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Sparse and Redundant Representation Modeling —
What Next?

Michael Elad (Fellow, IEEE)

Abstract—Signal processing relies heavily on data mod-
els; these are mathematical constructions imposed on the
data source that force a dimensionality reduction of some
sort. The vast activity in signal processing during the past
several decades is essentially driven by an evolution of
these models and their use in practice. In that respect,
the past decade has been certainly the era of sparse and
redundant representations, a popular and highly effective
data model. This very appealing model led to a long series
of intriguing theoretical and numerical questions, and to
many innovative ideas that harness this model to real
engineering problems. The new entries recently added to
the IEEE-SPL EDICS reflect the popularity of this model
and its impact on signal processing research and practice.

Despite the huge success of this model so far, this field
is still at its infancy, with many unanswered questions still
remaining. This paper1 offers a brief presentation of the
story of sparse and redundant representation modeling and
its impact, and outlines ten key future research directions
in this field.

I. INTRODUCTION — WHO NEEDS MODELS?

One could not imagine the vast progress made in
signal and image processing in the past fifty years
without the central contribution of data models. Consider
the following example as a way of illustrating the need
for a model: A signal of interest x ∈ Rd is measured in
the presence of additive noise, v ∼ N(0, σ2I), producing
y = x + v. Given y we would like to recover x,
essentially seeking a decomposition of y into its two
parts, x and v. Despite the fact that we have a full
statistical characterization of the noise, such a separation
is impossible, as the noise model only implies a Gaussian
distribution for x, peaked at none other than y itself.
To depart from this triviality, we must characterize x as
well, so that the two parts can be told apart.

A model for the signal x is exactly this — a mathe-
matical characterization of the signal. As an example for
a possible model and its use, if we know that x resides in
a subspace of dimension r � d spanned by the columns
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of the matrix Q ∈ Rd×r, this constitutes a model,
and denoising (cleaning the noise) becomes possible.
One could project y onto this subspace, applying the
operation QQ†y, in order to find the closest signal
to y that complies with the model. Put formally, this
projection is obtained as the solution of the problem

x̂ = argminx ‖x− y‖22 s.t. x = QQ†x, (1)

where QQ†x represents our subspace constraint for the
signal.2 This will lead to effective denoising, with noise
attenuation by a factor r/d (� 1) on average.

The signal and image processing literature has seen
numerous attempts to handle the above-described denois-
ing problem. Explicitly or implicitly, each and every one
of these many thousands of published methods relies
on a specific model, proposing a way to characterize
the signal and a method to exploit this for the recovery
of x. While the above model example is very simple,
it sheds light on key properties of models in general.
An effective model typically suggests a dimensionality
reduction of some sort; the original d samples in the
signal x are believed to be redundant and a much shorter
description (in our example, of length r) can be given,
reflecting the true dimensionality of the signal. Another
issue is the migration from the core model formulation
to its deployment in the processing task. In the example
we suggested a projection of y, which is very natural.
However, when the model becomes more expressive and
complex, leaving room for more than one approximation,
various possible “estimators” may be proposed; thus, in
general there is no one-to-one correspondence between
a model and the way to practice it, and this leaves much
room for original and creative ideas.

While the above example discussed the denoising
problem, models are necessary for almost every pro-
cessing that x may need to undergo. Sampling of a
signal relies on a prior assumption about its content, so
as to guarantee no loss or limited loss of information.
Compression of a signal is conceptually possible only
because it has an inner structure that reduces its entropy,

2If x is known to be spanned by the columns of Q, it can be written
as x = Qα for an arbitrary vector α ∈ Rr . Multiplying both sides by
Q† we obtain Q†x = Q†Qα = α, since Q†Q = I. Substituting this
relation back into x = Qα we get the constraint x = Qα = QQ†x,
as appears in Equation (1).
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which is captured by a model that describes this signal
with few parameters. Detection of anomalies in a signal
or detection of target-content can be done only when
we rely on models for the different contents. Similarly,
separation of superimposed signals is done by using
models for the distinct parts. Solving inverse problems
such as a tomographic reconstruction from projections,
recovery of missing samples, super-resolving a signal,
inpainting (filling-in missing values), extrapolating a
signal, and deblurring, all rely on a model for the signals
in question in order to regularize the typically highly
ill-posed inversion process when recovering the desired
signal.

