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  Patch-Based Processing of Images 

In the past decade we see more and more 
researchers suggesting to process a signal 
or an image with a paradigm of the form:  

Break the given image 
into overlapping (small) 

patches 

Operate on the patches 
separately or by 

exploiting inter-relation 
between them 

Put back the resulting 
patches into a result 

canvas 
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  Patch-Based Processing of Images 

Common theme:  The image patches are believed 
to exhibit a highly-structured geometrical form in 

the embedding space they reside in  

In the past decade we see more and more 
researchers suggesting to process a signal 
or an image with a paradigm of the form:  

Surprisingly, these methods 
are very effective, actually 
leading to today’s state-of-
the-art in many applications 
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  Patches … Patches … Patches …  

Various Ideas: 
 
Non-local-means 
Kernel regression 
Sparse representations 
Locally-learned dictionaries 
BM3D 
Structured sparsity 
Structural clustering  
Subspace clustering  
Gaussian-mixture-models 
Non-local sparse rep. 
Self-similarity 
Manifold learning 
… 

Who are the researchers promoting this line of work?  
Many leading scientists from various places  

Sorry if          
I  forgot 

YOU 

You 

& … You? 
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  This Talk is About …  

A different way to treat an image using its overlapped patches 

Order to  
      form the  
        shortest  
        possible  
        path 

Process the 
Patches 

This ordering induces a very interesting 
permutation on the image pixels 
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  Surprisingly, This Talk is Also About … 

In the process, 
we will find 
ourselves 

returning to 
“regular” 

signals, handling 
them differently 

Processing of Non-
Conventionally 

Structured Signals  

Many signal-
processing tools 

(filters, alg., 
transforms, …) 
are tailored for 

uniformly 
sampled signals  

Now we encounter 
different types of 

signals: e.g., point-
clouds and graphs. 

Can we extend 
classical tools to 

these signals? 

Our goal: 
Generalize the 

wavelet 
transform to 
handle this 

broad family 
of signals 

In fact, this is how this work started in the first place  
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This part is taken from the following two papers:  

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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𝑓1 

𝑓2 

𝑓3 

𝑓4 

𝑓5 
𝑓6 

𝑓8 

𝑓7 

𝑓9 

𝑓12 
𝑓11 

𝑓10 

𝑓13 

 We are given a graph: 
o The 𝑖 − 𝑡ℎ node is characterized        

by a  𝑑-dimen. feature vector 𝑥𝑖 
o The 𝑖 − 𝑡ℎ node has a value 𝑓𝑖 
o The edge between the 𝑖 − 𝑡ℎ and 

𝑗 − 𝑡ℎ nodes carries the distance 

𝑤 𝑥𝑖 , 𝑥𝑗  for an arbitrary distance 

measure 𝑤 ⋅,⋅ . 
 

 Assumption: a “short edge” 
implies close-by values, i.e.    

 

      𝑤 𝑥𝑖 , 𝑥𝑗  small  𝑓𝑖 − 𝑓𝑗  small 
           

            for almost every pair 𝑖, 𝑗 . 
 

𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥8 

𝑥7 

𝑥9 

𝑥12 

𝑥11 

𝑥10 

𝑥13 
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 We start with a set of 𝑑-dimensional vectors 𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ IR𝑑    

These could be: 
 Feature points for a graph’s nodes,     
 Set of coordinates for a point-cloud. 

 

 

 A scalar function is defined on                                                                                          
these coordinates, 𝑓: X → IR ,                                                    
giving  𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁 . 
 

 

 We may regard this dataset as                                            
a set of 𝑚 samples taken from a high       
dimensional function 𝑓: IR𝑑 → IR . 
 

 

 The assumption that small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑓𝑖 − 𝑓𝑗   for almost every 

pair 𝑖, 𝑗  implies that the function behind the scene, 𝑓, is “regular”. 

… 

X= 𝑥1, 𝑥2, … , 𝑥𝑁  

𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁  
… 
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  Our Goal 

Wavelet 
Transform 

    Sparse     
       (compact)    
Representation 

Why Wavelet?  
 Wavelet for regular piece-wise smooth signals is a highly effective 

“sparsifying transform”. However, the signal (vector) f is not necessarily 
smooth in general. 

 

 We would like to imitate this for our data structure. 

