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  This Talk is About … 

The true 
objective: Find 
how to bring 

sparse 
representation 
to processing of 

such signals 

Processing of Non-
Conventionally 

Structured Signals  

Many signal-
processing tools 

(filters, alg., 
transforms, …) 
are tailored for 

uniformly 
sampled signals  

Now we encounter 
different types of 

signals: e.g., point-
clouds and graphs. 

Can we extend 
classical tools to 

these signals? 

Our goal: 
Generalize the 

wavelet 
transform to 
handle this 

broad family 
of signals 
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  This Talk is About … 

As you will see, we will use the 
developed tools to process 

“regular” signals (e.g., images) , 
handling them differently and             

more effectively 
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Part I – GTBWT                
Generalized Tree-Based 

Wavelet Transform – The Basics 
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This part is taken from the following two papers :  

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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𝑓1 

𝑓2 

𝑓3 

𝑓4 

𝑓5 
𝑓6 

𝑓8 

𝑓7 

𝑓9 

𝑓12 
𝑓11 

𝑓10 

𝑓13 

 We are given a graph: 
o The 𝑖 − 𝑡ℎ node is characterized        

by a  𝑑-dimen. feature vector 𝑥𝑖 
o The 𝑖 − 𝑡ℎ node has a value 𝑓𝑖 
o The edge between the 𝑖 − 𝑡ℎ and 

𝑗 − 𝑡ℎ nodes carries the distance 

𝑤 𝑥𝑖 , 𝑥𝑗  for an arbitrary distance 

measure 𝑤 ⋅,⋅ . 
 

 Assumption: a “short edge” 
implies close-by values, i.e.    

 

      𝑤 𝑥𝑖 , 𝑥𝑗  small  𝑓𝑖 − 𝑓𝑗  small 
           

            for almost every pair 𝑖, 𝑗 . 
 

𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥8 

𝑥7 

𝑥9 

𝑥12 

𝑥11 

𝑥10 

𝑥13 
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 We start with a set of 𝑑-dimensional vectors 𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ IR𝑑    

These could be: 
 Feature points for a graph’s nodes,     
 Set of coordinates for a point-cloud. 

 

 

 A scalar function is defined on                                                                                          
these coordinates, 𝑓: X → IR ,                                                    
giving  𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁 . 
 

 

 We may regard this dataset as                                            
a set of 𝑁 samples taken from a high       
dimensional function 𝑓: IR𝑑 → IR . 
 

 

 The assumption that small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑓𝑖 − 𝑓𝑗   for almost every 

pair 𝑖, 𝑗  implies that the function behind the scene, 𝑓, is “regular”. 

… 

X= 𝑥1, 𝑥2, … , 𝑥𝑁  

𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁  
… 
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  Our Goal 

Wavelet 
Transform 

    Sparse     
       (compact)    
Representation 

Why Wavelet?  
 Wavelet for regular piece-wise smooth signals is a highly effective 

“sparsifying transform”. However, the signal (vector) f is not necessarily 
smooth in general. 

 

 We would like to imitate this for our data structure. 

X      
     𝑥1, 𝑥2, … , 𝑥𝑁  

f 
    𝑓1, 𝑓2, … , 𝑓𝑁  
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“Diffusion Wavelets” 

 R. R. Coifman, and M. Maggioni, 2006. 
 

“Multiscale Methods for Data on Graphs and Irregular …. Situations” 
 M. Jansen, G. P. Nason, and B. W. Silverman, 2008. 
 

“Wavelets on Graph via Spectal Graph Theory” 
 D. K. Hammond, and P. Vandergheynst, and R. Gribonval, 2010. 
 

“Multiscale Wavelets on Trees, Graphs and High … Supervised Learning” 
 M . Gavish, and B. Nadler, and R. R. Coifman, 2010. 
 

“Wavelet Shrinkage on Paths for Denoising of Scattered Data” 
 D. Heinen and G. Plonka, 2012. 

… 

  Wavelet for Graphs – A Wonderful Idea 
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I wish we would have thought of it first …  

http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf
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  The Main Idea (1) - Permutation 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟𝒑 

Permutation using 
𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁  

P T 
𝐟𝒑 

𝐟 T-1 P-1 
f 𝒑 

𝐟   Processing 

Permutation 1D Wavelet 
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𝑎𝑙 𝑎𝑙+1 

𝑑𝑙+1 

ℎ  

𝑔  

↓ 2 

↓ 2 

𝑎𝑙+2 

𝑑𝑙+2 

↓ 2 

↓ 2 

ℎ  

𝑔  

P𝑙 P𝑙+1 

  The Main Idea (2) - Permutation 

 In fact, we propose to perform a different permutation in each resolution 
level of the multi-scale pyramid: 
 
 
 
 
 
 
 

 Naturally, these permutations will be applied reversely in the inverse 
transform.  

