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Patch-Ordering as a Regularization for Inverse Problems in Image Processing∗

Gregory Vaksman†, Michael Zibulevsky‡, and Michael Elad‡

Abstract. Recent work in image processing suggests that operating on (overlapping) patches in an image may
lead to state-of-the-art results. This has been demonstrated for a variety of problems including
denoising, inpainting, deblurring, and super-resolution. The work reported in [1, 2] takes an extra
step forward by showing that ordering these patches to form an approximate shortest path can be
leveraged for better processing. The core idea is to apply a simple filter on the resulting 1D smoothed
signal obtained after the patch-permutation. This idea has been also explored in combination with
a wavelet pyramid, leading eventually to a sophisticated and highly effective regularizer for inverse
problems in imaging.

In this work we further study the patch-permutation concept, and harness it to propose a new
simple yet effective regularization for image restoration problems. Our approach builds on the
classic Maximum A’posteriori probability (MAP), with a penalty function consisting of a regular
log-likelihood term and a novel permutation-based regularization term. Using a plain 1D Lapla-
cian, the proposed regularization forces robust smoothness (L1) on the permuted pixels. Since the
permutation originates from patch-ordering, we propose to accumulate the smoothness terms over
all the patches’ pixels. Furthermore, we take into account the found distances between adjacent
patches in the ordering, by weighting the Laplacian outcome.

We demonstrate the proposed scheme on a diverse set of problems: (i) severe Poisson image de-
noising, (ii) Gaussian image denoising, (iii) image deblurring, and (iv) single image super-resolution.
In all these cases, we use recent methods that handle these problems as initialization to our scheme.
This is followed by an L-BFGS optimization of the above-described penalty function, leading to
state-of-the-art results, and especially so for highly ill-posed cases.

Key words. Patch ordering, Traveling salesman, inverse problem, Poisson denosing, Regularization, Smooth-
ness
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1. Introduction. In recent years we see an interesting trend, in which many image restora-
tion algorithms choose to operate on local image patches rather than processing the image as
a whole. These techniques impose statistical prior knowledge on the patches of the processed
image. Surprisingly, in many cases these methods lead to state-of-the-art results. For exam-
ple, in the Gaussian denoising case, the algorithm presented in [3] performs denoising using
a statistical model based on sparse representation of the image patches, training a dictionary
using the K-SVD algorithm. The BM3D algorithm reported in [4] exploits interrelations be-
tween patches by grouping them into 3D groups, and applying collaborative filtering on them
that is based on sparse representation as well. The work reported in [5–7] extends PCA and
dictionary learning, both in the context of patches for handling severe Poisson image denois-
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ing. The scheme reported in [8] adopts the sparse representation model to handle the single
image super-resolution problem. The papers [9, 10] both propose a GMM modeling of image
patches, and demonstrate the effectiveness of this to variety of inverse problems. The NSCR
method by Dong et. al. [11] uses sparse representation for solving both the super-resolution
and the deblurring problems. The IDD-BM3D method in [12] employs BM3D frames for im-
age deblurring. All these papers and many others rely on operating on patches in order to
complete the restoration task at hand. Many works use sophisticated priors when operating
locally, and most often they resort to a simple averaging when combining the restored patches.

The work reported in [1] takes another step toward exploiting interrelations between image
patches in the image. The work reported in [1] proposes to construct a 1D smoothed signal
by applying a permutation on the pixels of the corrupted image. The permutation is obtained
by ordering image patches to form ”the shortest possible path”, approximating the solution of
the traveling salesman problem (TSP). Given the sorted image, the clean image is recovered
by applying a 1D filter on the ordered signal. This method is simple and yet it leads to
high-quality results. On the down side, it is limited to the Gaussian denoising and inpainting
problems. The work reported in [2] takes an extra step in exploring the patch-ordering concept.
This work constructs a sophisticated and very powerful regularizer by combining the patch-
permutation idea with a wavelet pyramid [13,14]. The obtained regularizer is used for solving
general inverse problems in imaging. This method leads to high-quality results in series of
tests, however it is quite involved.

In this paper we propose to compose the whole image from local patches using a prior
that exploits interrelation between them. We harness the patch-permutation idea, merging it
with the classical Maximum A’posteriori probability (MAP) estimator, by proposing a new,
simple, yet powerful regularization for inverse imaging problems. We formulate the inverse
problem as a weighted sum of two penalty terms: (i) a regular negative log-likelihood, and
(ii) a novel regularization expression that forces smoothness in a robust way, by basing it on
reordered list of the image pixels, obtained according to the similarity of image patches.

For constructing the permutation-based regulatization, we follow the core idea presented
in [1]. We rely on the assumption that in an ideal image, close similarity between patches indi-
cates a proximity between their center pixels. We therefore build a 1D (piece-wise) smoothed
signal by applying a patch-based permutation on the restored (unknown) image pixels. The
permutation is obtained by extracting all possible patches with overlaps from the currently
recovered image, and ordering them to form the (approximated) shortest possible path. The
resulting ordering induces the permutation.

The proposed regularization forces smoothness on the obtained 1D signal via a Laplacian,
penalized by the robust L1 norm. Since the ordering is associated with all the pixels withing
the patches, the smoothness term is accumulated over all these pixels. We also deploy weights
that take into account the actual distances between the consecutive patches in the ordering.

