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Image Processing using Smooth Ordering of its
Patches
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Abstract—We propose an image processing scheme based on
reordering of its patches. For a given corrupted image, we
extract all patches with overlaps, refer to these as coordinates
in high-dimensional space, and order them such that they are
chained in the ”shortest possible path”, essentially solving the
traveling salesman problem. The obtained ordering applied to
the corrupted image, implies a permutation of the image pixels
to what should be a regular signal. This enables us to obtain
good recovery of the clean image by applying relatively simple
one-dimensional (1D) smoothing operations (such as filtering or
interpolation) to the reordered set of pixels. We explore the use
of the proposed approach to image denoising and inpainting, and
show promising results in both cases.

Index Terms—patch-based processing, traveling salesman,
pixel permutation, denoising, inpainting.

I. INTRODUCTION

In recent years, image processing using local patches has
become very popular and was shown to be highly effective –
see [1-13] for representative work. The core idea behind these
and many other contributions is the same: given the image
to be processed, extract all possible patches with overlaps;
these patches are typically very small compared to the original
image size (a typical patch size would be 8 × 8 pixels).
The processing itself proceeds by operating on these patches
and exploiting interrelations between them. The manipulated
patches (or sometimes only their center pixels) are then put
back into the image canvas to form the resulting image.

There are various ways in which the relations between
patches can be taken into account: weighted averaging of
pixels with similar surrounding patches, as the NL-Means
algorithm does [1], clustering the patches into disjoint sets
and treating each set differently, as performed in [2], [3], [4]
[5], [6], [7], seeking a representative dictionary for the patches
and using it to sparsely represent them, as practiced in [8], [9],
[10] and [11], gathering groups of similar patches and applying
a sparsifying transform on them [10], [12], [13]. A common
theme to many of these methods is the expectation that every
patch taken from the image may find similar ones extracted
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elsewhere in the image. Put more broadly, the image patches
are believed to exhibit a highly-structured geometrical form in
the embedding space they reside in. A joint treatment of these
patches supports the reconstruction process by introducing a
non-local force, thus enabling better recovery.

In our previous work [14] and [15] we proposed yet another
patch-based image processing approach. We constructed an
image-adaptive wavelet transform which is tailored to sparsely
represent the given image. We used a plain 1D wavelet
transform and adapted it to the image by operating on a
permuted order of the image pixels1. The permutation we
proposed is drawn from a shortest path ordering of the image
patches. This way, the patches are leveraged to form a multi-
scale sparsifying global transform for the image in question.

In this paper we embark from our earlier work as reported
in [14] and [15], adopting the core idea of ordering the
patches. However, we discard the globality of the obtained
transform, the multi-scale treatment, and the sparsity-driven
processing that follows. Thus, we propose a very simple
image processing scheme that relies solely on patch reordering.
We start by extracting all the patches of size

√
n ×

√
n

with maximal overlaps. Once these patches are extracted, we
disregard their spatial relationships altogether, and seek a new
way for organizing them. We propose to refer to these patches
as a cloud of vectors/points in Rn, and we order them such
that they are chained in the ”shortest possible path”, essentially
solving the traveling salesman problem [18]. This reordering
is the one we have used in [14] and [15], but as opposed to our
past work, our treatment from this point varies substantially.
A key assumption in this work is that proximity between
two image patches implies proximity between their center
pixels. Therefore if the image mentioned above is of high-
quality, the new ordering of the patches is expected to induce
a highly regular (smooth or at least piece-wise smooth) 1D
ordering of the image pixels, being the center of these patches.
When the image is deteriorated (noisy, containing missing
pixels, etc.), the above ordering is expected to be robust to the
distortions, thereby suggesting a reordering of the corrupted
pixels to ”what should be” a regular signal. Thus, applying
relatively simple 1D smoothing operations (such as filtering
or interpolation) to the reordered set of pixels should enable
good recovery of the clean image.

This is the core process we propose in this paper – for a
given corrupted image, we reorder its pixels, operate on the
new 1D signal using simplified algorithms, and reposition the
resulting values to their original location. We show that the

1Note that the idea of adapting a wavelet transform to the image by
reordering its pixels appears also in [16] and [17], but the schemes proposed
there do not use image patches.
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proposed method, applied with several randomly constructed
orderings and combined with a proposed subimage averaging
scheme, is able to lead to state-of-the-art results. We explore
the use of the proposed image reconstruction scheme to image
denoising, and show that it achieves better results than the
ones obtained with the K-SVD algorithm [8] for medium
and high noise levels, and generally performs better than the
BM3D algorithm [12] for high noise levels. We also explore
the use of the proposed image processing scheme to image
inpainting, and show that it leads to better results compared to
the ones obtained with a simple interpolation scheme and the
method proposed in [19] which employs sparse representation
modeling via the redundant DCT dictionary. We also show that
our results are mostly better than the ones of the algorithm
proposed in [13], and slightly inferior to the ones of the state-
of-the-art PLE [4] for two of the three test images. Finally, we
draw some interesting ties between this scheme and BM3D
rationale [12].