 Thus, the difference between this and the plain 1D wavelet transform 
applied on f are the additional permutations, thus preserving the 
transform’s linearity and unitarity, while also adapting to the input signal.  
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  Building the Permutations (1) 

 Lets start with P0 – the permutation applied on the incoming signal. 
 

 Recall: the wavelet transform is most effective for piecewise regular signals. 
→ thus, P0 should be chosen such that P0f  is most “regular”. 
 

 Lets use the feature vectors in X, reflecting  the order of the values, fk. Recall:  
 

 
 Thus, instead of solving for the optimal permutation that “simplifies” f, we  

order the features in X to the shortest path that visits in each point once, in 
what will be an instance of the Traveling-Salesman-Problem (TSP): 
 
 
 
 

min
P

 𝑓𝑝 𝑖 − 𝑓𝑝 𝑖 − 1

𝑁

𝑖=2

 min
P

 𝑤 𝑥𝑖
𝑝
, 𝑥𝑖−1

𝑝

𝑁

𝑖=2

 

Small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗   for almost every pair 𝑖, 𝑗  
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𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥7 
𝑥8 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 
𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 
𝐟𝒑 

  Building the Permutations (2) 

We handle the TSP task by a               
greedy (and crude) approximation:  
 

o Initialize with an arbitrary index j;  
o Initialize the set of chosen indices to Ω(1)={j};  
o Repeat k=1:1:N-1 times: 

• Find xi – the nearest neighbor to xΩ(k) such that iΩ;  
• Set Ω(k+1)={i};  

o Result: the set Ω holds the proposed ordering. 

IR𝑑 
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  Building the Permutations (3) 

 So far we concentrated on P0 at the finest level of the multi-scale pyramid. 
 

 In order to construct P1, P2, … , PL-1, the permutations at the other pyramid’s  
levels, we use the same method, applied on propagated (reordered, filtered 
and sub-sampled) feature-vectors through the same wavelet pyramid: 
 
 

𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 
P1 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟐 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟑 

P3 
LP-Filtering (h) 

& Sub-sampling  
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  Why “Generalized Tree …”?  

                     “Generalized” tree                    Tree (Haar wavelet) 

 

 

 

 

 

 Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT). 
 

 We also developed a Redundant version of this transform based on the 
stationary wavelet transform [Shensa, 1992] [Beylkin, 1992] – also related to the 
“A-Trous Wavelet” (will not be presented here). 
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  Treating Graph/Cloud-of-points 

 Just to complete the picture, we should demonstrate the 
(R)GTBWT capabilities on graphs/cloud of points. 

 We took several classical machine learning train + test                                            
data for several regression problems, and tested                                                 
the proposed transform in  

 Cleaning (denoising) the data from additive noise; 

 Filling in missing values (semi-supervised learning); and  

 Detecting anomalies (outliers) in the data. 

 The results are encouraging. We shall present herein  one such 
experiment briefly.  

SKIP? 
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  Treating Graphs: The Data 

Data Set: Relative Location of CT axial axis slices 

 

 

 

 

 

 

 

 

More details: Overall 53500 such pairs of feature and value, extracted 
from 74 different patients (43 male and 31 female).  

Feature vector of 
length 384 Compute 

bones and 
air polar 

Histograms 

Labels: Location in 
the body [0,180]cm  

http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
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  Treating Graphs: Denoising 

Find for each point its K-NN in feature-space, and 
compute a weighted average of their labels 

.  .  .  

Original 
labels 

+ 

AWGN 

.  .  .  

Noisy 
labels 

Denoising by NLM-
like algorithm  

Apply the RTBWT transform to the point-cloud 
labels, threshold the values and transform back 

Denoising by THR 
with RTBWT 
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  Treating Graphs: Denoising 

5 10 15 20 
5 

10 

15 

20 

25 

30 

35 

noise standard deviation 

S
N

R
 [

d
B

] 

  

  

noisy signal 

RTBWT 

NL-means 
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  Treating Graphs: Semi-Supervised Learning 

Find for each missing point its K-NN in 
feature-space that have a label, and 
compute a weighted average of their labels 

.  .  .  