The proposed scheme is demonstrated on several different problems: (i) White additive
Gaussian image denoising, (ii) severe Poisson image denoising, (iii) image deblurring, and
(iv) single image super-resolution. We initialize our algorithm with an output of a recent
method that handles each of these problems. The reconstructed image is then obtained by
minimizing the penalty function described above using the L-BFGS method [15, 16]. Our
extensive experiments indicate that applying the proposed scheme leads to state-of-the-art
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results.

We should note that the proposed scheme bares some similarity to recent work offering
regularization of inverse problems by utilizing the similarity between patches formed as a
graph [17–25]. These works propose various formats of using this graph’s Laplacian as a
sparsifying operator. Our approach could be considered as a special case of such a Laplacian
regularization, which forces the graph to be a simple and continuous chained ordering of the
image pixels. As such, the regularization we obtain is simpler and easier to manage (since we
keep only one forward and one backward neighbors per each pixel). In addition, our approach
also provides a stronger stabilizing effect for highly ill-posed problems since it ties all the
pixels to each other.

The paper is organized as follows. In Section 2 we discuss the principles behind the
permutation construction, and how it becomes useful as a regularizer. Section 3 describes the
proposed algorithm, along with the numerical scheme used. Section 4 presents experiment
results and compares the new method with other leading schemes. Section 6 concludes this
paper and raises directions for a future work.

2. Constructing the permutation. A common assumption in image processing is that
clean images are usually (piece-wise) smooth, i.e. the difference between any two neighboring
pixels tends to be small. Most image processing algorithms, be it for restoration, segmentation,
compression, and more, rely on this model to some extent. The problem with this assumption,
however, is that violation from this behavior is due to image edges and texture, and both are
central in forming and defining the visual content of an image, and as such, they cannot be
sacrificed as simple outliers.

Adopting a totally different perspective towards handling of an image, a convenient and
often used technique for developing an image processing algorithm is to convert the 2D image
into a 1D array, treat the image as a vector, and then convert the resulting 1D array back to
a 2D array. There are several popular scan methods that convert an image to a vector, the
prominent of which are raster scan, zigzag scan, Hilbert Peano and other space-filling curves.

The question we pose now is this: how can we combine the two approaches mentioned
above? Namely, given a corrupted image y ∈ R

N , how should we construct a 2D-to-1D con-
version that produces the smoothest possible vector when applied to a clean image, x. Such a
conversion would be extremely helpful for image restoration tasks, because in the 1D domain
its processing is expected to be very simple and effective. We should emphasize that the
sought conversion method must be robust, i.e. be able to produce a meaningful ordering even
when operated on a corrupted data.

A word on notations: The 2D-to-1D conversion we are seeking is denoted by Ω, and
represented by a permutation matrix P . I.e., applying P to column-stacked image x, Px,
produces a vector with the reordering Ω.

In this work we build on the ideas presented in [1], while giving it a new and novel inter-
pretation. In order to propose such a smoothing conversion, we shall assume that each pixel
of the clean image x can be represented by the corresponding surrounding patch taken from
the corrupted image y. In other words, the assumption is that if two patches of the corrupted
(or clean) image are close in terms of some distance function, then their corresponding central
pixels in the clean image are expected to be similar as well. We will refer hereafter to this
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as the A1 assumption. Throughout this work we shall use the Euclidean distance for assess-
ing proximity between patches. We extract all possible patches {zi}N1 of size

√
n×√

n with
overlaps from the image y, where n ≪ N . Our method refers to the patches as points in R

n,
defining a graph where the patches are its vertices and distances between them are the edges.

Recall that our aim is to find an ordering Ω (or P , its permutation matrix equivalent)
such that the resulting permuted clean image is the smoothest. This can be defined as the
following minimization task:

min
P

‖DPx‖1 = min
Ω

N
∑

i=2

∣

∣xΩ(i) − xΩ(i−1)

∣

∣ , (2.1)

whereD is a 1D difference operator (simple derivative). Interestingly, it is tempting to propose
an ordering of the image patches in x based on a simple sort of their center pixels, as it will
lead to the ideal (smoothest) permutation. However, since we assume that x is not available
and instead we have y, this option is impossible. Thus, the above objective is replaced by an
alternative that relies on the assumption A1 made above:

min
P

‖DPx‖1 ≈ min
Ω

N
∑

i=2

∥

∥zΩ(i) − zΩ(i−1)

∥

∥

2
. (2.2)

This means that the graph vertices are ordered to form the shortest possible path that visits
each vertex exactly once. Namely, we formulate the quest of Ω as a classic Traveling Salesman
Problem (TSP) [26].

A natural way to proceed is to use a known approximation algorithm that is known to
perform well for the TSP. The problem with this approach is that the permutation induced
from a too-good TSP solver is in fact creating and magnifying artifacts. An example for this
behavior and the artifacts induced are shown in Figure 1, where we use the Lin-Kernighan
algorithm for approximating the TSP solution [27,28], and then apply our recovery algorithm.
We should note that the two orderings (our approach, as described in Algorithm 1 and Lin-
Kernighan) lead to an average total variation measure,

∑N−1
k=1 |xk+1 −xk|, of 2.17× 10−2 and

1.79 × 10−2, respectively, when assessed on the original (true) image. This implies that the
better ordering leads to 17.5% improvement in terms of the smoothness obtained, but this
does not translate to better outcome in our algorithm.

The problem with a too-good TSP solver is that it adjusts the ordering to artifacts in
the initial image, thereby creating correlation between the regularizer and the artifacts, which
magnifies these artifacts.