The paper is organized as follows: In Section II we in-
troduce the basic image processing scheme. In Section III
we explain how the performance of the basic scheme can be
improved using a subimage averaging scheme, and describe
the connection between the improved scheme and the BM3D
algorithm. In Section IV we explore the use of the proposed
approach to image denoising and inpainting, and present
experimental results that demonstrate the advantages of the
proposed scheme. We summarize the paper in Section IV with
ideas for future work along the path presented here.

II. IMAGE PROCESSING USING PATCH ORDERING

A. The Basic Scheme
Let Y be an image of size N1 × N2 where N1N2 = N ,

and let Z be a corrupted version of Y, which may be noisy
or contain missing pixels. Also, let z and y be the column
stacked versions of Z and Y, respectively. Then we assume
that the corrupted image satisfies

z = My + v (1)

where the N × N matrix M denotes a linear operator which
corrupts the data, and v denotes an additive white Gaussian
noise independent of y with zero mean and variance σ2. In
this work the matrix M is restricted to represent a point-
wise operator, covering applications such as denoising and
inpainting. The reason for this restriction is the fact that we
will be permuting the pixels in the image, and thus spatial
operations become far more complex to handle.

Our goal is to reconstruct y from z, and for this end we
employ a permutation matrix P of size N × N . We assume
that when P is applied to the target signal y, it produces a
smooth signal yp = Py. We will explain how such a matrix
may be obtained using the image patches in Section II-B. We
start by applying P to z and obtain zp = Pz. Next, we take
advantage of our prior knowledge that yp should be smooth,
and apply a “simple” 1D smoothing operator H on zp, such
as 1D interpolation or filtering. Finally, we apply P−1 to the
result, and obtain the reconstructed image

ŷ = P−1H {Pz} . (2)

permutations inverse
permutations

1D
processing

1P
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Fig. 1: The basic image processing scheme.

In order to better smooth the recovered image, we use an
approach which resembles the cycle spinning method [20].
We randomly construct K different permutation matrices Pk,
utilize each to denoise the image z using the scheme described
above, and average the results. This can be expressed by

ŷ =
1
K

K∑
k=1

P−1
k H {Pkz} . (3)

Figure 1 shows the proposed image processing scheme. We
next describe how we construct the reordering matrix P.

B. Building the Permutation Matrix P

We wish to design a matrix P which produces a smooth
signal when it is applied to the target image y. When the
image Y is known, the optimal solution would be to reorder
it as a vector, and then apply a simple sort operation on the
obtained vector. However, we are interested in the case where
we only have the corrupted image Z (noisy, containing missing
pixels, etc.), and any permutation defined by simply reordering
the corrupted pixels into a regular signal does not necessarily
smooth y. Therefore, as the pixels in the corrupted image are
not helpful to us, we settle for a suboptimal ordering operation,
using patches from the corrupted image.

Let yi and zi denote the ith samples in the vectors y and z,
respectively. We denote by xi the column stacked version of
the

√
n×

√
n patch around the location of zi in Z. We assume

that under a distance measure2 w(xi,xj), proximity between
the two patches xi and xj suggests proximity between the
uncorrupted versions of their center pixels yi and yj . Thus, we
shall try to reorder the points xi so that they form a smooth
path, hoping that the corresponding reordered 1D signal yp

will also become smooth. The “smoothness” of the reordered
signal yp can be measured using its total-variation measure

∥yp∥TV =
N∑

j=2

|yp(j) − yp(j − 1)|. (4)

Let {xp
j}N

j=1 denote the points {xi}N
i=1 in their new order.

Then by analogy, we measure the “smoothness” of the path
through the points xp

j by the measure

Xp
TV =

N∑
j=2

w(xp
j ,x

p
j−1). (5)

Minimizing Xp
TV comes down to finding the shortest path that

passes through the set of points xi, visiting each point only

2Throughout this paper we will be using variants of the squared Euclidean
distance.
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Task: Reorder the image patches xj .
Parameters: We are given the image patches
{xj}N

j=1, the distance function w, and ϵ which is
used in the probabilistic part of the algorithm.
Initialization: Choose a random index j and set
Ω(1) = {j}.
Main Iteration: Perform the following steps for k =
1, . . . , N − 1:

• Set Ak to be the set of indices of the B × B
patches around xΩ(k).

• If |Ak \ Ω| = 1

– Set Ω(k + 1) to be Ak \ Ω.
• Else

– If |Ak \ Ω| ≥ 2

∗ Find xj1 – the nearest neighbor to xΩ(k)

such that j1 ∈ Ak and j1 /∈ Ω.
∗ Find xj2 – the second nearest neighbor

to xΩ(k) such that j2 ∈ Ak and j2 /∈ Ω.
– Elseif |Ak \ Ω| = 0

∗ Find xj1 – the nearest neighbor to xΩ(k)

such that j1 /∈ Ω.
∗ Find xj2 – the second nearest neighbor

to xΩ(k) such that j2 /∈ Ω.
– Set Ω(k + 1) to be:

∗ {j1} with probability
p1 ∝ exp

[
−w(xΩ(k),xj1 )

ϵ

]
∗ {j2} with probability

p2 = 1 − p1 ∝ exp
[
−w(xΩ(k),xj2 )

ϵ

]
Output: The set Ω holds the proposed ordering.