X      
     𝑥1, 𝑥2, … , 𝑥𝑁  

f 
    𝑓1, 𝑓2, … , 𝑓𝑁  
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“Diffusion Wavelets” 

 R. R. Coifman, and M. Maggioni, 2006. 
 

“Multiscale Methods for Data on Graphs and Irregular …. Situations” 
 M. Jansen, G. P. Nason, and B. W. Silverman, 2008. 
 

“Wavelets on Graph via Spectal Graph Theory” 
 D. K. Hammond, and P. Vandergheynst, and R. Gribonval, 2010. 
 

“Multiscale Wavelets on Trees, Graphs and High … Supervised Learning” 
 M . Gavish, and B. Nadler, and R. R. Coifman, 2010. 
 

“Wavelet Shrinkage on Paths for Denoising of Scattered Data” 
 D. Heinen and G. Plonka, 2012. 

… 

  Wavelet for Graphs – A Wonderful Idea 
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I wish we would have thought of it first …  

http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf


Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

12 

  The Main Idea (1) - Permutation 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟𝒑 

Permutation using 
𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁  

P T 
𝐟𝒑 

𝐟 T-1 P-1 
f 𝒑 

𝐟   Processing 

Permutation 1D Wavelet 
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𝑎𝑙 𝑎𝑙+1 

𝑑𝑙+1 

ℎ  

𝑔  

↓ 2 

↓ 2 

𝑎𝑙+2 

𝑑𝑙+2 

↓ 2 

↓ 2 

ℎ  

𝑔  

P𝑙 P𝑙+1 

  The Main Idea (2) - Permutation 

 In fact, we propose to perform a different permutation in each resolution 
level of the multi-scale pyramid: 
 
 
 
 
 
 
 

 Naturally, these permutations will be applied reversely in the inverse 
transform.  

 Thus, the difference between this and the plain 1D wavelet transform 
applied on f are the additional permutations, thus preserving the 
transform’s linearity and unitarity, while also adapting to the input signal.  



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

    

14 

  Building the Permutations (1) 

 Lets start with P0 – the permutation applied on the incoming signal. 
 

 Recall: the wavelet transform is most effective for piecewise regular signals. 
→ thus, P0 should be chosen such that P0f  is most “regular”. 
 

 So, … for example, we can simply permute by sorting the signal f … 

0 50 100 150 200 250 
0 

50 

100 

150 

200 

250 

0 50 100 150 200 250 
0 

50 

100 

150 

200 

250 
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 However: we will be dealing with corrupted signals f (noisy, missing               
values, …) and thus such a sort operation is impossible.  
 

 To our help comes the feature vectors in X, which reflect on the order of the 
signal values, fk. Recall:  
 
 

 
 Thus, instead of solving for the optimal permutation that “simplifies” f, we  

order the features in X to the shortest path that visits in each point once, in 
what will be an instance of the Traveling-Salesman-Problem (TSP): 
 
 

  Building the Permutations (2) 

min
P

 𝑓𝑝 𝑖 − 𝑓𝑝 𝑖 − 1

𝑁

𝑖=2

 min
P

 𝑤 𝑥𝑖
𝑝
, 𝑥𝑖−1

𝑝

𝑁

𝑖=2

 

Small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗   for almost every pair 𝑖, 𝑗  
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𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥7 
𝑥8 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 
𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 
𝐟𝒑 

  Building the Permutations (3) 

We handle the TSP task by a               
greedy (and crude) approximation:  
 

o Initialize with an arbitrary index j;  
o Initialize the set of chosen indices to Ω(1)={j};  
o Repeat k=1:1:N-1 times: 

• Find xi – the nearest neighbor to xΩ(k) such that iΩ;  
• Set Ω(k+1)={i};  

o Result: the set Ω holds the proposed ordering. 

IR𝑑 
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  Building the Permutations (4) 

 So far we concentrated on P0 at the finest level of the multi-scale pyramid. 
 

 In order to construct P1, P2, … , PL-1, the permutations at the other pyramid’s  
levels, we use the same method, applied on propagated (reordered, filtered 
and sub-sampled) feature-vectors through the same wavelet pyramid: 
 
 

𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 
P1 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟐 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟑 

P3 
LP-Filtering (h) 

& Sub-sampling  
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  Why “Generalized Tree …”?  

                     “Generalized” tree                    Tree (Haar wavelet) 

 

 

 

 

 

 Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT). 
 