Models can take various forms, and through the years
they have been gradually improving. What does this
mean? It is important to understand that for most signal
sources there is no notion of a “correct model”. This
is reminiscent of unified theories in physics that cannot
be proven correct, but can be demonstrated to align
well with experiments. Models, as a set of mathematical
properties that the data is believed to follow, or as a
probability density function in the Bayesian point of
view, are necessarily erroneous. The quest for better
models is a search for a more flexible and accurate
mathematical construction that reduces the overall model
error. A careful study of the vast literature in signal and
image processing from the past several decades reveals
that there has been an evolution of models, constantly
improving along time by reducing their modeling error,
and therefore consistently leading to better performance
in the applications they were brought to serve. In that
respect, the more successful models are those that rely on
signal examples to tune their characteristics, thus fitting
better to the signals they describe. Figure 1 presents
such an evolution of models along time in the image
processing literature.

Figure 1. The evolution of models over the years in the field of
image processing. This evolution shows a clear path from L2-based
methods to more challenging and sparsity-promoting models.

To summarize, and to answer the question posed in
the title of this section, we all need models, as they are

extensively used for many tasks. Their importance cannot
be overstated — their impact on our abilities and ways to
process data is central and irreplaceable. It is now time
to discuss one of the most recent contributions to signal
modeling — the model based on sparse and redundant
representations, which will be referred to hereafter as
Sparseland.

II. SPARSELAND MODELING

In the past decade there has been tremendous progress
in the construction and use of new signal models. One of
the main achievements within this activity is the concep-
tion of sparse and redundant representation modeling [1],
[2], [3], [4] and references therein.3 The fundamental
idea behind this model is a redundant transform of
the signal x ∈ Rd to a new representation α ∈ Rn,
where n > d (thus leading to redundancy), such that
the obtained representation is the simplest (i.e., sparsest)
possible. This transform is semi-linear — the inverse
transform from α to x is linear, given by x = Dα,
where D ∈ Rd×n is a matrix commonly referred to as the
dictionary. The forward transform is a highly non-linear
one,

(P0) α̂ = argminα ‖α‖0 s.t. x = Dα, (2)

searching for the sparsest explanation for the signal
x. The `0 cost function ‖ · ‖0 counts the non-zero
entries in this vector, and we expect a sparse outcome,
‖α‖0 = k � d. This model can be interpreted as a
chemistry of data sources: the columns of the dictionary
are referred to as atoms (fundamental elements), and
thus the dictionary serves as the “periodic table” in this
chemistry. The signal is thought of as a molecule, which
is believed to be a (linear) combination of only few
atoms.

We mentioned before that models impose a dimen-
sionality reduction – how does this happen here? A
signal belonging to Sparseland is assumed to have k � d
non-zeros in its representation, and thus it must have one
of the

(
n
k

)
possibilities for a support (set of atoms used).

Each such support defines a subspace of dimension
k (at most) in Rd, and so the overall signal model
is therefore a union-of-subspaces which the signal is
believed to belong to. As such, this model is a natural
extension of the naive single subspace model mentioned
in the previous section, and the dimensionality reduction
obtained here is somewhat more involved. It is evident
from the above description that the dictionary D is

3Due to length constraints, it would be impossible to do justice
and cite all the relevant literature.
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Figure 2. Paper and citation counts over the years for work related to the Sparseland model. These results were obtained via ISI Web-
Of-Science searching the SCI-Expanded database with: Topic=(((parsim* or spars*) and (represent* or approx* or sol* or convex) and
(pursuit or dictionary or transform)) or (compres* and (sens* or sampl*) and (spars* or parsim*))). This search was done on September
22nd, 2012. Since this search was done on September 2012, the paper and citation counts for 2012 are only partial, explaining the sudden
drop in the graphs.

central to the characterization of the signal family which
x belongs to.

In order to illustrate how this model should be used in
practice, let us return to the denoising task as described
above: We are given y, a noisy version of the signal
x, and we assume that x belongs to Sparseland, i.e., it
is known to have a k-sparse representation with respect
to some dictionary D. In order to denoise y, we should
project it onto the model, essentially searching for the
signal x̂ that is the closest to y, while also belonging
to one of the

(
n
k

)
subspaces that this model covers. Put

formally, we should solve the problem

(Pnoise0 ) α̂ = argminα‖y − Dα‖22 s.t. ‖α‖0 = k, (3)

which is a direct extension of Equation (2) for the noisy
setup. The denoised signal would be Dα̂, the multiplica-
tion of the found representation α̂ by the dictionary. This
description reveals the high complexity that characterizes
the required denoising process (in fact, it has been proven
to be NP-hard), as we need to sweep through all the
possible subspaces. In order not to leave our readers
worried at this stage, we should add that in recent
years there has been enormous progress in devising
highly efficient methods to approximate the solution of
(Pnoise0 ), with provable guarantees of success.