In order to overcome this artifact magnification problem we use a randomized approach
for the TSP solution. More specifically, we use the randomized version of NN (Nearest Neigh-
bor) heuristics presented in [1] as a TSP solver. This algorithm starts from an arbitrary
patch zi0 and continues by finding the closest two neighbors to the currently held vertex
with the restriction that they have not been assigned yet, choosing one of them at ran-
dom. At the k-th stage of the algorithm we have accumulated already k vertices. Given the
last of them, zΩ(k), we choose either zi1 or zi2, its two closest neighbors, with probabilities
p1 = α · exp

(

−‖zΩ(k) − zi1‖22/δ
)

and p2 = α · exp
(

−‖zΩ(k) − zi2‖22/δ
)

, where α is chosen such
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(a) The initial image (BM3D)
PSNR = 25.87dB

(b) Output with Lin-Kernighan
PSNR = 24.17dB

(c) Output with Algorithm 1
PSNR = 26.63dB

Figure 1: The output of our scheme with Lin-Kernighan heuristics or Algorithm 1 for solving
the TSP problem. The scheme is applied for the Gaussian denoising task with σ = 100, and
initialized with the BM3D result.

as p1 + p2 = 1. The nearest neighbor search is performed from within the set of unvisited
patches, and it is limited to a window of size B ×B around zΩk. If there is only one unvisited
patch in this region, the heuristics chooses it. When no unvisited patches remain, the first and
second nearest neighbor search is performed among all unvisited image patches. The B ×B
square restriction is designed to reduce computation complexity; however it is important also
for assuring that relevant patches are matched. The randomized NN heuristics is summarized
in Algorithm 1. An example of a reordered image is presented in Figure 2.

A drawback of the described reordering is it’s greediness nature. Indeed, as can be seen in
Figure 2, the last part of the reordered clean image is not smooth. This is due to the fact that
in the last stages of Algorithm 1 very few unvisited patches remain for the nearest neighbor
search. While this may seem troubling, in section 5 we shall explain why this phenomenon
has little effect on the final restored results.

3. The reconstruction algorithm.

3.1. Constructing the Regularization Term. Our regularizer is constructed as a sum of
several smoothness terms. A smoothness term is obtained by applying the matrices P , L and
M to the column-stacked image x, MLPx, and penalizing the result by the robust L1 norm:

r(x) = ‖MLPx‖1 . (3.1)

In this expression P is the permutation matrix that represents the ordering Ω obtained by the
TSP solver. L is a simple 1D Laplacian, and M is a weighting diagonal matrix of the form
M = diag(mk), where

mk = min{γk
βk

,mmax} . (3.2)
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(a) Original image (b) Reordered image

Figure 2: The original and the reordered House image. Notice that the last portion of the
reordered image is not smooth, due to the greedy nature of the NN heuristics in Algorithm 1.

The weights {mk}N1 take into account the distances between the consecutive patches in the
ordering. Intuitively we expect that the centers of the closer patches will be more similar.
Therefore the weights are chosen to be inversely proportional to the L2 norm of the 1D-
Laplacian of the corresponding patches. In other words, the βk coefficients are calculated
using the following formula:

βk =
1

2
‖2zk − zk−1 − zk+1‖2 , (3.3)

where 1 ≤ k ≤ N , and {zk}N1 are the ordered patches. The boundary cases (k = 1, and k = N)
are handled by setting z0 = z1, and zN+1 = zN . We note that if βk would have been defined
as in Equation (3.3), but assuming patches of size 1×1 pixels (i.e., only the center pixel is the
actual patch), then our regularization simplifies to become the L0-norm. The reason is that in
this case βk hold simply the absolute values of the 1D Laplacian over the ordered pixels. The
penalty term itself computes the very same Laplacian and divides by these βk values. Thus,
all those ratios are ’1’-es for non-zero values and ’0’ elsewhere, thus obtaining an L0-norm.
Thus, the term r(x) in Equation (3.1) seeks to sparsify the second derivative of the permuted
image in a robust way.

The problem with the {1/βk}N1 coefficients is that the distances between the patches which
contain edges or texture are usually relatively high, and therefore these weights are relatively
low. The coefficients {γk}N1 that appear in Equation (3.2) are designed to overcome this
problem, by magnifying the weights for edge/texture patches,

γk =

{

γedge patch zk contains edges,

1 zk is a flat patch,
(3.4)

where γedge ≥ 1 is a parameter to be set. In order to identify patches that contain edges or
texture, our algorithm calculates the magnitude of image gradient using the central difference
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Algorithm: Randomized NN heuristics.

Parameters: We are given the image patches {zi}Ni=1 and probability parameter δ.
Initialization: Choose an arbitrary index i and set Ω(1) = {i}.
foreach k = 1, . . . , N − 1 do

- Set Ak to be set of indices of B ×B patches around zΩ(k).

if |Ak\Ω| = 1 then
- Set Ω(k + 1) to be Ak\Ω.

else

if |Ak\Ω| ≥ 2 then
- Find zi1 – the nearest neighbor to zΩ(k), such that i1 ∈ Ak and i1 /∈ Ω.
- Find zi2 – the second nearest neighbor to zΩ(k), such that i2 ∈ Ak and
i2 /∈ Ω.

else // |Ak\Ω| = 0
- Find zi1 – the nearest neighbor to zΩ(k), such that i1 /∈ Ω.
- Find zi2 – the second nearest neighbor to zΩ(k), such that i2 /∈ Ω.

end

- Set Ω(k + 1) to be:

◦ {i1} with probability p1 = α · exp
(

−‖zΩ(k)−zi1
‖22

δ

)

,

◦ {i2} with probability p2 = α · exp
(

−‖zΩ(k)−zi2
‖22

δ

)

, α is chosen such

as p1 + p2 = 1.
end

end

Output: The set Ω holds the proposed ordering.