 We also developed a Redundant version of this transform based on the 
stationary wavelet transform [Shensa, 1992] [Beylkin, 1992] – also related to the 
“A-Trous Wavelet” (will not be presented here). 
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  Treating Graph/Cloud-of-points 

 Just to complete the picture, we should demonstrate the 
(R)GTBWT capabilities on graphs/cloud of points. 

 We took several classical machine learning train + test                                            
data for several regression problems, and tested                                                 
the proposed transform in  

 Cleaning (denoising) the data from additive noise; 

 Filling in missing values (semi-supervised learning); and  

 Detecting anomalies (outliers) in the data. 

 The results are encouraging. We shall present herein  one such 
experiment briefly.  

SKIP? 
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  Treating Graphs: The Data 

Data Set: Relative Location of CT axial axis slices 

 

 

 

 

 

 

 

 

More details: Overall 53500 such pairs of feature and value, extracted 
from 74 different patients (43 male and 31 female).  

Feature vector of 
length 384 Compute 

bones and 
air polar 

Histograms 

Labels: Location in 
the body [0,180]cm  

http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
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  Treating Graphs: Denoising 

Find for each point its K-NN in feature-space, and 
compute a weighted average of their labels 

.  .  .  

Original 
labels 

+ 

AWGN 

.  .  .  

Noisy 
labels 

Denoising by NLM-
like algorithm  

Apply the RTBWT transform to the point-cloud 
labels, threshold the values and transform back 

Denoising by THR 
with RTBWT 
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  Treating Graphs: Denoising 

5 10 15 20 
5 

10 

15 

20 

25 

30 

35 

noise standard deviation 

S
N

R
 [

d
B

] 

  

  

noisy signal 

RTBWT 

NL-means 
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  Treating Graphs: Semi-Supervised Learning 

Find for each missing point its K-NN in 
feature-space that have a label, and 
compute a weighted average of their labels 

.  .  .  

Original 
labels 

+ 

AWGN 

Filling-in by NLM-
like algorithm  

Denoising 
by RTBWT 

Option: 
Iterate 

.  .  .  

Noisy and 
missing  

labels 

Discard 
p% of the 

 labels 
randomly  

Denoising
by NLM  

 

Projection Projection 
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  Treating Graphs: Semi-Supervised Learning  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 

10 

15 

20 

25 

30 

35 

# missing samples 

S
N

R
 [

d
B

] 

=20 
Corrupted 

NL-means 

RTBWT (iter 2) 

NL-means (iter 2) 

RTBWT (iter 3) 

NL-means (iter 3) 
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  Treating Graphs: Semi-Supervised Learning  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 

10 

15 

20 

25 

30 

35 

# missing samples 

S
N

R
 [

d
B

] =5 

Corrupted 

NL-means 

RTBWT (iter 2) 

NL-means (iter 2) 

RTBWT (iter 3) 

NL-means (iter 3) 
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Image Patches  
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This part is taken from the same papers mentioned before … 

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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𝑓 𝑥𝑗 = 𝑓𝑗 

𝑓 𝑥𝑖 = 𝑓𝑖 

𝑥𝑗 

𝑥𝑖 

𝑁 

𝑑 

 Now, that the image is organized as a graph (or point- 
cloud), we can  apply the developed transform.  

 The distance measure w(, ) we will be using is Euclidean. 
  It seems that after this “conversion”, we forget all about 

spatial proximities. 

  Could an Image Become a Graph?  
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  Our Transform 

𝐟 
Lexicographic ordering of                        

the 𝑁 pixels 

𝛀 𝑑𝑁𝐽 

𝑁 

   All these operations could     
be described as one linear 
operation: multiplication of     
f by a huge matrix 𝛀. 

 This transform is adaptive      
to the specific image. 

𝐗: Array of 
overlapped patches 

of size 𝑑𝑁 

We obtain an array of 
𝑑N𝐽 transform 

coefficients Applying a  𝐽 
redundant 

wavelet of some 
sort including 
permutations 
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  Lets Test It: M-Term Approximation 

Multiply by 𝐃: 

Inverse GTBWT 

Multiply by 𝛀: 
Forward GTBWT 

𝑆𝜆 ∙  

Original Image 

𝜆 

−𝜆 

𝐟 

𝛀𝐟 

𝑆𝜆 𝛀𝐟  

𝑀            
non-
zeros 

𝐟  Output image 

Show 
 

𝐟 − 𝐟 
2

= 𝐟 − 𝐃𝑆𝜆 𝛀𝐟 2      
 

as a function of 𝑀 
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0 2000 4000 6000 8000 10000 
10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