Original 
labels 

+ 

AWGN 

Filling-in by NLM-
like algorithm  

Denoising 
by RTBWT 

Option: 
Iterate 

.  .  .  

Noisy and 
missing  

labels 

Discard 
p% of the 

 labels 
randomly  

Denoising
by NLM  

 

Projection Projection 
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  Treating Graphs: Semi-Supervised Learning  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 

10 

15 

20 

25 

30 

35 

# missing samples 

S
N

R
 [

d
B

] 

=20 
Corrupted 

NL-means 

RTBWT (iter 2) 

NL-means (iter 2) 

RTBWT (iter 3) 

NL-means (iter 3) 
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  Treating Graphs: Semi-Supervised Learning  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 

10 

15 

20 

25 

30 

35 

# missing samples 

S
N

R
 [

d
B

] =5 

Corrupted 

NL-means 

RTBWT (iter 2) 

NL-means (iter 2) 

RTBWT (iter 3) 

NL-means (iter 3) 



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

Part II – Handling Images                
Using GTBWT for                    
Handling Images 
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This part is taken from the same papers mentioned before … 

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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𝑓 𝑥𝑗 = 𝑓𝑗 

𝑓 𝑥𝑖 = 𝑓𝑖 

𝑥𝑗 

𝑥𝑖 

𝑁 

𝑑 

 Now, that the image is organized as a graph (or                        
point- cloud), we can  apply the developed transform.  

 The distance measure w(, ) we will be using is Euclidean. 
  After this “conversion”, we forget about spatial proximities. 
 The overall scheme becomes “yet another” patch-based            

image processing algorithm … 

  Turning an Image into a Graph?  
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  Patches … Patches … Patches …  

Various Ideas: 
 

Non-local-means 
Kernel regression 
Sparse representations 
Locally-learned dictionaries 
BM3D 
Structured sparsity 
Structural clustering  
Subspace clustering  
Gaussian-mixture-models 
Non-local sparse rep. 
Self-similarity 
Manifold learning 
… 

In the past decade we see more and more researchers suggesting to 
process a signal or an image by operating on its patches.  

You 

& … You? 
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  Our Transform 

𝐟 
Lexicographic ordering of                        

the 𝑁 pixels 

𝛀 𝑑𝑁𝐽 

𝑁 

   All these operations could     
be described as one linear 
operation: multiplication of     
f by a huge matrix 𝛀. 

 This transform is adaptive      
to the specific image. 

𝐗: Array of 
overlapped patches 

of size 𝑑𝑁 

We obtain an array of 
𝑑N𝐽 transform 

coefficients Applying a  𝐽 
redundant 

wavelet of some 
sort including 
permutations 
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f 

𝛀 = 

α 

α 

𝐃 = 

f 

𝐈 = 𝐃𝛀 
(Not a Moore-Penrose pair) 

 

Every column in D is an  

atom 
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  Lets Test It: M-Term Approximation 

Multiply by 𝐃: 

Inverse GTBWT 

Multiply by 𝛀: 
Forward GTBWT 

𝑆𝜆 ∙  

Original Image 

𝜆 

−𝜆 

𝐟 

𝛀𝐟 

𝑆𝜆 𝛀𝐟  

𝑀            
non-
zeros 

𝐟  Output image 

Show 
 

𝐟 − 𝐟 
2

= 𝐟 − 𝐃𝑆𝜆 𝛀𝐟 2      
 

as a function of 𝑀 
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0 2000 4000 6000 8000 10000 
10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

# Coefficients 

P
S

N
R

 

GTBWT – permutation 
at varying level 

common 1D 

2D 

db4 

  Lets Test It: M-Term Approximation 

For a 128×128 center portion of 
the image Lenna, we compare the 
image representation efficiency of 
the 
  

 GTBWT 
 A common 1D wavelet transform 
 2D wavelet transform 
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Approximation  
by the               

THR algorithm: 

𝐟 = 𝐃𝑆𝜆 𝛀𝐟  

Noisy image Output image 𝐃: Inverse  

GTBWT 

𝛀: Forward 

GTBWT 

𝑆𝜆 ∙  

f  Denoising 
Algorithm 𝐟  + 𝐟 

𝐯~𝐍 0, 𝜎2𝐈  
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Cycle-spinning: Apply the above scheme several (10) times, with a 
different GTBWT (different random ordering), and average.  

Noisy 
image 

 GTBWT THR GTBWT-1 

Averaging 

 GTBWT THR GTBWT-1 

Reconstructed 
image 



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

P1 
LP-Filtering (h) 

& Sub-sampling  

  Image Denoising – Improvements  

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged.  

𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟐 
P3 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟑 

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

32 
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      Image Denoising – Improvements  

P1 
LP-Filtering (h) 

& Sub-sampling  𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟐 
P3 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟑 

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged.  
 
 
 
 
 
 

 Combine these transformed pieces;  
 The center row is the transformed         

coefficients of f.  
 The other rows are also transform      

coefficients – of d shifted versions             
of the image. 

 We can reconstruct d versions            
of the image and average. 

33 
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      Image Denoising – Improvements  

34 

Restricting the NN: It appears that when searching the nearest-
neighbor for the ordering, restriction to near-by area is helpful, 
both computationally (obviously) and in terms of the output 
quality. 

Patch of size 

𝑑 × 𝑑 

Search-Area of 

size 𝐵 × 𝐵 



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

      Image Denoising – Improvements  

35 

Improved thresholding: Instead of thresholding the wavelet 
coefficients based on their value, threshold them based on the 
norm of the (transformed) vector they belong to: 
 

 Recall the transformed vectors as described earlier. 
 Classical thresholding: every coefficient within C is                                                                 

passed through the function: 
 
 
 
 

 The proposed alternative would be                   
to force “joint-sparsity” on the above                                                                            
array of coefficients, forcing all rows                                                                                               
to share the same support: 

 

𝑐𝑖,𝑗 =  
𝑐𝑖,𝑗 𝑐𝑖,𝑗 ≥ 𝑇

0 𝑐𝑖,𝑗 < 𝑇
 

C= 

𝑐𝑖,𝑗 =  
𝑐𝑖,𝑗 𝑐∗,𝑗 2

≥ 𝑇

0 𝑐∗,𝑗 2
< 𝑇

 

𝒄𝟏,𝟑 
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      Image Denoising – Results  
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 We apply the proposed scheme with the Symmlet 8 wavelet to                         
noisy versions of the images Lena and Barbara 

 For comparison reasons, we also apply to the two images the                           
K-SVD and BM3D algorithms. 

 

 

 

 

 

 The PSNR results are quite good and competitive. 

/PSNR Image K-SVD BM3D GTBWT 

10/28.14 
Lena 35.51 35.93 35.87 

Barbara 34.44 34.98 34.94 

25/20.18 
Lena 31.36 32.08 32.16 

Barbara 29.57 30.72 30.75 
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  What Next? 

A: Refer to this transform   

as an abstract sparsification 
operator and use it in general 

image processing tasks 

B: Streep this idea to its 

bones: keep the patch-
reordering, and propose a 

new way to process images 

We have a 
highly effective 

sparsifying 
transform for 
images. It is 
“linear” and 

image adaptive 

SKIP? 
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Part III – Frame                              
Interpreting the GTBWT as a Frame 

and using it as a Regularizer 

38 

This part is documented in the following draft :  

 I. Ram, M. Elad, and I. Cohen, “The RTBWT Frame – Theory and Use for Images”, to 

appear in IEEE Trans. on Image Processing. 
 

We rely heavily on : 

 Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 

IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012. 
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Or, put differently,                            : We refer to GTBWT as a 
redundant frame, and use a “heuristic” shrinkage method with it, 
which aims to approximate the solution of  
 

 Synthesis: 
or  
 Analysis:    

x = 𝐃 ∙ T 𝛀y  

x = 𝐃 ∙ Argmin
α

𝐃α − y 2
2  + λ α p

p
 

x = Argmin
f

x − y 2
2 + 𝜆 𝛀x p

p
 

x  

Noisy image Output image 𝐃: Inverse  

GTBWT 

𝛀: Forward 

GTBWT 

𝑆𝜆 ∙  𝒚 
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  Recall: Our Transform (Frame) 

𝐟 
Lexicographic ordering of                        

the 𝑁 pixels 

𝛀 𝑑𝑁𝐽 

𝑁 

   All these operations could     
be described as one linear 
operation: multiplication of     
f by a huge matrix 𝛀 

 This transform is adaptive      
to the specific image 

𝐗: Array of 
overlapped patches 

of size 𝑑𝑁 

We obtain an array of 
𝑑N𝐽 transform 

coefficients Applying a  𝐽 
redundant 

wavelet of some 
sort including 
permutations 
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We could solve various inverse problems of the form: 
  
 
  

where:  x is the original image 
  v is an AWGN, and  
  A is a degradation operator of any sort 

 