The Sparseland model is a very effective and suc-
cessful model. It has gained substantial popularity in the
past decade, as it offers a unique mixture of theoretical
depth, numerical challenges, and successful applications.
Beyond the simplicity and elegance of this model, it is
very appealing and popular because of the following key
reasons:
1. Universality: As said above, a signal belonging to
Sparseland must reside in a union-of-subspaces. This
high-dimensional structure is very rich, very flexible, and

yet, it emerges from a relatively concise set of parameters
— the dictionary D. Due to this universality, this model
has found numerous applications in processing various
imaging sources [5], [6], [7], [8], audio [9], video [10],
[11], seismic data [12], financial data [13], and more.
2. Theory: This model leads to a wide set of interesting
theoretical questions. Given a candidate solution for
Dα = x, could we claim its global optimality for
the problem defined as (P0) in Equation (2)? As this
problem is NP-Hard, can we approximate it? If so, what
guarantees can we pose for these algorithms? For a
noisy signal, could we recover the correct support of
its representation? What is the minimal possible error
we should expect? and is it achievable by practical
algorithms? Finally, if a signal is replaced by a small set
of projections of it, can this be sufficient for recovering
it? These and many other questions have formed the
grounds for fascinating research activity that flourished
in the past decade, leading to very constructive and
elegant answers [14], [15], [16], [17], [18].
3. Practicality: There is a clear path from the above
theory to practical algorithms and applications. A large
family of pursuit algorithms (e.g. [19], [20]) has been
proposed for approximating the solution of (P0) and its
noisy variant, (Pnoise0 ). Various ideas have been explored
for harnessing this model to applications, using wavelets
(e.g., [21]) or learning the dictionary from examples [22],
[23], [24], [25], leading often to state-of-the-art results.

Today, this field and its branches have become very
popular topics, with many active researchers from lead-
ing universities devoting their efforts to decipher some
of the above mentioned riddles and challenges. Figure
2 shows paper and citation counts over the years for
work related to the Sparseland model. While this is a
crude and somewhat inaccurate search, it is sufficient
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for demonstrating the massive (exponential) growth in
the interest in this field. Figure 3 presents the spread
of these publications in various universities and research
institutes around the world.

Figure 3. A list of the universities and research institutes where
most of the publications on Sparseland originate from. This relies on
the same ISI Web-of-Science search as in Figure 2.

The interest in this model is growing dramatically,
which only magnifies the community’s appetite for more
breakthroughs in this field, and the belief that such
achievements are within reach. Incidently, the work
on compressed4 sensing (CS) that emerged in 2005-
2006 [26], [27] has also contributed in a large part to
the popularity of this model, as it added another layer
of theory and practice to sparse representations, in the
context of signal-sampling. So strong was the impact of
CS that many today identify the entire field of sparse
and redundant representations with it.

In the recently updated EDICS for the IEEE-Signal
Processing Letters, five new entries related to sparse
and redundant representations have been added. These
include:
• Theory of sparse representations and compressed-

sensing (MLSAS-SPARSE),
• Sparse signal representations and recovery - algo-

rithms and applications (DSP-SPARSE)
• Audio processing via sparse representations (AEA-

SPARSE),
• Sparse representation in imaging (IMD-SPAR), and
• Compressed Sensing (SAM-SPARCS).

This reflects the popularity of this model and its impact
on signal processing research and practice.

A few words about the history of this field: It is quite
hard to single-out the origin of the ideas that stand behind
the above model, but it is clear that the vast activity
in the years 1980-2000 on transforms in general, and
wavelets and frame theory in particular, substantially
contributed to it, setting the stage for its conception.

4Sometimes the term “compressive” is used instead.

Central contributions were made by a handful of influ-
ential works in the mid-nineties [28], [29], [30], and
these marked the birth of the field as an individual
research area. Following these, a truly extensive work
on Sparseland modeling took place mostly in the past
decade. It was the daring paper in 2001 by Donoho
and Huo [31], which ignited the burst of interest in
this field, by establishing for the first time a theoretical
connection between sparsity-seeking transforms and the
`1-norm measure.