# Coefficients 

P
S

N
R

 

GTBWT – permutation 
at varying level 

common 1D 

2D 

db4 

  Lets Test It: M-Term Approximation 

For a 128×128 center portion of 
the image Lenna, we compare the 
image representation efficiency of 
the 
  

 GTBWT 
 A common 1D wavelet transform 
 2D wavelet transform 
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      Comparison Between Different Wavelets 

db1 (Haar) db4 

db8 

GTBWT 
comparison 

31 
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      The Representation’s Atoms – Synthetic Image  

Scaling functions  

Original 
image 

wavelets wavelets wavelets wavelets wavelets wavelets wavelets 

wavelets wavelets wavelets wavelets wavelets 

𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 𝑙 = 6 𝑙 = 7 

𝑙 = 8 𝑙 = 9 𝑙 = 10 𝑙 = 11 𝑙 = 12 

32 
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Scaling functions  

Original 
image 

wavelets wavelets wavelets wavelets wavelets 

wavelets wavelets wavelets wavelets 

wavelets 
𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 𝑙 = 6 

𝑙 = 7 𝑙 = 8 𝑙 = 9 𝑙 = 10 

  The Representation’s Atoms – Lenna   
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Approximation  
by the               

THR algorithm: 

𝐟 = 𝐃𝑆𝜆 𝛀𝐟  

Noisy image Output image 𝐃: Inverse  

GTBWT 

𝛀: Forward 

GTBWT 

𝑆𝜆 ∙  

f  Denoising 
Algorithm 𝐟  + 𝐟 

𝐯~𝐍 0, 𝜎2𝐈  



Wavelets for Graphs and Its                                             
Deployment to Image Processing 
By: Michael Elad 

      Image Denoising – Improvements  
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Cycle-spinning: Apply the above scheme several (10) times, with a 
different GTBWT (different random ordering), and average.  

Noisy 
image 

 GTBWT THR GTBWT-1 

Averaging 

 GTBWT THR GTBWT-1 

Reconstructed 
image 
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P1 
LP-Filtering (h) 

& Sub-sampling  

  Image Denoising – Improvements  

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged.  

𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟐 
P3 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟑 

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

36 
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      Image Denoising – Improvements  

P1 
LP-Filtering (h) 

& Sub-sampling  𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟐 
P3 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟑 

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

HP-Filtering (g) 
& Sub-sampling  

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged.  
 
 
 
 
 
 

 Combine these transformed pieces;  
 The center row is the transformed         

coefficients of f.  
 The other rows are also transform      

coefficients – of d shifted versions             
of the image. 

 We can reconstruct d versions            
of the image and average. 

37 
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      Image Denoising – Improvements  

38 

Restricting the NN: It appears that when searching the nearest-
neighbor for the ordering, restriction to near-by area is helpful, 
both computationally (obviously) and in terms of the output 
quality. 

Patch of size 

𝑑 × 𝑑 

Search-Area of 

size 𝐵 × 𝐵 
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      Image Denoising – Improvements  
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Improved thresholding: Instead of thresholding the wavelet 
coefficients based on their value, threshold them based on the 
norm of the (transformed) vector they belong to: 
 

 Recall the transformed vectors as described earlier. 
 Classical thresholding: every coefficient within C is                                                                 

passed through the function: 
 
 
 
 

 The proposed alternative would be                   
to force “joint-sparsity” on the above                                                                            
array of coefficients, forcing all rows                                                                                               
to share the same support: 

 

𝑐𝑖,𝑗 =  
𝑐𝑖,𝑗 𝑐𝑖,𝑗 ≥ 𝑇

0 𝑐𝑖,𝑗 < 𝑇
 

C= 

𝑐𝑖,𝑗 =  
𝑐𝑖,𝑗 𝑐∗,𝑗 2

≥ 𝑇

0 𝑐∗,𝑗 2
< 𝑇

 

𝒄𝟏,𝟑 
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      Image Denoising – Results  

40 

 We apply the proposed scheme with the Symmlet 8 wavelet to                         
noisy versions of the images Lena and Barbara 

 For comparison reasons, we also apply to the two images the                           
K-SVD and BM3D algorithms. 

 

 

 

 

 

 The PSNR results are quite good and competitive.  