We could consider the synthesis, the analysis, or their combination: 
 

 

y = 𝐀x + v 

x , α = Argmin
α,x

y − 𝐀x 2
2 +

1

β
𝐃α − x 2

2 +

 +λ α 𝑝
𝑝

+
1

𝜇
𝛀x − α 2

2

 

β = 0
μ = ∞

→ Synthesis 

β = ∞
μ = 0

→ Analysis 
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*  Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 
IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012. 

x , α = Argmin
α,x

y − 𝐀x 2
2 +

1

β
𝐃α − x 2

2 +
 

+λ α 𝑝
𝑝

+
1

𝜇
𝛀x − α 2

2 

x𝑘+1 = Argmin
x

  y − 𝐀x 2
2 +

1

β
𝐃α𝑘 − x 2

2 

α𝑘+1 = Argmin
α

   λ α 𝑝
𝑝

+
1

𝜇
𝛀x𝑘+1 − α 2

2 

and solve 
iteratively 

* 

Instead of minimizing the joint analysis/synthesis problem: 
 

 
 
 

break it down into two separate and easy to handle parts: 
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Original               Blurred+Noisy             Restored 
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Image  
Input  
PSNR 

 
BM3D-DEB 

ISNR 

IDD-BM3D 
ISNR                

init. with            
BM3D-DEB 

 
Ours ISNR 
Init. with 

BM3D-DEB 

Ours ISNR    
3 iterations 
with simple 
initialization 

Lena 27.25 7.95 7.97 8.08 8.20 

Barbara 23.34 7.80 7.64 8.25 6.21 

House 25.61 9.32 9.95 9.80 10.06 

Cameraman 22.23 8.19 8.85 9.19 8.52 

1

1 + i2 + j2
   − 7 ≤ i, j ≤ 7 Blur PSF = 

 
2=2  



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

Part IV – Patch (Re)-Ordering 
Lets Simplify Things,                               

Shall We? 

45 

This part is based on the papers:  

 I. Ram, M. Elad, and I. Cohen, “Image Processing using Smooth Ordering of its Patches”, 

IEEE Transactions on Image Processing, Vol. 22, No. 7, pp. 2764–2774 , July 2013. 

 I. Ram, I. Cohen, and M. Elad, “Facial Image Compression using Patch-Ordering-Based 

Adaptive Wavelet Transform”, Submitted to IEEE Signal Processing Letters. 
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  2D → 1D Conversion ? 

Often times, when facing an image processing task (denoising, 
compression, …), the proposed solution starts by a 2D to 1D 
conversion :  

 

 

 

 

 

After such a conversion, the image is treated as a regular 1D 
signal, with implied sampled order and causality.  
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  2D → 1D : How to Convert ? 

 There are many ways to convert an image into a 1D signal. Two 
very common methods are: 

 

 

 

 

 

 
 Note that both are “space-filling curves” and                                            

image-independent, but we need not restrict                                              
ourselves to these types of 2D →1D conversions.  

Raster 
Scan 

Hilbert-
Peano 
Scan 
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  2D → 1D : Why Convert ? 

The scientific literature on image processing is loaded with such 
conversions, and the reasons are many: 
 

 Because serializing the signal helps later treatment. 

 Because (imposed) causality can simplify things. 

 Because this enables us to borrow ideas from 1D signal processing (e.g. 
Kalman filter, recursive filters, adaptive filters, prediction, …). 

 Because of memory and run-time considerations.  
 

 Common belief: 2D → 1D conversion leads to a  

       S U B O P T I M A L     S O L U T I O N  ! !  
     because of loss of neighborhood relations and forced causality. 
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  2D → 1D : Why Convert ? 

The scientific literature on image processing is loaded with such 
conversions, and the reasons are many: 
 

 Because serializing the signal helps later treatment. 

 Because (imposed) causality can simplify things. 

 Because this enables us to borrow ideas from 1D signal processing (e.g. 
Kalman filter, recursive filters, adaptive filters, prediction, …). 

 Because of memory and run-time considerations.  
 

 Common belief: 2D → 1D conversion leads to a  

       S U B O P T I M A L     S O L U T I O N  ! !  
     because of loss of neighborhood relations and forced causality. 

 

ARE WE SURE ? 
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  Lets Propose a New 2D → 1D Conversion 

How about permuting the pixels into a 1D signal by a  

SORT OPERATION ? 

