions Must be Answered:

What functions fi(x) to use ? 

How many measurements to take (p) ? 

How can we reconstruct x from the measured values ? 

Linear Projections fi(x)=xTvi are appealing due to their simplicity.

Depends on the complexity (degrees of freedom) of x. 

Depends on the model we assume on x. 
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Sparsity and Redundancy

At the heart of CS, lies a specific choice of a model for our signals. 

The model used in recent work that studies CS is based on 

Sparse and Redundant Representations

We assume that each of our                                      
signals could be represented as a                               
linear combination of few columns                               
of a matrix (dictionary) D. 

Thus, we define the family of                                   
signals, Ω, to be such that

nT&x|,x 0 <<≤α=αα∃Ω∈∀ D x=αD
=n

k
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Compressed–Sensing

Sense       
p<<n values 

by Px

Reconstruct     
x from         

y (i.e. Px)

Generation of a 
signal from Ω

Ω  
Multiply 

by D

αD=xA sparse 
& random 

vector

=α

α== PDPxy

:yx =P =p

n
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The Obtained Linear System 

=n

k

:x=αD

Instead of the original system

:xPPD =α =
we get a new one …
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The Obtained Linear System 

=n

k

:x=αD

Instead of the original system

=PDD =
~

:y
~

=αD

p

k

which is really …
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Reconstructing x

=
y

~
=αD

The following are known:
D – part of the model for Ω;

P – our choice of projections;

y – the set of p measurements; and

α is expected to be sparse !!!

Known 

PDD =
~

1. Solve

y
~

.t.s

minArgˆ 0

=α

α=α
α

D

2. Set α= ˆx̂ D
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In Practice?  

Is there a practical reconstruction algorithm?

y
~

.t.s

minArgˆ 0

=α

α=α
α

D

For signals in Ω, i.e.,  

If p>2T up to a constant (and a log factor!?), we get a perfect 
recovery of the signal with an overwhelming probability.

* See [Candes, Romberg, & Tao `04, Donoho `06, Candes 06`,  Tsaig & Donoho `06].

nT&x|,x 0 <<≤α=αα∃Ω∈∀ D

1. Replace                  : Basis Pursuit

2. Build α greedily: Matching Pursuit

10 αα

A General Rule* claims:
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Agenda

1. What is Compressed-Sensing (CS)? 
Little-bit of Background 

2. The Choice of Projections for CS
Criteria for Optimality

3. The Obtained Results
Simulations

4. What Next? 
Conclusions & Open problems 
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What P to Use?  

y.t.s

minArgˆ 0

=α

α=α
α

PD

Reconstruction is  
performed by approximating            

the solution of 

The success (or failure) 
of this approach depends 

strongly on a proper 
choice of P

?=P

The choices recommended in the 
literature include several random 
options:

o Gaussian IID entries; 

o Binary (±1) IID entries; and

o Fourier IID sampling.

An important incentive to choose 
one of the above choices is the 
(relative) ease with which 
theoretical guarantee theorems  
can be developed.

Could we propose a better way to 
design the projection directions P?
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This is done by a pursuit algorithm

Better P – Phase I

How about choosing P
that optimizes the recovery 
performance on a group    
of “training” signals? 

o
i0i

L

1i

2

2

o
ii y.t.sminArgˆ.t.sˆminArg α==αα=α∑ α−α

α=
PDPD

P

Here is how such thing could be done: 

Step 1: Gather a large set of example signals                           
having sparse representation { } { }L 1i

o
i

o
i

L
1i

o
i x == α=⇔α D

Step 2: Solve
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Better P – Phase I

How about choosing P
that optimizes the recovery 
performance on a group    
of “training” signals? 

o
i0i

L

1i

2

2

o
ii y.t.sminArgˆ.t.sˆminArg α==αα=α∑ α−α

α=
PDPD

P

Here is how such thing could be done: 

Step 1: Gather a large set of example signals                           
having sparse representation { } { }L 1i

o
i

o
i

L
1i

o
i x == α=⇔α D

Step 2: Solve

TOO 
COMPLICATED

This is a bi-level optimization problem, hard to minimize w.r.t. P
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µ is a property of the 
matrix D, describing its 
columns’ dependence

Better P – Phase II

Design P such that pursuit methods    
are likely to perform better – i.e., 
optimize performance indirectly.  

Suppose that x0=Dα0, where 

Then, 

• The vector α0 is the solution of                                ,

• Both pursuit algorithms are guaranteed to find it. 









µ

+<α
)(

11
2
1

00 D

But … How?
Here is a Theorem we could rely on:

α=α
α

D00 x.t.smin [Donoho & Elad `02]

[Gribonval & Nielsen `04]

[Tropp `04]
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How Can this Be Used? 

When seeking the sparsest 
solution to the system  

,                                    
if the solution satisfies:

then pursuit methods succeed, 
and find this (sparsest) solution.  