Algorithm 1: Randomized NN heuristics

method. Namely, gi,j, the magnitude of the gradient at location (i, j), is calculated using:

gi,j =

√

(

gxi,j

)2
+

(

gyi,j

)2
,

where gxi,j and gyi,j are the horizontal and vertical gradients at location (i, j). If we denote by
xi,j value of the pixel at location (i, j), then the gxi,j and gyi,j are given by:

gxi,j =
1

2
(xi+1,j − xi−1,j) , gyi,j =

1

2
(xi,j+1 − xi,j−1) .

A patch is identified as active if the sum of its gradient magnitudes gi,j is above a threshold
gthr, i.e:

γk =







γedge
∑

i,j∈zk
gi,j > gthr,

1 else
(3.5)

Finally, the values of {mk}N1 are clipped by mmax in order to reduce the condition number of
the operator MLP, thereby increasing the rate of convergence of the optimization problem.
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(a) Associating the central
pixels with the ordering

(b) Associating the top-left
pixels with the ordering

Figure 3: Associating pixels with the ordering – patches are represented as n-dimensional
column vectors.

3.2. Subimage Accumulation. In the smoothness term in Equation (3.1) the ordering
Ω is associated only with the central pixels of the patches. However, since the permutation
originates from full patch ordering, it makes sense to associate the ordering with all the pixels
withing the patches, as shown in Figure 3. Therefore, we propose to construct the regularizer
as a sum of the smoothness terms for all pixels within the patches:

r(x) =

√
n

∑

i=1

√
n

∑

j=1

‖MLPSi,jx‖1 . (3.6)

The Si,j operator associates an (i,j)-shifted sub-image of x with the ordering Ω. The notion of
sub-images and their role here is depicted in Figure 4. First, the image is padded using mirror
reflection of itself with ⌊√n/2⌋ pixels on all sides. Then Si,j extracts an N × N sub-image
starting from the (i,j)-th location in the padded image. For example: in Figure 3a we are
referring to the location i = j = ⌊√n/2⌋ + 1, while in Figure 3b it is i = j = 1.

Actually, accumulating the smoothness terms over patch pixels increases the number of
orderings from 1 to n, and introduces an implicit spatial prior. This way the similarity is forced
between the whole patches rather than only between their central pixels. An example of the
output of our reconstruction scheme without subimage accumulation is shown in Figure 5.
The resulting image seems very rugged due to the lack of a spatial smoothing prior.

The work reported in [1] suggests to further increase the number of the orderings by
applying the TSP solver 10 times (each time starting it from a random patch z0), this way
creating 10 different permutation matrices. We explored this option by accumulating the
regularization term in Equation (3.6) over a group of such permutations. For the regularization
we employ here, our finding suggests that this approach has a negligible effect on the results.
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(a) i = j = 1 (b) i = j =
√
n

Figure 4: S[i,j] operator applied on the image. White solid rectangle is the original image,
the dashed part corresponds to the mirror padding, and the hatched rectangle is the resulting
shifted image.

(a) The initial image (BM3D)
PSNR = 26.12dB

(b) Output without
subimage accumulation

PSNR = 23.37dB

(c) Output with
subimage accumulation

PSNR = 26.69dB

Figure 5: The output of our restoration scheme with and without subimage accumulation.
The scheme is applied to the Gaussian denoising task with σ = 50, and initialized with BM3D.

3.3. Building the Objective Function. In order to build the objective function, we denote
by y ∈ R

N the column stacked version of the corrupted image, by x ∈ R
N the desired image,

and by r(x) the regularization term in Equation (3.6). Then, the inverse problem is formulated
as a weighted sum of the negative log-likelihood term fL(x,y), and the regularizer r(x). In
order to keep x values within the pixel boundaries [xmin, xmax] we add to the objective function
two penalties: p(xmin · 1,x) and p(x, xmax · 1). Therefore, the reconstruction algorithm is
generally formulated as the following minimization problem:

min
x

fL(x,y) + µ · r(x) + p(xmin · 1,x) + p(x, xmax · 1), (3.7)
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where p(u,w) is defined as:

p(u,w) = c
N
∑

k=1

(|uk − wk|+ uk − wk) . (3.8)

Each component of p(u,w) is greater than zero when uk > wk, and grows with the difference
uk −wk. The parameter c controls the strength with which we enforce this penalty.

In order to use a derivative based optimization method for solving the obtained minimiza-
tion problem, the energy function in Equation (3.7) is smoothed by replacing the absolute
values | · | with ρ(·, ǫ), when

ρ(w, ǫ) =
w2

|w| + ǫ
. (3.9)

In other words, r(x) is replaced with its smooth version rsm(x, ǫ), and p(u,w) with
psm(u,w, ǫ), where:

rsm(x, ǫ) =

√
n

∑

i=1

√
n

∑

j=1

N
∑

k=1

ρ
(

[MLPSi,jx]k , ǫ
)

, (3.10)

and

psm(u,w, ǫ) = c

N
∑

k=1

[ρ(uk − wk, ǫ) + uk − wk] . (3.11)

The function ρ(w, ǫ) is smooth and convex (in w), since

dρ(w)

dw
=

w|w| + 2wǫ

(|w|+ ǫ)2
and

d2ρ(w)

dw
=

2ǫ2

(|w| + ǫ)3
.