During the past decade, the interest in sparsity and re-
dundancy has grown dramatically. The scientists working
on this topic come from various disciplines — mathe-
maticians (applied and theorists), statisticians, engineers
from various fields, geophysicists, physicists, neuropsy-
chologists, computer science theoreticians, and others.
Various conferences, workshops, and special sessions
have been organized to gather scientists working on these
topics, and various journals have allocated special issues
for this and related topics. All of these testify to the great
popularity this field has gained.

III. SO, WHAT NEXT?
With the impressive achievements that sparse and

redundant representation modeling has gathered in the
past years, one might be tempted to believe that not much
is left to be done. However, this could not be further from
the truth — there are numerous unanswered questions
and unexplored avenues for future research in the fields
of signal modeling in general and sparsity-based models
in particular. The success of sparsity and redundancy
as core forces in signal modeling naturally leads to an
appetite to further extend sparsity-based signal modeling
techniques, and stretch their limits in various ways.

In trying to map the future work in this arena, we
see three key directions that are central for advancing
this field, and those are likely to draw the attention of
researchers in coming years:
• Theoretical frontiers
• Model improvements, and
• Applications.

We shall now detail each of these directions, and mention
ten key open problems that await future treatment.

At this point we would like to draw the reader’s
attention to Thomas Strohmer’s paper published in this
issue, whose focus is Compressive-Sensing (CS) [32].
In his article, Strohmer discusses the recent progress in
CS, and points to key challenges and opportunities in this
field. As CS and Sparseland are closely related, many of
the topics covered in [32] are of great relevance to the
discussion here, and the reader would benefit much from
reading the two papers together.
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And just before we start, a few words of caution: First,
the open problems described hereafter are often so
because they are simply very hard to handle. Second, the
discussion to come is somewhat biased by the author’s
own perspective, and the ideas discussed should be taken
as such.

A. Theoretical Frontiers

As said above, one of the main achievements of the
vast work on Sparseland is the theoretical backbone that
establishes the goodness of this model and the algorithms
serving it. In the past decade, many papers explored the
performance limits of pursuit algorithms, reconstruction
bounds for various inverse problems serving sparsely
represented signals, and fundamental properties of the
core model. Nevertheless, the main questions on all
these fronts remain essentially open, simply because the
obtained results are often unrealistically restrictive.
1. Better Bounds: A common flaw that shadows many
of the existing results in this field is the reliance on
worst-case measures of the dictionary properties, such
as the mutual-coherence [14] or the restricted isometry
property (RIP) [18]. Both these measures (and there are
others suffering from the same weakness) are defined
with respect to the worst-possible constellation of atoms
and their influence on the pursuit success. As such, even
if consequent analysis adopts a probabilistic point of
view, the eventual results tend to be overly restrictive,
leading to wide gaps between theoretical predictions and
actual performance (which tends to be much better). Nat-
urally, we should explore ways to replace these worst-
case measures by average-case ones, or others. While
such work has already started to appear (see [33], [34]),
far more work should be invested on this topic in order
to lead to simple yet effective theoretical predictions of
the actual pursuit performance.
2. Targeting General Dictionaries: The above leads
us naturally to the next issue, of providing theoreti-
cal results on the performance of pursuit algorithms
for general content dictionaries. In recent years much
progress has been made in making statements on the
pursuit performance for random dictionaries. A major
breakthrough along these lines has been obtained via
the approximate message-passing algorithms and their
machinery [35], [36]. However, none of these can be
extended easily to more general content dictionaries,
which means that these results seem to be applicable
only for the compressed-sensing problem. In various
image processing tasks, we have no control over the
dictionary content, and often the dictionary is obtained
through training. In these cases we would like to know