 What about run time?  

/PSNR Image K-SVD BM3D GTBWT 

10/28.14 
Lena 35.51 35.93 35.87 

Barbara 34.44 34.98 34.94 

25/20.18 
Lena 31.36 32.08 32.16 

Barbara 29.57 30.72 30.75 
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3D Transform  
& threshold 

3D Transform  
& threshold 

  Relation to BM3D? 

41 

BM3D    Our scheme 

            GTBWT, 
and threshold 

Reorder,  
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3D Transform  
& threshold 

3D Transform  
& threshold 

  Relation to BM3D? 

42 

BM3D    Our scheme 

            GTBWT, 
and threshold 

Reorder,  

In a nut-shell, while BM3D searches for patch 
neighbors and process them locally, our approach 
seeks one path through all the patches (each gets 

its own neighbors as a consequence), and the 
eventual processing is done globally. 
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  What Next? 

A: Refer to this transform   

as an abstract sparsification 
operator and use it in general 

image processing tasks 

B: Streep this idea to its 

bones: keep the patch-
reordering, and propose a 

new way to process images 

We have a 
highly effective 

sparsifying 
transform for 
images. It is 
“linear” and 

image adaptive 
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Part III – Frame                              
Interpreting the GTBWT as a Frame 

and using it as a Regularizer 

44 

This part is documented in the following draft:  

 I. Ram, M. Elad, and I. Cohen, “The RTBWT Frame – Theory and Use for Images”, 

working draft to be submitted soon. 
 

We rely heavily on  

 Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 

IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012. 
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Or, put differently,                            : We refer to GTBWT as a 
redundant frame, and use a “heuristic” shrinkage method with it, 
which aims to approximate the solution of  
 

 Synthesis: 
or  
 Analysis:    

x = 𝐃 ∙ T 𝛀y  

x = 𝐃 ∙ Argmin
α

𝐃α − y 2
2  + λ α p

p
 

x = Argmin
f

x − y 2
2 + 𝜆 𝛀x p

p
 

x  

Noisy image Output image 𝐃: Inverse  

GTBWT 

𝛀: Forward 

GTBWT 

𝑆𝜆 ∙  𝒚 
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  Recall: Our Transform (Frame) 

𝐟 
Lexicographic ordering of                        

the 𝑁 pixels 

𝛀 𝑑𝑁𝐽 

𝑁 

   All these operations could     
be described as one linear 
operation: multiplication of     
f by a huge matrix 𝛀 

 This transform is adaptive      
to the specific image 

𝐗: Array of 
overlapped patches 

of size 𝑑𝑁 

We obtain an array of 
𝑑N𝐽 transform 

coefficients Applying a  𝐽 
redundant 

wavelet of some 
sort including 
permutations 
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      Our Notations 
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x 

𝛀 = 

α 

α 

𝐃 = 

x 

𝐈 = 𝐃𝛀 
(Not a Moore-Penrose pair) 
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      What Can We Do With This Frame?  
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We could solve various inverse problems of the form: 
  
 
  

where:  x is the original image 
  v is an AWGN, and  
  A is a degradation operator of any sort 

 

We could consider the synthesis, the analysis, or their combination: 
 

 

y = 𝐀x + v 

x , α = Argmin
α,x

y − 𝐀x 2
2 +

1

β
𝐃α − x 2

2 +

 +λ α 𝑝
𝑝

+
1

𝜇
𝛀x − α 2

2

 

β = 0
μ = ∞

→ Synthesis 

β = ∞
μ = 0

→ Analysis 
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      Generalized Nash Equilibrium  
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*  Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 
IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012. 

x , α = Argmin
α,x

y − 𝐀x 2
2 +

1

β
𝐃α − x 2

2 +
 

+λ α 𝑝
𝑝

+
1

𝜇
𝛀x − α 2

2 

x𝑘+1 = Argmin
x

  y − 𝐀x 2
2 +

1

β
𝐃α𝑘 − x 2

2 

α𝑘+1 = Argmin
α

   λ α 𝑝
𝑝

+
1

𝜇
𝛀x𝑘+1 − α 2

2 

and solve 
iteratively 

* 

Instead of minimizing the joint analysis/synthesis problem: 
 

 
 
 

break it down into two separate and easy to handle parts: 
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      Deblurring Results 
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Original                     Blurred                 Restored 
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      Deblurring Results 
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Image  
Input  
PSNR 