In all our simulations we solve the unconstrained smoothed optimization problem using L-
BFGS method [16] implemented in minFunc [15]. The minimization task runs approximately
200-300 iterations. For 256 × 256 images it takes around 1-2 minutes, and for 512 × 512
images 5-10 minutes. Our simulations ran on Intel i7 core with 16GB RAM. The code of
Algorithm 1 and parts of the code of the minFunc are implemented in C. The rest of the code
is implemented in Matlab.

4. Experimental Results.

4.1. Gaussian Denoising. For the Gaussian denoising task, the smooth unconstrained
optimization problem is formulated as:

min
x

1

2
‖x− y‖22 + µ · rsm(x, ǫr) + psm(0,x, ǫp) + psm(x,1, ǫp) . (4.1)

We run denoising experiments for noise levels σ = 25, 50, 75, and 100. Our scheme is
initialized with the output of the BM3D algorithm [4], i.e. the ordering Ω is calculated using
the BM3D output. The simulation parameters are summarized in tables 1 and 2. In table 3 we
bring quantitative results of these experiments. For each test we compare the PSNR achieved
by our scheme with the one referring to the initial images and show the improvement. Note
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Table 1: Common parameters for Gaussian denoising, debluring, and super-resolution tests.

δ γedge mmax gthr ǫr ǫp c
√
n B

106 1.5 20 3.5 10−1 10−3 1 7 121

Table 2: Gaussian denoising parameters per σ.

σ 25 50 75 100

µ× 102 2.5/n 5/n 8/n 12/n

that we do not bring SSIM measure of quality in this table, simply because the conclusions
these values lead to are the same as the ones drawn from the PSNR. Examples of qualitative
results are shown in Figure 6. For σ = 50 and higher, we get an improvement in almost
all experiments. For medium noise level, for example σ = 25, our scheme does not succeed
to improve the PSNR in most of the experiments, because the global patch ordering forces
self-similarity on the image patches, and therefore it tends to eliminate distinctive details. In
addition, our algorithm does not perform well on image areas that contain sensitive texture
or high amount of edges. Examples of such areas are: striped pants in the Barbara image and
friction ridges in the fingerprint image.

Along with the experiments described above we also performed the Gaussian denoising
experiment (with σ = 75) while replacing the L2 distance by the SSIM index. We calculated
the SSIM measure of small patches using the algorithm presented in [29] with two differences:
(i) we used

√
n×√

n Gaussian weighting function with σ = 1.5 for computing the local
statistics (mean, variance and covariance), instead of 11× 11 Gaussian used in [29]; (ii) the
local statistics of any pixel in the patch was calculated using only the pixels that belong
to the patch. For example, for computing the local statistics of the top-left pixel of the
patch, x1,1, we used 1/4 of the Gaussian, i.e. pixels xi,j, where 1 ≤ i, j ≤ √

n/2. In fact, full√
n×√

n Gaussian window was used only for calculating the statistics of the central pixel of
the patch. Unfortunately, this scheme led to performance deterioration when compared to the
L2 option. We believe that the reason for such behavior is this: SSIM ordering minimizes the
distance between patches in terms of their mean, variance and covariance, while our regularizer
penalizes for distance between pixels. Thus, in this case, the ordering and the regularizer are
not consistent with each other. Clearly, this opens up an opportunity to redefine the regularizer
to work in terms of the SSIM measure. We leave this as a future extension of our work.

4.2. Debluring. For the debluring task the smooth unconstrained optimization problem
is the following:

min
x

.
1

2
‖Hx− y‖22 + µ · rsm(x, ǫr) + psm(0,x, ǫp) + psm(x,1, ǫp), (4.2)

where H is a blur matrix.
We repeat the experiments reported in [12]. The blur parameters for each experiment,

PSF (point spread function) h(x1, x2) and σ2 of the noise, are summarized in table 4. The
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(a) Original House (b) Noisy with σ = 100
PSNR = 8.1dB

(c) The initial image (BM3D)
PSNR = 25.87dB

(d) Our output
PSNR = 26.63dB

(e) Original C.man

(f) Noisy with σ = 75
PSNR = 10.64dB

(g) The initial image (BM3D)
PSNR = 24.27dB

(h) Our output
PSNR = 24.95dB

Figure 6: Example of Gaussian denoising results for the images House and Cameraman with
σ = 100 and 75 respectively.
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Table 3: Gaussian denoising results. Results are averaged over five experiments.