that the CS results remain applicable, suggesting that
a good (near-oracle) MSE recovery is possible of a
signal that is known to be compressible (having a sparse
representation, or nearly so).
3. Theory of Dictionary Learning: Dictionary learning
is a prominent part of Sparseland, as it enables the
extraction of an underlying sparsifying dictionary from
a given set of signal examples. This process has been
treated mostly empirically [22], [23], [25], [30], offering
algorithms to learn the dictionary. Theoretically speak-
ing, so far we have little justification for using these
algorithms — we do not know whether the learning
problem is stable (i.e., that noisy signals can be used
in principle to learn a good quality dictionary), we do
not have solid results that guarantee the success of the
learning algorithms, nor do we have a thorough study
of these algorithms’ flaws. Here too there are very few
recent, partial, but very daring attempts [37], [38], [39].
But more than anything, these testify to the complexity
of these questions, and the dire need for broader and
more constructive theoretical results that will establish
the “safety” of using dictionary learning.
4. Unified Theory of Simplicity Measures: As a final
topic in this sub-section, we take a few steps back and
adopt a much wider view of Sparseland: The `0 sparsity
has been chosen as the driving force for this model
because it serves as an ultimate measure of simplicity. In
recent years, low-rankness of a matrix has been also pop-
ularized as an alternative simplicity measure [40]. How
are the two connected? Recent results show a unified
view of the two, including a common theoretical study
of recovery problems [41]. Are there other measures of
simplicity we should be thinking of? Is there a unified
view of such measures that would include sparsity, low-
rankness, and others (such as low-entropy), as special
cases? This may lead to a new theory that considers an
abstract notion of simplicity in general inverse problems.

B. Model Improvements

Behind the deep and elegant theory developed for
Sparseland, stand the desire to find better ways for
modeling of data. As such, Sparseland has been shown
to be quite successful and better than its predecessors.
However, if the goal is indeed modeling, we must ask
ourselves whether Sparseland is the ultimate model. Are
there flaws in this model that call for modifications?
Could we envision ways to improve it? We mentioned
above the existence of an evolution of models, improving
over time, and there is no reason to believe that this
evolution ends here. Thus, Sparseland is nothing more
than one stop in a long list of generations of models to
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come. And so, the natural question is — where do we
go from here in order to improve this model?
5. Introducing Structure: The chemistry analogy to
Sparseland is enlightening, as it offers natural extensions
to this model. For example, molecules in nature are built
of a few kinds of atoms, just like in the Sparseland
model. However, in nature, the possible atom constel-
lations are not equally likely; some atoms are more
common while others are rare; some tend to appear
together often, while others never co-appear, etc.. This
suggests that the sparsity pattern of the representation
should not be thought of as an i.i.d. binary vector, but
rather assumed to have a structure. Imposing depen-
dencies between the representation entries adds further
constraints on the signal, reduces the effective number
of permitted subspaces, and thus leads to deeper dimen-
sionality reduction.

There are various ways to impose structure on the
representation vector α and its support — see for exam-
ple [42], [43], [44], [45]. Mixture of Gaussians, which
recently got a revived interest for image processing
purposes may be considered as a special case of such
a structure [46], [47]. The existing work along these
lines is only the beginning, however, as we struggle to
adapt the model to actual data sources. Incorporating
such a representation structure into the model should
affect the whole processing chain, from design of novel
pursuit algorithms, through adequately modifying dictio-
nary learning methods, all the way to estimation of the
parameters defining the structure-model. These should
be accompanied by extensions of the existing theoretical
guarantees, as discussed in the previous subsection.
6. Structured Dictionaries: Imposing structure should
be considered not only in the context of the represen-
tation vector, but also in the learned dictionaries that
bring the adaptation of the model to the data. Current
dictionary learning methods operate on low-dimensional
and typically fixed-size signals, and build a dictionary
which is an unconstrained and unstructured matrix.
When aiming to model high-dimensional data, existing
methods cannot cope with the induced complexity and
memory requirements. A structured dictionary is the
answer — an arbitrarily large matrix that would serve
the signal it aims to sparsify, and which will be defined
via a reduced and manageable set of parameters.

What structure should we impose? The natural answer
that comes to mind is an imitation of existing analytical
transforms, such as the curvelets [48], contourlets [49],
and shearlets [50], incorporating near-shift-invariance,
multi-directional and multi-scale relations between the
atoms. This is the natural way to go, and yet it has not
been done so far to the point where we could dispose of

these more classical and analytically-oriented transforms,
replacing them with a process we may refer to in the
future as trainlets. Few exceptions to this statement exist
(e.g., [11], [51]), but their construction is far from being
satisfactory and competitive.

7. The Analysis Co-Sparse Model: Sparseland, as
described above is typically referred to as a synthesis
model, because the relation x = Dα suggests a way to
synthesize x by drawing a random representation with
k non-zero entries and multiplying it by D. Most of the
work done so far on sparse and redundant representations
has been done in the context of this synthesis model.
However, this is not the only way to obtain a union-
of-subspaces construction. More specifically, there is
a different viewpoint to sparse representations which
has been left aside almost untouched – the co-sparse
analysis model [52]. This model represents a signal x by
multiplying it by an analysis dictionary, Ω, and requiring
that the outcome, α = Ωx, is sparse.