 
BM3D-DEB 

ISNR 

IDD-BM3D 
ISNR                

init. with            
BM3D-DEB 

 
Ours ISNR 
Init. with 

BM3D-DEB 

Ours ISNR    
3 iterations 
with simple 
initialization 

Lena 27.25 7.95 7.97 8.08 8.20 

Barbara 23.34 7.80 7.64 8.25 6.21 

House 25.61 9.32 9.95 9.80 10.06 

Cameraman 22.23 8.19 8.85 9.19 8.52 

1

1 + i2 + j2
   − 7 ≤ i, j ≤ 7 Blur PSF = 

 
2=2  
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Part IV – Patch (Re)-Ordering 
Lets Simplify Things,                               

Shall We? 

52 

This part is based on the paper:  

 I. Ram, M. Elad, and I. Cohen, “Image Processing using Smooth Ordering of its Patches”, 

IEEE Transactions on Image Processing, Vol. 22, No. 7, pp. 2764–2774 , July 2013. 
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  Returning to the Basics   

We extract all (with 
overlaps) patches  of 
size B×B (e.g. B=20) 

Then we order these 
patches to form the 

shortest path, as before 

Suppose we 

start with a 

clean image  

What should we expect from this permutation?  

This reordering induces a 
permutation on the image pixels 
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54 

  Spatial Neighbor  Euclidean Neighbor 

Spatial neighbors are not necessarily expected                                        

to remain neighbors in the new ordering  

 

0 100 200 300 400 
10 

-4 

10 
-3 

10 
-2 

10 
-1 

10 
0 

Sqrt Euclidean Distance 

H
is

to
g
ra

m
 

  

  

Peppers 

Barbara 

What should we expect?  
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  The Reordered Signal is More Regular 

What should we expect?  

* Measure of smoothness: 

 
 
 
1. Raster scan:   9.57 
2. Hilbert curve:  11.77 
3. Sorted (ours):   5.63 

1

𝐿
 f 𝑘 − f 𝑘 − 1

𝐿

𝑘=2

 

*  The new path is expected to lead to very smooth                        
(or at least, piece-wise smooth) 1D signal. 

 The ordering is expected to be robust to noise and 
degradations → the underlying signal should still be smooth. 
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  Processing the Permuted Pixels 

Assumptions:  
 After a shortest-path reordering of the patches form a clean image, we 

expect a highly regular signal. 
 Reordering a corrupted image is likely to lead to a good quality sort as well, 

due to the robustness brought by the patch-matching. 

 An Idea:  Given a corrupted image of the form: 

  where:  x is the original image 
   v is an AWGN, and  
   M is a point-wise degradation operator, 

Apply this process:  
 

 

y = 𝐌x + v 

Re-order the 
pixels to a          
1D signal 

Process the 1D 
signal with a 
simple filter 

Re-order the 
pixels back to 
their location 

Corrupted Image 𝐟  
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  Use the Reordering for Denoising   

Extract all (with 
overlaps) patches  

of size 10×10 

Order these 
patches as            

before (TSP) 

Take the center-
row – it represents 
a permutation of 

the image pixels to 
a regular function 

Noisy with =25 (20.18dB) 

Smooth/filter the 
values along this row 

in a simple way 

Reconstruction: 32.65dB 

*  This result is obtained with (i) cycle-spinning, (ii) sub-image averaging,               
(iii) two iterations, (iv) learning the filter , and (v) switched  smoothing. 

* 
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  Intuition: Why Should This Work?  

y𝑝 

Ordering based on the noisy pixels  

Simple smoothing 

Noisy with =25 (20.18dB) 

Reconstruction: 32.65dB 

y 

True samples 
Noisy samples 
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  The “Simple Smoothing” We Do 

Simple 
smoothing 
works fine

 
  

  

optimize h to 
minimize the 

reconstruction 
MSE 

Original image 

Noisy image 

Compute 

the TSP 

permutation 

Apply the 

permutation 

on the pixels 

Apply the 

permutation 

on the pixels 

Apply          

a 1D             

filter h 

+ 

- 

We can do 
better by a 

training phase 
   

but  

Naturally, this is done off-line and on other images 

Training 
image 
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  Filtering – A Further Improvement 

Cluster the patches to smooth and textured sets, and train 
a filter per each separately 

   

The results we show  
hereafter were obtained by:  
(i) Cycle-spinning 
(ii) Sub-image averaging  
(iii) Two iterations 
(iv) Learning the filter , and  
(v) Switched  smoothing. 