0 1 2 3 4 5 6 7 

x 10 
4 

0 

50 

100 

150 

200 

250 

We sort            
the gray-values 
but also keep the 
[x,y] location of 
each such value 

𝐏 

2D→1D 
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  New 2D → 1D Conversion : Smoothness 

 Given any 2D → 1D conversion based on a permutation 𝐏, we 
may ask how smooth is the resulting 1D signal obtained : 

TV f, 𝐏 =  𝑓𝑃 k − 𝑓𝑃 k − 1

N

k=2

 

 The sort-ordering leads to the smallest possible TV measure, i.e. 
it is the smoothest possible. 

 Who cares? We all do, as we will see hereafter.  

0 1 2 3 4 5 6 7 

x10 
4 

0 

50 

100 

150 

200 

250 

2D → 1D 
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  New 2D → 1D Conversion : An Example 

Find the Sort 
Permutation  

𝐏 

2D→1D 

0 1 2 3 4 5 6 7 

x 10 
4 

-100 

-50 

0 

50 

100 

150 

200 

250 

300 

350 

This means that simple 
smoothing of the 1D signal 

is likely to lead to a very 
good denoising f 

g 
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  New 2D → 1D Conversion : An Example 

Original                Noisy =30  (18.58dB)    Denoised (41.7dB) 

0 1 2 3 4 5 6 7 

x10 
4 

-50 

0 

50 

100 

150 

200 

250 

300 

350 

After smoothing the above 
1D signal with a uniform 

201-taps uniform filter, we 
get (green curve): 

f g f  
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  This is Just Great! Isn’t It?  

This denoising result we just got is nothing short of amazing,                
and it is far better than any known method 

 

Is it real? Is it fair?  
 

                                        Neighborhood wise, note that this result is          
                                              even better than treating the image  
         in native 2D because …  
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  This is Just Great! Isn’t It?  

All this is wonderful … but … 
 
 

Given a corrupted image (noisy,                 
blurred, missing pixels, …) 

 
WE CANNOT KNOW THE  

SORTING PERMUTATION OPERATOR  

𝐏 
So the above result is impractical. 
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  This is Just Great! Isn’t It?  

All this is wonderful … but … 
 
 

Given a corrupted image (noisy,                 
blurred, missing pixels, …) 

 
WE CANNOT KNOW THE  

SORTING PERMUTATION OPERATOR  

𝐏 
So the above result is impractical. 

So, Are  
We Stuck ? 
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  We Need an Alternative for Constructing P 

Our Goal – Sorting the pixels based  
on their TRUE gray value 

 
The problem – the given data is 

corrupted and thus pixel                           
gray-values are not to be trusted 

 
The idea: Assign a feature vector x to 
each pixel, to enrich its description 

 
Our approach: Every pixel will be 

“represented” by the patch around it 
 

We will design P based on                      
these feature vectors 

𝑥j f 𝑥j = 𝑓j 

f 𝑥i = 𝑓i 𝑥i 
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  An Alternative for Constructing P 

We will construct P by the 
following stages:  
1. Break the image into all its 

overlapping patches. 
2. Each patch represents the 

pixel in its center. 
3. Find the SHORTEST PATH 

passing through the 
feature vectors (TSP). 

4. This ordering induces the 
pixel ordering P. 
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  Traveling Salesman Problem (TSP) 

 Patches xi of size n × n are 
points in ℝn. 

 In the Traveling Salesman 
Problem we seek the shortest 
path that visits every point.  

 TSP in general is too hard to 
solve, and thus approximation 
algorithms are used. 

ℝn 

min
P

 𝑥i
p

− 𝑥i−1
p

N

i=2
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  The Proposed Alternative : A Closer Look 

Observation 1: Do we Get P ? 
 

If two pixels have the same (or               
close) gray value, this does not                    

mean that their patches are alike. 
However …  

If several patches are alike, their 
corresponding centers are likely                       

to be close-by in gray-value 
 

Thus, the proposed ordering 
will not reproduce the P, but    
at least get close to it, 
preserving some of the order. 
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  The Proposed Alternative : A Closer Look 

Observation 2: “Shortest-Path” ?  
 
 In the shortest-path (and TSP), the path  

visits every point once, which aligns               
with our desire to permute the pixels                 
and never replicate them. 
 

 If the patch-size is reduced to 1×1         
pixels, and the process is applied on               
the original (true) image, the                     
obtained ordering is exactly P.  