Algorithm 1: The patch reordering algorithm we use.

once. This can be regarded as an instance of the traveling
salesman problem [18], which can become very computation-
ally expensive for large sets of points. We choose a simple and
crude approximate solution, which is to start from a random
point and then continue from each point xj0 to its nearest
neighbor xj1 with a probability p1 = α exp [−w(xj0 ,xj1)/ϵ],
or to its second nearest neighbor xj2 with a probability
p2 = α exp [−w(xj0 ,xj2)/ϵ], where α is determined such that
p1+p2 = 1, ϵ is a design parameter, and xj1 and xj2 are taken
from the set of unvisited points.

We restrict the nearest neighbor search performed for each
patch to a surrounding square neighborhood which contains
B × B patches. When only one unvisited patch remains in
that neighborhood, we simply continue to this patch, and in
the case that no unvisited patches remain, we search for the
first and second nearest neighbors among all the unvisited
patches in the image. This restriction decreases the overall
computational complexity, and our experiments show that with
a proper choice of B it also leads to improved results. The
permutation applied by the matrix P is defined as the order in
the found path. The patch reordering scheme is summarized
in Algorithm 1.

We next demonstrate the smoothing effect that a permuta-
tion obtained from a corrupted image has on its clean version.
We apply the patch ordering scheme described above, with the
parameters

√
n = 6, B = 61 and ϵ = 106, to the patches of
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Fig. 2: (a) Noisy Barbara (σ = 10). (b) Reordered clean Barbara,
folded back by s zig-zag raster scan. (c) and (d) – Normalized
histograms of the spatial distances between adjacent patches after
the reordering, obtained with unrestricted and restricted search areas,
respectively The lengths of the pathes in the spatial domain obtained
with the unrestricted and restricted searches were 3.63 · 107 and
3.42 · 106, respectively.

the noisy Barbara image with noise standard deviation σ = 10,
shown in Figure 2(a). We apply the obtained permutation to
the column stacked version y of the clean Barbara image, and
obtain the reordered signal yp. We then calculate the total
variations of y and yp, and obtain that ∥y∥TV = 2.49 · 106

and ∥yp∥TV = 1.76 · 106, i.e. the latter is 29 percent smaller
than the former. In order to visually demonstrate the regularity
of the reordered signal yp, we fold it back by a zig-zag
raster scan into the original image size. The obtained image
is shown in Figure 2(b), and it can be seen that the reordered
signal is indeed piecewise regular for most of its length, but
becomes less and less regular towards its end. In fact, when
the last 30% of the samples of y and yp are discarded, the
total variation of the obtained reordered signal becomes 37
percent smaller than the total variation of the obtained column
stacked signal. This behaviour of the reordered images might
be expected due to the greedy nature of the patch ordering
algorithm, which leaves for the patches near the end of the
path a very small number of unvisited patches to choose from.
The employed cycle spinning scheme prevents the non-regular
parts of the reordered images from degrading the quality of
the reconstructed images.

It is also interesting to examine the characteristics of the
patch ordering in the spatial domain. To this end we also apply
the patch ordering scheme to the patches of the noisy Barbara
image with the same parameters, but with an unrestricted
search neighborhood. We apply the permutations obtained with
the two types of neighborhoods to the patches, and calculate
two normalized histograms of the spatial distances between
adjacent patches, shown in Figure 2. Figure 2(c) shows that
when the search neighborhood is not restricted, only about 5%
of neighboring patches in the path are also immediate spatial
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neighbors, and that far away patches are often assigned as
neighbors in the reordering process. The histogram in Figure
2(d), obtained with restricted search neighborhood, is limited
to show only distances which are smaller or equal to 43,
the maximal possible distance within the search window. It
can be seen that despite the restriction to a smaller search
neighborhood, only about 11% of neighboring patches in the
path are also immediate spatial neighbors, and patches all
over the search neighborhood are assigned as neighbors in
the reordering process.

In order to facilitate the cycle-spinning method mentioned
above, we simply run the proposed ordering solver K times,
and the randomness (both in the initialization and in assigning
the neighbors) leads to different permutation results. We next
describe how the quality of the produced images may be
further improved using a subimage averaging scheme, which
can be seen as another variation of cycle spinning.

C. Subimage Averaging

Let Np = (N1 −
√

n + 1)(N2 −
√

n + 1) denote the
number of overlapped patches in the image Z, and let X
be an n × Np matrix, containing column stacked versions of
these patches. We extract these patches column by column,
starting from the top left-most patch. When we calculated P
as described in the previous section, we assumed that each
patch is associated only with its middle pixel. Therefore P was
designed to reorder the signal composed of the middle points
in the patches, which reside in the middle row of X. However,
we can alternatively choose to associate all the patches with
a pixel located in a different position, e.g., the top left pixel
in each patch. This means that the matrix P can be used to
reorder any one of the signals located in the rows of X. These
signals are the column stacked versions of all the n subimages
of size (N1 −

√
n + 1) × (N2 −

√
n + 1) contained in the

image Z. We denote these subimages by Z̃j , j = 1, 2, . . . , n.
An example for two of them, Z̃1 and Z̃n, contained in a noisy
version of the image Barbara with noise standard deviation
σ = 25, is shown Fig 3(a).