=D
~

y
~

=αD












µ
+<α

)
~

(

1
1

2
1

0 D

Adapting the above Theorem, the implication: 
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?ˆ0 α=α

The Rationale 

Generation of a signal from Ω

Multiply 
by D

0x α= D
A sparse        
& random 
vector

=α0
Sense       

p<<n values 
by Px

0
~

xy α== DP

y
~

.t.s

minArgˆ 0

=α

α=α
α

D

We could design P
to lead to smallest 
possible measure µ











µ
+<α

)
~

(

1
1

2
1

00
D

Yes, provided that                           .
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Lets Talk about µ

The Mutual Coherence µ(D) is the largest off-diagonal entry in 
absolute value.

Compute the 
Gram matrix

Minimizing µ(PD): finding P such that the worst-possible pair of 
columns in PD are as distant as possible – a well-defined (but not 
too easy) problem. 

The above is possible but … worthless for our needs!            
µ is a “worst-case” measure  – it does not reveal the average 
performance of pursuit methods. 

DT

=D

DTD
Assume L2
normalized 
columns

= G
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Better P – Phase III (and Last)

[ ]( ) [ ]

[ ]( )∑ ≥

⋅∑ ≥
=µ

≠=

≠=
k

ji,1j,i

k

ji,1j,i
t

tj,iG

j,iGtj,iG
)(D

DT

=D

DTD

= G

We propose to use an average measure, taking into account 
all entries in G that are above a pre-specified threshold, t: 

)(t Dµ )()(t DD µ=µ

0t =

is an average of the 
off-diagonal entries of |G|

)(t Dµ=

, i.e., it becomes 
the largest entry in |G|
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Better P – Phase III (and Last)

[ ]( ) [ ]

[ ]( )∑ ≥

⋅∑ ≥
=µ

≠=

≠=
k

ji,1j,i

k

ji,1j,i
t

tj,iG

j,iGtj,iG
)(D

DT

=D

DTD

= G

We propose to use an average measure, taking into account 
all entries in G that are above a pre-specified threshold, t: 

)(t Dµ )()(t DD µ=µ

0t =

is an average of the 
off-diagonal entries of |G|

)(t Dµ=

, i.e., it becomes 
the largest entry in |G|

Instead of working with a fixed threshold t,                  
we can also work with t% representing an average             

of the top t% entries in |G|
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So, Our Goal Now is to …

)(minArg topt PDP
P

µ=

Minimize the average coherence µt
measure w.r.t. P

We need a 
numerical                   
algorithm     
to do it

Algorithm
D

Pinit
Parameters

t,iter,γ

Popt
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The Involved Forces

)(minArg topt PDP
P

µ=

)()( T PDPDG =

Our Goal:

Defining                      , we know that the following 
properties must hold true:
1. The rank of G must be p,

2. The square-root of G should be factorized to PD,

3. Some entries in G should be as small as possible.

• We propose an algorithm that projects iteratively onto each of the 
above constraints, getting gradually a better P. 

• Closely related to the work in [Tropp, Dhillon, Heath, Strohmer, `05].
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The Numerical Algorithm

Normalize 
columns of

DPD kk
~

=

Compute 
the Gram

k
T
kk
~~
DDG =

Shrink     
entries (γ)

)(ˆ kk GG ϕ=

Update P
by min. 

2
Fk PDS −

Set k=0 &  
P0=Pinit

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input Value

O
ut

pu
t V

al
ue

y=x 
y=γx 

y=φ(x)
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The Numerical Algorithm

Normalize 
columns of

DPD kk
~

=

Compute 
the Gram

k
T
kk
~~
DDG =

Shrink     
entries (γ)

)(ˆ kk GG ϕ=

Reduce      
rank to p:

)ˆ(SVD kG

Set k=0 &  
P0=Pinit

Compute 
SQRT 

k
T
kkˆ SSG =

= kĜk
T
k SS ==

p
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The Numerical Algorithm

Normalize 
columns of

DPD kk
~

=

Compute 
the Gram

k
T
kk
~~
DDG =

Shrink     
entries (γ)

)(ˆ kk GG ϕ=

Update P
by min. 

2
Fk PDS −

Reduce      
rank to p:

)ˆ(SVD kG

Set k=0 &  
P0=Pinit

Compute 
SQRT 

k
T
kkˆ SSG =

kSP
D - 2

F
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The Numerical Algorithm

Normalize 
columns of

DPD kk
~

=

Compute 
the Gram

k
T
kk
~~
DDG =

Shrink     
entries (γ)

)(ˆ kk GG ϕ=

Update P
by min. 