TSP Greedy Approximation: 
 

o Initialize with an arbitrary       
index j;  

o Initialize the set of chosen 
indices to Ω(1)={j};  

oRepeat k=1:1:N-1 times: 
• Find xi – the nearest neighbor 

to xΩ(k) such that iΩ;  
• Set Ω(k+1)={i};  

oResult: the set Ω holds the 
proposed ordering. 

min
P

 𝑓𝑃 k − 𝑓𝑃 k − 1

N

k=2

 min
P

 𝑥i
p

− 𝑥i−1
p

N

i=2
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  The Proposed Alternative : A Closer Look 

Observation 3: Corrupted Data ?  
 
 If we stick to patches of size 1×1 pixels, 

we will simply sort the pixels in the 
degraded image – this is not good nor 
informative for anything. 

 The chosen approach has a robustness 
w.r.t. the degradation, as we rely on 
patches instead of individual pixels. 

Argmin
P

 𝑥i
p

− 𝑥i−1
p

N

i=2

 

The order is similar, not 
necessarily the distances 

themselves 
≈ Argmin

P
 𝑥 i

p
− 𝑥 i−1

p

N

i=2
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Extract 
the 

induced 
ordering 

63 

  The Core Scheme 

𝐏 

2D→1D 
g 

Extract all 
patches 

Approximate 
the TSP 

… 

𝐗 = 𝑥 1, 𝑥 2, … , 𝑥 N  

Process the 
1D signal 

Corrupted Image 

1D→2D 
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  Intuition: Why Should This Work?  

y𝑝 

Ordering based on the noisy pixels  

Simple smoothing 

Noisy with =25 (20.18dB) 

Reconstruction: 32.65dB 

y 

True samples 
Noisy samples 



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

65 

  The “Simple Smoothing” We Do 

Simple 
smoothing 
works fine

 
  

  

optimize h to 
minimize the 

reconstruction 
MSE 

Original image 

Noisy image 

Compute  
the TSP 

permutation 

Apply the 
permutation 
on the pixels 

Apply the 
permutation 
on the pixels 

Apply          
a 1D             

filter h 

+ 

- 

We can do 
better by a 

training phase 
   

but  

Naturally, this is done off-line and on other images 

Training 
image 
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  Filtering – A Further Improvement 

Cluster the patches to smooth and textured sets, and train 
a filter per each separately 

   

The results we show  
hereafter were obtained by:  
(i) Cycle-spinning 
(ii) Sub-image averaging  
(iii) Two iterations 
(iv) Learning the filter, and  
(v) Switched  smoothing. 

Based on patch-STD 
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  Denoising Results Using Patch-Reordering 

Image σ/PSNR [dB] 

10 / 28.14 25 / 20.18 50 / 14.16 

Lena K-SVD 35.49  31.36 27.82 

BM3D 35.93 32.08 28.86 

1st iteration 35.33 31.58 28.54 

2nd iteration 35.41 31.81 29.00 

Barbara K-SVD 34.41 29.53 25.40 

BM3D 34.98 30.72 27.17 

1st iteration 34.48 30.46 27.17 

2nd iteration 34.46 30.54 27.45 

House K-SVD 36.00 32.12 28.15 

BM3D 36.71 32.86 29.37 

1st iteration 35.58 32.48 29.37 

2nd iteration 35.94 32.65 29.93 

Bottom line: This idea works very well, it is especially competitive for high noise 
levels, and  a second iteration almost always pays off.   
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  The Rationale 

0.8 of the pixels are missing  

Reconstruction: 27.15dB 

y𝑝 

Ordering* 

Simple interpolation 

y 
Missing sample 
Existing sample 

* distance uses 
EXISTING 
pixels only 
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  Inpainting Results – Examples  

Given data 80% 
missing pixels 

1st iteration        
of the         

proposed alg. 

Sparse 
representation 

recovery 

Bi-Cubic 
interpolation 

3rd iteration      
of the        

proposed alg. 
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  Inpainting Results  Image Method PSNR [dB] 

 
 
Lena 

Bi-Cubic 30.25 

DCT + OMP 29.97 

Proposed (1st iter.) 30.25 

Proposed (2nd iter.) 31.80 

Proposed (3rd iter.) 31.96 

 
 
Barbara 

Bi-Cubic 22.88 

DCT + OMP 27.15 

Proposed (1st iter.) 27.56 

Proposed (2nd iter.) 29.34 

Proposed (3rd iter.) 29.71 

 
 
House 

Bi-Cubic 29.21 

DCT + OMP 29.69 

Proposed (1st iter.) 29.03 

Proposed (2nd iter.) 32.10 

Proposed (3rd iter.) 32.71 

Reconstruction results from 80%            
missing pixels using various methods:  

Bottom line:  
(1) This idea works                 

very well; 
(2) It is operating much better 

than the classic sparse-rep. 
approach; and  

(3) Using more iterations 
always pays off, and 
substantially so.   
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  What About Image Compression? 