We already observed in [14] and [15] that improved de-
noising results are obtained when all the n subimages of a
noisy image are employed in its denoising process. Here we
use a similar scheme in order to improve the quality of the
recovered image. In order to avoid cumbersome notations we
first describe a scheme which utilizes a single ordering matrix
P. Let the vector z̃j = Rjz of length Np be the column
stacked version of Z̃j , where the Np ×N matrix Rj extracts
the jth subimage from the image z. We first calculate the
Np×Np matrix P using the patches in X and apply it to each
subimage z̃j . Then we apply the operator H to each of the
reordered subimages z̃p

j = Pz̃j , apply the inverse permutation
P−1 on the result, and obtain the reconstructed subimages

ˆ̃yj = P−1H{Pz̃j} = P−1H{PRjz}. (6)

We next reconstruct the image from all the reconstructed
subimages ˆ̃yj by plugging each subimage into its original
place in the image canvas and averaging the different values

1Z�

nZ�

(a) (b)

Fig. 3: (a) Two subimages Z̃1 and Z̃n contained in a noisy version
of the image Barbara (σ = 25). (b) Classification of the pixels in a
noisy version of the image Barbara to centers of smooth (white) and
non-smooth (black) patches.

obtained for each pixel. More formally, we obtain the recon-
structed image ŷ as follows:

ŷ = D−1
n∑

j=1

RT
j

ˆ̃yj = D−1
n∑

j=1

RT
j P−1H{PRjz} (7)

where the matrix RT
j plugs the estimated jth subimage into

its original place in the canvas, and

D =
n∑

j=1

RT
j Rj (8)

is an N ×N diagonal weight matrix that simply averages the
overlapping contributions per each pixel. When K random
matrices Pk are employed, we obtain the final estimate by
averaging the images obtained with the different permutations

ŷ =
1
K

K∑
k=1

D−1
n∑

j=1

RT
j P−1

k H{PkRjz}

 . (9)

This formula reveals two important properties of our
scheme: (i) the two summations that correspond to the two
cycle-spinning versions lead to an averaging of nK candidate
solutions, a fact that boosts the overall performance of the
recovery algorithm; and (ii) if H is chosen as linear, then the
overall processing is linear as well, provided that we disregard
the highly non-linear dependency of P on z.

D. Connection to BM3D and Clustering-Based Methods

The above processing scheme can be described a little
differently. We start by calculating the permutation matrix P
from the image patches xi. We then gather the patches by
arranging them as the columns of a matrix Xp in the order
defined by P. This matrix contains in its rows the reordered
subimages z̃p

j , therefore we next apply the operator H to its
rows, and shuffle the columns of the resulting matrix according
to the permutation defined by P−1. We obtain a matrix X̄,
which contains in its rows the reconstructed subimages ˆ̃yj ,
and in its columns reconstructed versions x̄i of the image
patches xi. We obtain the reconstructed image ŷ from the
patches x̄i by plugging them into their original places in the
image canvas, and averaging the different values obtained for
each pixel. When K random matrices Pk are employed, we
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apply the aforementioned scheme with each of these matrices,
and average the obtained images.

Now, looking at the image processing scheme described
above, we can see some similarities to the first stage of the
BM3D algorithm. Both algorithms stack the image patches
into groups, apply 1D processing across the patches, return the
patches into their place in the image, and average the results.
We note that the BM3D algorithm also applies a 2D transform
to the patches before performing 1D processing across them.
This feature can be easily added to our scheme if needed, and
we regard this as a preprocessing part of the operator H . On
the other hand, there are some key differences between the two
schemes. First, while the BM3D algorithm constructs a group
of neighbors for each patch, here we order all the patches
to one chain, which defines local neighbors. Furthermore,
this process is repeated K times, implying that our approach
consider K different neighbors assignments. Also, while in the
BM3D the patch order in each group is not restricted, ours is
carefully determined as it plays a major role in our scheme.
Finally, the 1D processing applied by the BM3D consists of
the use of a 1D transform, followed by thresholding and the
inverse transform, implying a specific denoising. Here we do
not restrict ourselves to any specific 1D processing scheme,
and allow the operator H to be chosen based on the application
at hand.

We conclude this discussion with the following comment.
When observing clustering-based restoration methods in gen-
eral, such as [5], [6], [10], [12], there is a clear similarity to our
approach, as near-by patches find themselves supporting each
other’s processing. However, as opposed to these methods,
our technique also orders the near-by patches into a smooth
path, and as such, our approach enables a better treatment of
the patches even within the clustered groups. For example, if
the corresponding center pixel forms a smooth linear slope
of values, the clustering approaches would approximate this
line by the average value, while our approach would regress
to a smooth line. We next demonstrate the application of our
proposed scheme to image denoising and inpainting.

III. APPLICATIONS AND RESULTS

A. Image Denoising

The problem of image denoising consists of the recovery of
an image from its noisy version. In that case M = I and the
corrupted image satisfies z = y + v. The patches xi contain
noise, and we choose the distance measure between xi and xj

to be the squared Euclidean distance divided by n, i.e

w(xi,xj) =
1
n
∥xi − xj∥2. (10)

In our previous works [14] and [15] we applied a complex
multi-scale processing on the ordered patches. Here we wish
to employ a far simpler scheme; we choose a 1D linear shift-
invariant filter, and as we show next, we learn this filter from
training images. Furthermore, we suggest to switch between
two such filters, based on the patch content.