σ / PSNR 25 / 20.17 50 / 14.15

BM3D Our Improvement BM3D Our Improvement

Cameraman 29.43 29.44 0.01 26.15 26.65 0.50

House 32.88 33.05 0.17 29.64 30.21 0.56

Peppers 30.23 30.38 0.15 26.70 27.09 0.39

Montage 32.32 32.59 0.28 27.79 28.57 0.78

Lena 32.06 31.96 -0.10 29.01 29.13 0.12

Barbara 30.68 30.39 -0.30 27.23 27.15 -0.08

Boats 29.87 29.66 -0.20 26.70 26.81 0.11

Fprint 27.71 27.15 -0.56 24.53 24.22 -0.32

Man 29.59 29.52 -0.07 26.79 26.89 0.11

Couple 29.69 29.68 -0.01 26.45 26.61 0.16

Hill 29.83 29.70 -0.13 27.15 27.22 0.07

Average 30.39 30.32 -0.07 27.10 27.32 0.22

σ / PSNR 75 / 10.63 100 / 8.13

BM3D Our Improvement BM3D Our Improvement

Cameraman 24.36 25.01 0.65 23.10 23.73 0.63

House 27.48 28.18 0.69 25.90 26.66 0.77

Peppers 24.71 25.13 0.42 23.27 23.68 0.41

Montage 25.39 26.36 0.97 23.75 24.71 0.97

Lena 27.19 27.41 0.21 25.85 26.14 0.29

Barbara 25.15 25.20 0.05 23.65 23.74 0.09

Boats 25.01 25.17 0.16 23.85 24.03 0.18

Fprint 22.82 22.64 -0.19 21.59 21.50 -0.10

Man 25.29 25.44 0.15 24.21 24.38 0.17

Couple 24.71 24.86 0.14 23.54 23.65 0.11

Hill 25.63 25.76 0.13 24.57 24.71 0.14

Average 25.25 25.56 0.31 23.93 24.27 0.33

PSFs are normalized so that
∑

h(i, j) = 1. Our scheme is initialized with the output of the
IDD-BM3D algorithm [12]. The simulation parameters are summarized in tables 1 and 5.
In table 6 we bring quantitative results of the deblurring experiments. For each we compare
the PSNR achieved by our scheme with one of the initial images and show the improvement.
Examples of qualitative results are shown in Figure 7. Our algorithm improved the image
quality in most experiments.

4.3. Super-Resolution. For the single image Super-Resolution (SR) task, our problem is:

min
x

1

2
‖RHx− y‖22 + µ · rsm(x, ǫr) + psm(0,x, ǫp) + psm(x,1, ǫp), (4.3)
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Table 4: Blur and noise variance used in each scenario.

Scenario PSF σ2

1 1/(1 + x2
1 + x2

2), x1, x2 = −7, . . . , 7 2

2 1/(1 + x2
1 + x2

2), x1, x2 = −7, . . . , 7 8

3 9× 9 uniform ≈ 0.3

4 [1 4 6 4 1]T [1 4 6 4 1]/256 49

5 Gaussian with std = 1.6 4

6 Gaussian with std = 0.4 64

Table 5: Debluring parameters per scenario

Scenario 1 2 3 4 5 6

µ× 105 9/n 24/n 1.6/n 140/n 8/n 500/n

where H blurs the high resolution image with a 7× 7 Gaussian kernel with standard deviation
1.6, and R downsamples the image by a scaling factor 3 in each pixel. In addition, Gaussian
noise with σ = 5 is added to the low resolution image.

We repeat the experiments reported in [11], including both noiseless and noisy cases.
Our scheme is initialized with output of NCSR algorithm [11]. The simulation parameters
are summarized in tables 1 and 7. In table 8 are shown the quantitative results of the SR
experiments. Qualitative results are shown in Figure 8. Our algorithm improves the image
quality almost in all experiments.

4.4. Poisson denoising. The Poisson negative log-likelihood is given by the following
formula:

fpoiss(x,y) =

N
∑

k=1

fk(xk) , (4.4)

where

fk(x) = −yk · log(x) + x .

Since fk(x) are not defined for negative x values, we extrapolate for x < ǫ using the second
order Taylor series:

f̃k(x, ǫ) =

{

fk(x) x ≥ ǫ ,

fk(ǫ) + f ′
k(ǫ)(x− ǫ) + 1

2f
′′
k (ǫ)(x− ǫ)2 x < ǫ .

Then we construct the extrapolated likelihood term, f̃poiss(x,y, ǫ), as a sum of the f̃k(xk, ǫ)
functions:

f̃poiss(x,y, ǫ) =
N
∑

k=1

f̃k(xk, ǫ). (4.5)
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Table 6: Debluring results. Results are averaged over five experiments.