 The problem: Compressing photo-ID images. 

 General purpose methods (JPEG, JPEG2000)                                                            
do not take into account the specific family.  

 By adapting to the image-content (e.g. pixel                                                                      
ordering), better results could be obtained. 

 For our technique to operate well, we find the                                                             
best common pixel-ordering fitting a training                                                                      
set of facial images.  

 Our pixel ordering is therefore designed on                                                                 
patches of size 1×1×n pixels from the training                                                             
volume. 

 Geometric alignment of the image is very helpful                                                  
and should be done [Goldenberg, Kimmel, & E. (‘05)].  

1×1 
pixels 

SKIP? 
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  Compression by Pixel-Ordering 

Training set (2500 images) Detect main features and warp the 
images (20 bytes)  

O
n

 th
e train

in
g set

 

Find the common ordering that 
creates the smoothest path 

Warp, remove the mean,  permute, 
apply wavelet on the 1D signal and 

code 

On the        
test image 

2D→1D, apply wavelet and code 
leading coefficients 

Compute the mean image                 
and subtract it 
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  Results 

The original images  
 
 
 
 

JPEG2000  
 
 
 
 

Our scheme  
 

400 bytes       600 bytes        800 bytes  
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  Rate-Distortion Curves 

      Our Scheme 
      Our Scheme + PP 
      K-SVD + PP 
      JPEG-2000 
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Part IV – Time to Finish 
Conclusions 

75 
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  Conclusions 

76 

We propose a new 
wavelet transform for 

scalar functions 
defined on graphs       

or high dimensional 
data clouds 

The proposed 
transform extends 

the classical 
orthonormal and 

redundant wavelet 
transforms  

We demonstrate 
the ability of 

these transforms 
to efficiently 

represent and 
denoise images 

We also show that the 
obtained transform           

can be used as a      
regularizer in classical                   

image processing                 
Inverse-Problems 

Finally, we show that 
using the ordering of 

the patches only, 
quite effective 

processing of images 
can be obtained 
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Sparse 
Representations 

and learned 
dictionaries in the 
ordered domain? 

77 

  What Next ? 

77 

Improving   the 
TSP 

approximation 
solver 

Demonstrating 
the proposed 

wavelet on 
more data 

clouds/graphs 
Why TSP? Who 
says we cannot 
revisit patches?  

Replace the  
TSP ordering by 

MDS? 

Replace               
“sub-image 

averaging” with a 
sparsifying 
transform  

Exploiting        
the known 
distances? 

Pixel permutation 
as regularizer ? 

Lifting scheme for 
treating clouds?  
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Thank you for your time,  
 

and … 
 

Thanks to the Organizers                                               
and especially                                                     

Michael Ng 
 

Questions? 
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      Comparison Between Different Wavelets 

db1 (Haar) db4 

db8 

GTBWT 
comparison 

79 
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      The Representation’s Atoms – Synthetic Image  

Scaling functions  

Original 
image 

wavelets wavelets wavelets wavelets wavelets wavelets wavelets 

wavelets wavelets wavelets wavelets wavelets 

𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 𝑙 = 6 𝑙 = 7 

𝑙 = 8 𝑙 = 9 𝑙 = 10 𝑙 = 11 𝑙 = 12 

80 
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Scaling functions  

Original 
image 

wavelets wavelets wavelets wavelets wavelets 

wavelets wavelets wavelets wavelets 

wavelets 
𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 𝑙 = 6 

𝑙 = 7 𝑙 = 8 𝑙 = 9 𝑙 = 10 

  The Representation’s Atoms – Lenna   



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

 
 
 
 
 
3D Transform  
& threshold 

3D Transform  
& threshold 

  Relation to BM3D? 

82 

BM3D    Our scheme 

            GTBWT, 
and threshold 

Reorder,  

In a nut-shell, while BM3D searches for patch 
neighbors and process them locally, our approach 
seeks one path through all the patches (each gets 

its own neighbors as a consequence), and the 
eventual processing is done globally. 
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  2D → 1D Processing Examples 

DPCM Image Compression 

Kalman Filtering for 
Denoising 

While this 2D → 1D trend is an “old-fashion” trick, it is still very 
much active and popular in industry and academic work. 