We desire to treat smooth areas in the image differently than
areas with edges or texture, as our experiments show that this
approach leads to better results. More specifically, we employ

different permutation matrices and filters in the smooth and
non smooth areas of the image. We first divide the patches into
two sets: Ss - which contains smooth patches, and Se - which
contains patches with edges or texture. Let std(xi) denote the
standard deviation of the patch xi and let C be a scalar design
parameter. Then we use the following classification rule: if
std(xi) < Cσ then xi ∈ Ss, otherwise xi ∈ Se. Fig 3(b)
demonstrates the application of this classification rule to the
noisy Barbara image shown in Figure 3(a), where we use the
parameters

√
n = 8 and C = 1.2 which we will later use

in the denoising process of this image. White pixels are the
centers of smooth patches and black pixels are the centers of
patches containing texture or edges. It can be seen that the
obtained image indeed contains a rough classification of the
patches into smooth and non smooth sets.

We next divide each subimage z̃j into two signals: z̃j,s - a
vector of length |Ss| which contains the pixels corresponding
to the smooth patches, and z̃j,e - a vector of length |Se| which
contains the pixels corresponding to the patches with edges
and texture. We construct an |Ss| × Np matrix Ps, which
extracts z̃j,s from z̃j , and applies to it a permutation obtained
from the patches in the set Ss using the nearest neighbors
search method described above. We similarly construct an
|Se|×Np matrix Pe, which extracts z̃j,e from z̃j , and applies
to it a permutation obtained from the patches in the set Se,
using the same set of parameters. We apply Ps and Pe to z̃j

and obtain z̃p
j,s and z̃p

j,e, respectively, which are the signals to
which we apply the filters. We define the reordered subimage
z̃p

j and the Np × Np permutation matrix P which satisfy

z̃p
j =

[
z̃p

j,s

z̃p
j,e

]
,P =

[
Ps

Pe

]
(11)

and obtain that z̃p
j = Pz̃j .

We next wish to find the filters hs and he, each of length
Nh, applied to z̃p

j,s and z̃p
j,e, respectively. We denote by Mp

j,s

the |Ss| × Nh convolution matrix corresponding to z̃p
j,s, and

by Mp
j,e the |Se| × Nh convolution matrix corresponding to

z̃p
j,e, and obtain the filtered subimages

ˆ̃yj = P−1

[
Mp

j,shs

Mp
j,ehe

]
= P−1

[
Mp

j,s 0
0 Mp

j,e

] [
hs

he

]
= P−1Mp

jh (12)

where we defined the Np × Np matrix Mp
j , and the filters

vector h of length 2Nh, which satisfy

Mp
j =

[
Mp

j,s 0
0 Mp

j,e

]
,h =

[
hs

he

]
. (13)

The vector h stores the filter taps to be designed. We substitute
(12) in (7), and obtain the reconstructed image

ŷ = D−1
n∑

j=1

RT
j P−1Mp

jh. (14)

When K random matrices Pk are employed, we obtain the
final estimate by averaging the images obtained with the
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TABLE I: Denoising results (PSNR in dB) of noisy versions of
6 images (σ = 25), obtained with the proposed scheme in three
settings 1) without patch classification and using Gaussian smoothing
filter (Gaussian). 2) without patch classification and using a learned
filter (1 learned). 3) with patch classification and using two learned
filters (2 learned). For each image and setting the best result is
highlighted.

Image Gaussian 1 learned 2 learned
Lena 29.14 30.90 31.54

Barbara 27.42 30.14 30.36
Boats 26.66 28.91 29.5

Fingerprint 24.24 26.99 27.24
House 29.75 31.61 32.34

Peppers 26.38 28.99 29.78
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# Permutation matrices

P
S

N
R

 [d
B

]

 

 

without SA
with SA

Fig. 4: Average of the PSNR values obtained for the noisy test images
(σ = 25), with and without subimage averaging, as a function of the
number of permutations.

different matrices

ŷ =
1
K

K∑
k=1

D−1
n∑

j=1

RT
j P−1

k Mp
jh


=

1
K

K∑
k=1

D−1[RT
1 , . . . ,RT

n ]

P−1
k Mp

1
...

P−1
k Mp

n

h = Qh (15)

where we defined the N × 2Nh matrix

Q =
1
K

K∑
k=1

D−1[RT
1 , . . . ,RT

n ]

P−1
k Mp

1
...

P−1
k Mp

n

 . (16)

Now let yg , g = 1, . . . , G be a training set which contains
the column stack versions of G clean images. For each such
image we create a noisy version zg by adding noise with the
same statistics as the noise in z. Then we calculate for each
image zg a matrix Qg using (16), and learn the filters vector
h by minimizing

ĥ = argmin
h

G∑
g=1

∥yg − Qgh∥2

=

[
G∑

g=1

(Qg)T Qg

]−1 G∑
k=1

(Qg)T yg. (17)

Once we have the filters vector ĥ we can employ it to denoise
z by building Q using (16) and then calculating

ŷ = Qĥ. (18)

We can further improve our results by applying a second
iteration of our proposed scheme, in which all the processing

stages remain the same, but the permutation matrices are built
using patches extracted from the first iteration clean result.