Test Image BSNR
Input IDD-BM3D Our Improvement

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1

C.man 31.87 22.23 0.709 31.11 0.891 31.49 0.904 0.38 0.013

House 29.16 25.61 0.767 35.54 0.889 36.02 0.896 0.48 0.007

Lena 29.89 27.25 0.882 35.20 0.972 35.63 0.978 0.43 0.006

Barbara 30.81 23.34 0.795 30.97 0.970 31.09 0.974 0.12 0.003

Average 30.44 24.61 0.788 33.20 0.931 33.56 0.938 0.35 0.007

2

C.man 25.85 22.16 0.668 29.31 0.862 29.75 0.873 0.44 0.011

House 23.14 25.46 0.724 33.99 0.869 34.56 0.879 0.57 0.009

Lena 23.87 27.04 0.872 33.64 0.957 34.12 0.966 0.49 0.008

Barbara 24.79 23.25 0.789 27.20 0.926 27.29 0.930 0.08 0.004

Average 24.43 24.47 0.763 31.04 0.904 31.43 0.912 0.39 0.008

3

C.man 40.00 20.77 0.624 31.24 0.899 31.17 0.910 -0.08 0.011

House 40.00 24.11 0.697 36.98 0.918 37.57 0.928 0.60 0.009

Lena 40.00 25.84 0.829 34.74 0.968 35.14 0.973 0.40 0.004

Barbara 40.00 22.49 0.737 28.53 0.933 28.31 0.930 -0.23 -0.003

Average 40.00 23.30 0.722 32.87 0.930 33.05 0.935 0.18 0.006

4

C.man 18.53 24.63 0.609 28.63 0.858 29.21 0.873 0.58 0.014

House 15.99 28.08 0.631 33.85 0.868 34.41 0.879 0.57 0.011

Lena 16.47 28.81 0.903 33.76 0.957 34.29 0.967 0.52 0.010

Barbara 17.35 24.22 0.849 26.09 0.908 26.17 0.913 0.07 0.005

Average 17.17 26.44 0.748 30.58 0.898 31.02 0.908 0.44 0.010

5

C.man 29.19 23.36 0.734 27.69 0.858 28.58 0.873 0.88 0.015

House 26.61 27.82 0.794 33.55 0.874 34.17 0.883 0.62 0.009

Lena 27.18 29.16 0.928 34.00 0.968 34.38 0.973 0.38 0.005

Barbara 28.07 23.77 0.831 24.93 0.883 25.01 0.886 0.07 0.003

Average 27.77 26.03 0.822 30.04 0.896 30.53 0.904 0.49 0.008

6

C.man 17.76 29.83 0.703 34.69 0.932 34.89 0.939 0.21 0.007

House 15.15 30.00 0.682 37.08 0.920 36.74 0.911 -0.34 -0.010

Lena 15.52 30.02 0.911 36.34 0.972 36.32 0.972 -0.02 0.000

Barbara 16.59 29.78 0.939 35.22 0.979 35.21 0.980 -0.01 0.000

Average 16.36 29.91 0.809 35.83 0.951 35.79 0.951 -0.04 -0.001

Table 7: Super-resolution parameters per test

Test Noiseless Noisy

µ× 105 1/n 9/n
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(a) Original C.man (b) Blurred (test 5)
PSNR = 23.36

(c) The initial image
(IDD-BM3D)
PSNR = 27.69dB

(d) Our output
PSNR = 28.50dB

(e) Zoom of the initial image
(IDD-BM3D)

(f) Zoom of our output

Figure 7: Example of debluring results of test 5 for the Cameraman image.

Since the f̃k(x, ǫ) functions penalize the negative x values when yk > 0, the corresponding k-th
components of the psm(0,x, ǫp) function can be omitted. Therefore, the psm(0,x, ǫp) function

is reduced to the py=0
sm (u,w, ǫ) function:

py=0
sm (u,w, ǫ) = c

∑

k:yk=0

[ρ(uk − wk, ǫ) + uk − wk] . (4.6)

The difference between the psm(0,x, ǫp) and py=0
sm (u,w, ǫ) is that the py=0

sm (u,w, ǫ) summarizes
only over the components for which yk = 0. Thus, the unconstrained optimization problem
for the Poisson denoising is formulated by:

min
x

f̃poiss(x,y, ǫf ) + µ · rsm(x, ǫr) + py=0
sm (0,x, ǫp) + psm(x, xmax · 1, ǫp) , (4.7)
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(a) Original Butterfly (b) Low resolution (c) The initial image (NSCR)
PSNR = 28.11dB

(d) Our output
PSNR = 29.41dB

(e) Zoom of the initial image
(NSCR)

(f) Zoom of our output

Figure 8: Example of super-resolution (without noise) results for the Butterfly image.

where xmax is calculated using the peak value: xmax = peak/max pix, and max pix is the
maximum pixel value of the clean image.

We run experiments for several noise levels – peak = 4, 2, 1, 0.5, 0.2 and 0.1. Our scheme
is initialized with the output of the SPDA algorithm [7]. Since SPDA achieves better results
for low peaks using binning, we also use binning in the simulations with peaks: 0.5, 0.2 and
0.1. The simulation parameters are summarized in tables 9 and 10. In table 11 we show
quantitative results of the experiments. Examples of qualitative results are shown in Figure 9.
For the high peak values (peaks 4 and 2 without binning, and peak 0.5 with binning) our
algorithm improves the image quality almost in all experiments.
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(a) Original House (b) Noisy with peak = 4
PSNR = 8.40dB

(c) Initialization (SPDA)
PSNR = 25.96dB

(d) Our output
PSNR = 27.00dB

(e) Original Flag

(f) Noisy with peak = 2
PSNR = 5.90dB

(g) Initialization (SPDA)
PSNR = 25.68dB

(h) Our output
PSNR = 26.47dB

Figure 9: Example of Poisson denoising results for the images House and Flag with peak = 4
and 2 respectively.
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Table 8: Super-Resolution results. Results are averaged over five noise realizations.

Noiseless

Image
NCSR Our Improvement

PSNR SSIM PSNR SSIM PSNR SSIM

Butterfly 28.11 0.916 29.43 0.932 1.32 0.017

Flower 29.51 0.856 29.82 0.865 0.31 0.009

Girl 33.36 0.827 33.36 0.824 0.00 -0.003

Parthenon 27.18 0.751 25.39 0.757 0.21 0.006

Parrot 30.52 0.914 31.02 0.921 0.50 0.006

Raccoon 29.28 0.771 29.41 0.766 0.13 -0.004

Bike 24.75 0.803 25.15 0.815 0.40 0.011

Hat 31.25 0.870 31.58 0.877 0.33 0.007

Plants 34.00 0.918 34.60 0.924 0.61 0.006

Average 29.81 0.847 30.23 0.853 0.42 0.006

Noisy

Image
NCSR Our Improvement

PSNR SSIM PSNR SSIM PSNR SSIM

Butterfly 26.87 0.888 28.00 0.903 1.13 0.15

Flower 28.08 0.793 28.44 0.807 0.36 0.14

Girl 32.02 0.764 32.10 0.767 0.07 0.004

Parthenon 26.38 0.699 26.63 0.710 0.25 0.010

Parrot 29.51 0.877 29.86 0.879 0.35 0.003

Raccoon 28.02 0.681 28.14 0.689 0.12 0.008

Bike 23.79 0.737 24.28 0.760 0.49 0.023

Hat 29.96 0.824 30.37 0.830 0.41 0.006

Plants 31.74 0.859 32.22 0.866 0.49 0.006

Average 28.49 0.791 28.89 0.801 0.41 0.010

5. Discussion.

5.1. Relation to the work reported in [1,2]. There is an interesting connection between
the approach presented in this paper and the work reported in [1,2], which introduced the idea
of patch-ordering. This connection is easiest to explain in the context of Gaussian denoising.
If in our objective function in Equation (3.7) we replace the robust statistics (L1) regular-
ization with a Euclidean norm (L2), remove the penalties p(xmin · 1,x) and p(x, xmax · 1),
remove the weighting matrix, and do not employ subimage accumulation, we get the following
minimization problem