Based on patch-STD 
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  Denoising Results Using Patch-Reordering 

Image σ/PSNR [dB] 

10 / 28.14 25 / 20.18 50 / 14.16 

Lena K-SVD 35.49  31.36 27.82 

1st iteration 35.33 31.58 28.54 

2nd iteration 35.41 31.81 29.00 

Barbara K-SVD 34.41 29.53 25.40 

1st iteration 34.48 30.46 27.17 

2nd iteration 34.46 30.54 27.45 

House K-SVD 36.00 32.12 28.15 

1st iteration 35.58 32.48 29.37 

2nd iteration 35.94 32.65 29.93 

Bottom line:  (1) This idea works very well; 
 (2) It is especially competitive for high noise levels; and   
 (3) A second iteration almost always pays off.   
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  What About Inpainting?  

Extract all (with 
overlaps) patches  

of size 9×9 

Order these 
patches as before 

distance uses 
EXISTING pixels 

only 

Take the center-
row – it represents 
a permutation of 

the image pixels to 
a regular function 

0.8 of the pixels are missing  

Fill the missing values 
in a simple (cubic 
interpolation) way 

Reconstruction: 29.71dB * 

* This result is obtained with (i) cycle-spinning,                              
(ii) sub-image averaging, and (iii) two iterations. 
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  The Rationale 

0.8 of the pixels are missing  

Reconstruction: 27.15dB 

y𝑝 

Ordering 

Simple interpolation 

y 
Missing sample 
Existing sample 
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  Inpainting Results – Examples  

Given data 
80% missing 

pixels 

1st iteration     
of the 

proposed alg. 

DCT and            
OMP                 

recovery 

Bi-Cubic 
interpolation 

3rd iteration     
of the 

proposed alg. 
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  Inpainting Results  

Image Method PSNR [dB] 

 

 

Lena 

Bi-Cubic 30.25 

DCT + OMP 29.97 

Proposed (1st iter.) 30.25 

Proposed (2nd iter.) 31.80 

Proposed (3rd iter.) 31.96 

 

 

Barbara 

Bi-Cubic 22.88 

DCT + OMP 27.15 

Proposed (1st iter.) 27.56 

Proposed (2nd iter.) 29.34 

Proposed (3rd iter.) 29.71 

 

 

House 

Bi-Cubic 29.21 

DCT + OMP 29.69 

Proposed (1st iter.) 29.03 

Proposed (2nd iter.) 32.10 

Proposed (3rd iter.) 32.71 

Reconstruction   

results from 80% 

missing pixels                    

using various 

methods:  Bottom line:  
(1) This idea works                 

very well; 
(2) It is operating much 

better than the 
classic sparse-rep. 
approach; and  

(3) Using more 
iterations always 
pays off, and 
substantially so.   
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Part IV – Time to Finish 
Conclusions and a Bit More 

66 
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  Conclusions 

67 

We propose a new 
wavelet transform 
for scalar functions 
defined on graphs  

or high dimensional 
data clouds 

The proposed 
transform extends 

the classical 
orthonormal and 

redundant wavelet 
transforms  

We demonstrate 
the ability of these 

transforms to 
efficiently 

represent and 
denoise images 

We also show that the 
obtained transform           
can be used as a      

regularizer in classical                   
image processing                 
Inverse-Problems 

Finally, we show that 
using the ordering of 

the patches only, quite 
effective denoising  

and inpainting              
can be obtained 
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Sparse 

Representations 

and learned 

dictionaries in 

the ordered 

domain? 

68 

  What Next ? 

68 

Improving   

the TSP 

approximation 

solver 

Demonstrating 

the proposed 

wavelet on 

more data 

clouds/graphs 
Why TSP? 

Who says we 

cannot revisit 

patches?  

Replace the 

TSP ordering 

by MDS? 

Replace      

“sub-image 

averaging” with 

a sparsifying 

transform  

Exploiting        

the known 

distances? 

Pixel 

permutation 

as regularizer ? 
Lifting scheme 

for treating 

clouds?  
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Thank you for your time 

 

thanks to the organizers                                       

of this event 

Volkan Cevher and Matthias Seeger 

 

Questions?  
 

Post-Docs      
Are Needed 