2
Fk PDS −

Reduce      
rank to p:

)ˆ(SVD kG

Set k=0 &  
P0=Pinit

Compute 
SQRT 

k
T
kkˆ SSG =

k=k+1k=iter

END

Yes

No
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Agenda

1. What is Compressed-Sensing (CS)? 
Little-bit of Background 

2. The Choice of Projections for CS
Criteria for Optimality

3. The Obtained Results
Simulations

4. What Next? 
Conclusions & Open problems 
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A Core Experiment

n=200

K=400

D

Details:
We build a random matrix D of size 
200×400 with Gaussian zero mean 
IID entries.

We find a 30×200 matrix P
according to the above-described 
algorithm.

We present the obtained results, 
and the convergence behavior.

Parameters: t=20%, γ=0.5.

p=30 P
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Entries in |G|
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The histogram of the 
entries in |G| The matrices |G| as    

a function of the 
iteration
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Convergence

50 100 150 200 250 300

0.265

0.27

0.275

0.28

0.285

0.29
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0.3

γ=0.55

γ=0.65
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γ=0.85

γ=0.95

Iteration

Va
lu

e 
of

 µ t

)( kt DPµ
As a function of 

the iteration
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CS Performance (1): Effect of P

15
10-5

20 25 30 35 40

10
-4

10-3

10-2

10
-1

100

p

R
el

at
iv

e 
# 

of
 e

rr
or

s

OMP with random P

OMP with 
optimized P

BP with 
random P

BP with 
optimized P

Details:
D: 80×120 random.

100,000 signal examples to 
test on. Each have T=4 non-
zeros in their (random) α.

p varied in the range [16,40].

CS performance: before and 
after optimized P, for both 
BP and OMP.

Optimization: t=20%, 
γ=0.95, 1000 iterations. 

Show average results over 10 
experiments.
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Details:
D: 80×120 random.

100,000 signal examples to 
test on. Each have T (varies) 
non-zeros in their α.

T varied in the range [1,7].

Fixed p=25.

CS performance: before and 
after optimized P for both  
BP and OMP. 

Optimization: t=20%, 
γ=0.95, 1000 iterations. 

Show average results over 10 
experiments.

2 3 4 5

10
-4

10-3

10-2

10
-1

T - Cardinality of the input signals

R
el

at
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e 
# 

of
 e

rr
or

s

6

CS Performance (2): Effect of T

1 7
10-5

100

OMP with random P

OMP with   
optimized PBP with 

random P

BP with 
optimized P
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60 80 100 120 160
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CS Performance (3): Effect of n

Details:
D: n×1.5n with n varied in the 
range [40,160] (random).

100,000 signal examples to test 
on. Each have T (varies) non-
zeros in their α.

T=n/20.

p=n/4.

CS performance: before and 
after optimized P – OMP and 
BP.

Optimization: t=20%, γ=0.95, 
1000 iterations. 

…

40 140
10-2

100

OMP with random P

OMP with   
optimized P

BP with random P

BP with optimized P
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100 101 102
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CS Performance (4):Effect of t%

Details:
D: 80×120 random.

100,000 signal examples to 
test on. Each have T=4 non-
zeros in their α.

P=30, T=4: fixed. 

CS performance: before and 
after optimized P. 

Optimization: t=varies in the 
range [1,100]%, γ=0.95, 
1000 iterations. 

…

OMP with optimized P

BP with optimized P
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Agenda

1. What is Compressed-Sensing (CS)? 
Little-bit of Background 

2. The Choice of Projections for CS
Criteria for Optimality

3. The Obtained Results
Simulations

4. What Next? 
Conclusions & Open problems 
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More Work is 
required in order to 
further improve this 
method in various 

ways – see next slide

Various 
Experiments that 

we provide show that 
the damn thing works 

rather well. 

Since it is too difficult, 
we propose to Optimize 

w.r.t. a Different 
Measure, indirectly 

affecting CS performance

Conclusions

Compressed-Sensing (CS)
An emerging & exciting 

research field; combining 
sensing and compression    

of signals

Sparse Representation
over a dictionary D is the 
model used for deriving 

“sampling theorems”
in CS work.

Linear projection P
is used for generating 

the compressed            
& sensed 

measurements in CS

Ideally, we want to 
choose P to Optimize 
CS Performance for 
the class of signals in 

mind

How               
should P
be chosen?

The measure we propose 
is an Average Mutual 

Coherence. We present 
an algorithm for its 

minimization
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Future Work

Could we optimize the true performance of BP/OMP using the 
Bi-Level optimization we have shown?

How about optimizing P w.r.t. a simplified pursuit algorithm 
like simple thresholding? 

What to do when the dimensions involved are huge? For 
example, when using the curvelets, contourlets, or steerable-
wavelet transforms. In these cases the proposed algorithm is 
impractical!

Could we find a clear theoretical way to tie the proposed 
measure (average coherence) with pursuit performance? 

Maybe there is a better (yet simple) alternative measure. 
What is it? 