In the following experiments we assess the performance
of the proposed image denoising scheme by applying it to
a test set containing noisy versions of 6 images, with 8
different noise standard deviations. We use a training set
containing the images Man, Couple, and Hill to learn the
filters vector h. We start by demonstrating the performance
gain obtained by combining the patch classification and filter
learning into the proposed denoising scheme. We compare the
results obtained with our scheme, for noisy images with noise
standard deviation σ = 25, in three settings: 1) without patch
classification and using a Gaussian smoothing filter; 2) without
patch classification and using a learned filter; 3) with patch
classification and using two learned filters. In all 3 cases we
use the parameters shown in Table II, which correspond to
σ = 25 and 1 iteration. The results are shown in Table I, and
it can be seen that using a learned filter instead of a simple
smoothing filter improves the results for all images, with an
average increase in PSNR of 2.32 dB. Also, performing patch
classification further improves the results for all images, with
an average increase in PSNR of 0.54 dB.

We also demonstrate the improvement in the performance
obtained with cycle spinning and subimage averaging. Figure 4
shows the average of the PSNR values obtained for the noisy
test images with our scheme, including patch classification
and filter learning, with and without subimage averaging, as
a function of the number of employed permutation matrices.
First it can be seen that the results in both cases improve as
the number of employed permutations K increases, and that
the subimage averaging improves the performance by between
1.5 dB for large values of K to 5 dB when K = 1. It can also
be seen that when the subimage averaging scheme is used,
most of the performance gain is obtained using the first 10
permutations. In fact, employing 40 more permutations in-
creases the results by less than 0.07 dB. Thus, as a compromise
between the quality of performance and computational cost,
in the following experiments we utilize K = 10 permutation
matrices when we apply our image denoising scheme.

We next apply our overall scheme, to all the noisy images
in the test set. The parameters employed by the proposed
denoising scheme for the different noise levels are shown
in Table II. We note that the reason we chose a uniform
filter length of Nh = 25 samples for all noise levels can be
justified using Figure 5. Figure 5. shows the average of the
PSNR values obtained in the first and second iterations for
all the test images, as a function of the filter length, for three
different noise levels. It can be seen that in both iterations the
performance gain obtained using filters longer than 25 samples
is negligible. The trained filters obtained in each iteration for
the three different noise levels are shown in Figure 6. First, it
can be seen that filters hs and he indeed look different. It can
also be seen that in the first iteration the shape of the filter
hs does not change much as the noise level increases, and in
the second iteration the filters obtained for the higher noise
levels are similar, but very different from the filter obtained
for σ = 10. On the other hand, in both iterations the shape of
the filter he changes greatly as the noise level increases.
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Fig. 5: Average of the PSNR values obtained for the test images, as a
function of the filter length, for three different noise levels: (a) First
iteration. (b) Second Iteration.
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Fig. 6: The trained filters learned from the noisy images for σ =
10, 25, 50: Left column - the filters hs obtained in the first (top) and
second (bottom) iterations. Right column - the filters he obtained in
the first (top) and second (bottom) iterations.

For comparison, we also apply the K-SVD [8] and BM3D
[12] algorithms. The PSNR values of the results obtained with
these algorithms, and two iterations of our denoising scheme
are shown in Table III. The noisy and recovered images
obtained with our scheme for σ = 25 are shown in Figure
7. First, it can be seen that the second iteration improves the
results of our proposed scheme in all the cases. It can also
be seen that the results obtained with two iterations of our
scheme are inferior to the those of the K-SVD for σ < 15,
but are better almost everywhere for σ ≥ 15. Further, our two
iterations results are generally better than those of the state-
of-the-art BM3D algorithm for σ ≥ 50, but are inferior for
higher SNRs.

B. Image Inpainting

The problem of image inpainting consists of the recovery
of missing pixels in the given image. Here we handle the case
where there is no additive noise, therefore v = 0, and M
is a diagonal matrix of size N × N which contains ones
and zeroes in its main diagonal corresponding to existing
and missing pixels, correspondingly. Each patch may contain
missing pixels, and we denote by Si the set of indices of
non-missing pixels in the patch xi. We choose the distance
measure between patches xi and xj to be the average of

TABLE II: Parameters used in the denoising experiments.
σ Iteration K

√
n C B ϵ Nh

5 1 10 5 2.2 61 106 25
2 10 4 1.2 361 103 25

10 1 10 6 1.6 61 106 25
2 10 4 0.8 361 103 25

15 1 10 7 1.4 61 106 25
2 10 4 0.6 361 103 25

20 1 10 8 1.3 61 106 25
2 10 4 0.5 361 103 25

25 1 10 8 1.2 61 106 25
2 10 4 0.4 361 103 25

50 1 10 14 1.1 61 106 25
2 10 5 0.3 361 103 25

75 1 10 16 1.1 61 106 25
2 10 6 0.2 361 103 25

100 1 10 16 1.1 61 106 25
2 10 8 0.1 361 103 25

squared differences between existing pixels that share the same
location in both patches, i.e.

w(xi,xj) =

∑
k∈Si∩Sj

(xi[k] − xj [k])2

|Si ∩ Sj |
. (19)

We start by calculating the matrix P according to the
scheme described in Section II-B, with a minor difference:
when a patch does not share pixels with any of the unvisited
patches, the next patch in the path is chosen to be its nearest
spatial neighbor. We next apply the obtained matrix to the
subimages z̃j , and observe that the permuted vectors z̃p

j = Pz̃j

contain missing values. We bear in mind that the target signals
ỹp

j = Pỹj should be smooth, and therefore apply on the
subimages z̃p

j an operator H which recovers the missing values
using cubic spline interpolation. We apply the matrix P−1 on
the resulting vectors and obtain the estimated subimages ˆ̃yj .
The final estimate is obtained from these subimages using (7).
We improve our results by applying two additional iterations
of a modified version of this inpainting scheme, where the
only difference is that we rebuild P using reconstructed (and
thus full) patches.