We shall not expand on the properties of the co-
sparse analysis model here, but we will mention that
it is markedly different from the synthesis counterpart
approach, it is more expressive as it leads to a much
richer union-of-subspaces, and it promotes strong linear
dependencies between its atoms for the model to perform
well, something that stands as a complete opposite to the
synthesis approach. In recent years there is a growing
interest in this alternative, and a growing belief that it
encompasses a potential for better signal modeling. The
study of the co-sparse analysis model creates a series of
new possibilities and opportunities for signal modeling.

8. Model Errors: Still in the context of model im-
provement, let us be bold and ask — how do we
assess the quality of a model? A systematic way would
be to evaluate the modeling errors — we mentioned
earlier that every model induces some error. There are
in fact two kinds of modeling errors, and they affect
our applications very differently: The first corresponds to
true signals that the model considers as unlikely (mis-
detections), and the second refers to undesired signals
that are endorsed by the model (false-alarms). These
two errors, the balance between them, their formation,
extent, and impact on applications, have never been
systematically studied. Understanding these errors better
may help in improving future models. In combating these
errors, perhaps we should seek modeling techniques that
are able to combine several simpler models, such as
(i) a mixture of Sparseland models, (ii) using models
that define their contribution using a negative force
that carves out undesired regions from Rd, or (iii) a
hierarchical fusion of sparsity-based models.
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C. Applications

Returning to the basic goals of Sparseland, we need
data models that can lead us to success in recov-
ery, compression, sampling, detection, separation, and
more. Various applications have already been addressed
this way, and many others are likely to follow. Wire-
less communication, radar and sonar signal process-
ing, speech and music processing, medical-imaging,
computer-vision applications, machine-learning, data-
mining, array-processing, and more, are a few of the
many fields that will find use for sparsity-promoting
models. In this subsection we mention two signal “cus-
tomers” that are somewhat unconventional, thus calling
for more unique treatment and original thinking.
9. Sparsity in Computer Graphics: 3D objects are
commonly represented as polygon meshes, built as a
collection of (many thousands of) vertices, edges, and
2D faces that define the eventual shape’s surface. This is
a signal defined on an unstructured grid, and as such,
many of the available regular signal processing tools
become irrelevant for it. How can we bring Sparseland
to such signals? A naive attempt to re-sample the mesh
and bring it to a uniformly-sampled 3D volume is of
course possible, but this approach is highly sensitive
to noise, it magnifies the data size substantially, and
it introduces unavoidable sampling errors. As such, this
approach loses much of the elegance that direct mesh-
based processing methods have. Is there an invertible
“transform” or “embedding” that could take a given mesh
to a new domain, where Sparseland can be employed
naturally? A positive answer to this question would lead
to novel and highly effective tools in computer graphics.
10. Processing Non-Conventional Signals: The prob-
lem posed above is caused by the non-uniformity of the
sampling in producing the data. This situation is also
encountered in other cases, such as graph-based data
and point clouds. For example, in recent years there is a
growing interest in data available over social networks,
organized as a graph with vertices and edges. Each vertex
is characterized by a high-dimensional feature-vector,
and the edges encode interrelations between vertices.
The question arising is the same as above: How can
we incorporate Sparseland into these cases? Sparsifying
transforms for such data can be envisioned, and work
has already started along these lines [53], [54], [55].
However, these are far from a full deployment of sparsity
and redundancy to these needs.

IV. SUMMARY

In this paper we discussed the central role of data
models in signal processing, and we introduced the

story of Sparseland, which has come to be a leading
model in recent years. This paper also offered a series
of ten research directions that could be taken in order
to push the frontiers of knowledge in this field. What
we have not said (perhaps because it seems obvious)
is that Sparseland is not the remedy to all the existing
illnesses, and it does not belong everywhere. Scientists
and engineers reading this article and broadly influenced
by the buzz around Sparseland should be very careful
to judge whether their problems call for the use of
sparsity and redundancy. That said, the core idea of
modeling signals based on their sparse representation
seems natural, fundamental, and thus universally correct.
For many applications this is a fantastic and winning
tool, and the work and knowledge accumulated so far
depict a hopeful future for this field.
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