We demonstrate the performance of our proposed scheme
on corrupted versions of the images Lena, Barbara and House,
obtained by zeroing 80% of their pixels, which are selected
at random. The parameters employed in each of the three
iterations are shown in Table IV. In order to demonstrate the
advantages of our method over simpler interpolation schemes
we compare our results to the ones obtained by the matlab
function “griddata” which performs cubic interpolation of the
missing pixels based on Delaunay triangulation [21], [22]. We
also compare the performance of our algorithm to those of
three other patch-based algorithms. The first is the algorithm
described in chapter 15 of [19], which employs a patch-based
sparse representation reconstruction algorithm with a DCT
overcomplete dictionary to recover the image patches. We use
a patch size of 16×16 pixels in order to improve the results this
method produces. We note that we do not employ the K-SVD
based algorithm which was also described in this chapter, as
our experiments showed that it produces comparable or only
slightly better results than the redundant DCT dictionary, at a
higher computational cost. The other two algorithms to which



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 2013 8

PSNR=31.54 dB PSNR=30.36 dB PSNR=29.50 dB PSNR=32.34 dB
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Fig. 7: Denoising results (PSNR) for the images Lena, Barbara, Boat and House (σ = 25, input PSNR=20.18 dB): top row - noisy images,
center row - 1 iteration results, and bottom row - 2 iterations results.

we compare our results are the algorithm proposed in [13],
which is based on transforming groups of patches, and the
state-of-the-art PLE algorithm proposed in [4], which is based
on patch clustering. We present here the results reported for
these algorithms in [4], for the case of 80% missing pixels.
The PSNR values of the results obtained with the different
algorithms are shown in Table V. Figure 8 shows the corrupted
and the reconstructed images, with the corresponding PSNR
values, obtained using Delaunay triangulation, overcomplete
DCT dictionary, and 1 and 3 iterations of the proposed scheme.
First, it can be seen that the second and third iterations greatly
improve the results of our proposed algorithm. It can also
be seen that the results obtained with three iterations of our
proposed scheme are much better than those obtained with
Delaunay triangulation and the overcomplete DCT dictionary.
Further, it can be seen that our three iterations results are better
than the results obtained with the patch grouping algorithm
[13] for the images Lena and Barbara, but slightly inferior to
its results for the image House. Finally, it can be seen that
the stat-of-the-art PLE algorithm [4] outperforms our three
iterations results by only 0.3 dB for the images Lena and
House, but by more than 1.2 dB for the image Barbara.

C. Computational Complexity

We next evaluate the computational complexity of a single
iteration of the two image processing algorithms described
above. We note that for the image denoising scheme, we

TABLE IV: Parameters used in the inpainting experiments.
Iteration K

√
n B ϵ

1 10 16 9 102

2 10 8 43 104

3 10 5 55 108

TABLE V: Inpainting results (PSNR in dB) of corrupted versions
of the images Lena, Barbara and House with 80% of their pixels
missing, obtained using Delaunay triangulation (DT), overcomplete
DCT dictionary, the algorithm in [13], PLE [4], and 1 (P1), 2 (P2),
and 3 (P3) iterations of the proposed scheme. For each image the
best result is highlighted.

Image DT DCT [13] [4] P1 P2 P3
Lena 30.25 29.97 31.62 32.22 30.25 31.80 31.96
Barb 22.88 27.15 25.40 30.94 27.56 29.34 29.71

House 29.21 29.69 32.87 33.05 29.03 32.10 32.71

assume that the filters training has been done beforehand, and
exclude it from our calculations. First, building the matrix X
which contains the image patches requires O(nN) operations.
We assume that when the nearest-neighbor search described
above is used with a search window of size B × B, most of
the patches do not require to calculate distances outside this
neighborhood. Therefore, as calculating each of the distance
measures (10) and (19) requires O(n) operations, the number
of operations required to calculate a single reordering matrix
Pk can be bounded by O(NB2n). Next, applying the matrices
Pk and P−1

k to the n subimages z̃j require O(nN) operations,
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TABLE III: Denoising results (PSNR in dB) of noisy versions of 6 images, obtained with the K-SVD and BM3D algorithms and two
iterations of the proposed scheme. For each image and noise level the best result is highlighted.

Image Method σ/PSNR
5/34.16 10/28.14 15/24.61 20/22.11 25/20.18 50/14.16 75/10.63 100/8.14

Lena

K-SVD 38.63 35.52 33.76 32.40 31.35 27.85 25.81 24.47
BM3D 38.72 35.93 34.28 33.04 32.05 28.96 27.16 25.80

proposed (1 iter.) 38.22 35.26 33.64 32.48 31.54 28.66 26.8 25.45
proposed (2 iter.) 38.31 35.39 33.84 32.72 31.80 28.96 27.22 26.01

Barbara

K-SVD 38.08 34.40 32.33 30.79 29.54 25.43 23.02 21.89
BM3D 38.29 34.93 33.05 31.69 30.61 27.16 25.11 23.61

proposed (1 iter.) 37.63 34.29 32.54 31.32 30.36 27.19 25.14 23.56
proposed (2 iter.) 37.74 34.39 32.65 31.43 30.47 27.35 25.42 24.07

Boats

K-SVD 37.25 33.65 31.74 30.35 29.30 25.94 24.04 22.85
BM3D 37.29 33.94 32.15 30.87 29.89 26.71 25.01 23.88

proposed (1 iter.) 37.09 33.64 31.79 30.49 29.50 26.35 24.58 23.34
proposed (2 iter.) 37.10 33.70 31.91 30.67 29.70 26.69 24.99 23.90

Fingerprint

K-SVD 36.66 32.42 30.09 28.46 27.26 23.23 19.97 18.29
BM3D 36.52 32.47 30.30 28.83 27.72 24.54 22.82 21.57

proposed (1 iter.) 36.00 31.88 29.72 28.27 27.24 24.02 22.25 21.11
proposed (2 iter.) 36.19 32.01 29.84 28.38 27.34 24.13 22.47 21.44

House

K-SVD 39.33 35.90 34.19 32.97 31.97 28.01 25.27 23.59
BM3D 39.84 36.63 34.87 33.72 32.79 29.54 27.42 25.78

proposed (1 iter.) 38.54 35.61 34.08 33.06 32.34 29.28 27.26 25.51
proposed (2 iter.) 38.76 35.80 34.35 33.32 32.54 29.64 27.79 26.30

Peppers

K-SVD 37.80 34.27 32.23 30.88 29.81 26.24 23.54 21.68
BM3D 38.09 34.70 32.77 31.37 30.26 26.69 24.71 23.20

proposed (1 iter.) 37.59 34.13 32.21 30.86 29.78 26.28 24.21 22.53
proposed (2 iter.) 37.63 34.26 32.40 31.09 30.01 26.75 24.72 23.21

and so does applying either one of the operators H described
above to the n subimages z̃p

j . Finally , constructing an estimate
image by averaging the pixel values obtained with the different
subimages also requires O(nN) operations, and averaging the
estimates obtained with the different matrices Pk requires
O(KN) operations. Therefore when K permutation matrices
are employed, the total complexity is

O((n + K)N) + K
[
O(NB2n) + O(nN)

]
= O(NKB2n)

(20)

operations, which means that, as might be expected, the overall
complexity is dominated by the creation of the permutation
matrices. For a typical case in our experiments, N = 5122,
K = 10, n = 64 and B = 61, the above amounts
to 6.24 · 1011 operations. In order to better illustrate these
numbers, we also provide run-times: applying two iterations
of our denoising scheme to a 512 × 512 image with noise
level σ = 25 using a non optimized and non parallel matlab
implementation, on an Intel(R) Core(TM) i7-2600 CPU @
3.40 GHz, takes about 45 minutes. Applying three iterations
of our inpainting scheme to a 512 × 512 image with 80%
missing pixels take only about 14 minutes. We should note
that while in our experiments we employed an exact exhaustive
search, approximate nearest neighbor algorithms may be used
to alleviate the computational burden.

IV. CONCLUSIONS

We have proposed a new image processing scheme which is
based on smooth 1D ordering of the pixels in the given image.
We have shown that using a carefully designed permutation
matrices and simple and intuitive 1D operations such as linear
filtering and interpolation, the proposed scheme can be used

for image denoising and inpainting, where it achieves high
quality results.

There are several research directions to extend this work
that we are currently considering. The first is to make use
of the distances between the patches not only to find the
ordering matrices, but also in the reconstruction process of
the subimages. These distances carry additional information
which might improve the obtained results. Improvements can
also be made to the patch ordering scheme itself. We have
seen in Section II.B that this scheme performs poorly near
the end of the found path, when only a small number of
unvisited patches remain. A possible solution could be to
develop a scheme which allows patches to be revisited more
than once. A different direction is to develop new image
processing algorithms which involve optimization problems in
which the 1D image reorderings act as regularizers. These may
both improve the image denoising and inpainting results, and
allow to tackle other applications such as image deblurring,
where the operator M is no longer restricted to be point-wise
local. Additionally, the proposed image denoising scheme may
be improved by dividing the patches to more than two types,
and treating each type differently. Finally, we note that in our
work we have not exhausted the potential of the proposed
algorithms, and the choice of different parameters (e.g., B, ϵ)
for each set of patches may also improve the produced results.
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Fig. 8: Inpainting results (PSNR) of corrupted versions of the images Lena, Barbara and House with 80% of their pixels missing, obtained with
different reconstruction methods: : First column - corrupted images, Second column - Delaunay triangulation, Third column - overcomplete
DCT dictionary, Fourth column - 1 iteration of the proposed scheme, Fifth column - 3 iterations of the proposed scheme.
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