min
x

1

2
‖x− y‖22 +

µ

2
‖LPx‖22 , (5.1)
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Table 9: Common Poisson denoising parameters.

Bin δ mmax ǫr ǫp ǫf c
√
n B

no 106 5 10−1 10−3 10−3 1 9 201

3× 3 106 5 10−1 10−3 10−3 1 7 101

Table 10: Poisson denoising parameters per peak

Peak 4 2 1 0.5 0.2 0.1

gthr 20 N/A N/A 10 N/A N/A

γedge 2.5 1 1 2.5 1 1

µ 0.6/n 0.9/n 1.35/n 0.55/n 0.95/n 1.15/n

which can be rewritten as

min
x

1

2
‖Px− Py‖22 +

µ

2
‖LPx‖22 , (5.2)

since P is unitary. The solution of this problem is

x̂ = P−1
(

I + µLTL
)−1

Py . (5.3)

In other words,

x̂ = P−1HPy , (5.4)

whereH =
(

I + µLTL
)−1

is a circulant matrix that represents a convolution filter. Therefore,
the image denoising task obtained by the objective function in (5.1) reduces to applying
permutation P on the noisy image y, smoothing the permuted signal Py with a convolution
filter H, and obtaining the result by applying the inverse permutation P−1. This solution is
similar to the basic idea of the scheme in [1], as formulated in Equation (2) in part II.

Now, lets add subimage accumulation in order to get closer to the actual scheme used in
both our work and [1]. The minimization problem in (5.1) transforms into

min
x

1

2
‖x− y‖22 +

µ

2n

√
n

∑

i=1

√
n

∑

j=1

‖LPSi,jx‖22 . (5.5)

If we pad the image by a circular repetition, the Si,j matrices are unitary and circulant. In
this case the objective function in Equation (5.5) can be rewritten as the sum of contributions
of all subimages,

min
x

1

n

√
n

∑

i=1

√
n

∑

j=1

(

1

2
‖PSi,j(x− y)‖22 +

µ

2
‖LPSi,jx‖22

)

, (5.6)
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Table 11: Poisson denoising results. Results are averaged over five experiments. For each
method, the first row presents the reconstruction PSNR, and the second row shows the SSIM
measure.

Peak Method Bridge Camera Flag House Peppers Saturn Swoosh Average

4

SPDA
20.55 21.87 26.75 26.02 22.02 31.03 32.67 25.85

0.367 0.673 0.883 0.753 0.699 0.853 0.960 0.741

Our
20.92 22.84 28.35 27.15 23.68 31.43 33.71 26.87

0.398 0.664 0.905 0.783 0.726 0.905 0.969 0.764

Impr.
0.37 0.97 1.60 1.13 1.66 0.40 1.03 1.02

0.031 -0.009 0.023 0.031 0.027 0.052 0.009 0.023

2

SPDA
21.14 21.49 25.41 25.07 21.17 29.36 29.24 24.55

0.352 0.651 0.864 0.716 0.662 0.820 0.893 0.708

Our
20.22 21.93 26.30 25.63 21.77 29.41 30.15 25.06

0.362 0.605 0.894 0.749 0.684 0.871 0.930 0.728

Impr.
0.08 0.43 0.89 0.56 0.60 0.05 0.91 0.50

0.010 -0.045 0.029 0.033 0.022 0.050 0.038 0.020

1

SPDA
19.21 20.17 22.69 22.62 19.94 27.02 26.41 22.58

0.304 0.587 0.821 0.632 0.609 0.778 0.823 0.650

Our
19.24 20.46 22.36 23.20 19.99 26.93 27.37 22.79

0.315 0.537 0.819 0.677 0.621 0.826 0.880 0.668

Impr.
0.03 0.28 -0.33 0.57 0.04 -0.09 0.96 0.21

0.011 -0.049 -0.001 0.045 0.013 0.048 0.056 0.018

0.5

SPDAbin
18.58 18.94 19.39 21.23 18.60 25.89 26.56 21.31

0.273 0.548 0.691 0.627 0.543 0.756 0.910 0.621

Our + bin
18.69 19.68 19.63 21.72 18.92 26.37 27.55 21.79

0.285 0.558 0.703 0.656 0.571 0.835 0.933 0.649

Impr.
0.10 0.74 0.24 0.49 0.32 0.48 0.98 0.48

0.012 0.010 0.012 0.030 0.028 0.079 0.023 0.028

0.2

SPDAbin
17.88 17.97 18.60 19.59 17.57 24.03 23.70 19.91

0.253 0.478 0.670 0.521 0.492 0.691 0.787 0.556

Our + bin
17.83 18.29 18.58 20.16 17.56 24.09 24.88 20.20

0.250 0.500 0.673 0.607 0.523 0.813 0.893 0.609

Impr.
-0.05 0.31 -0.02 0.58 -0.01 0.05 1.17 0.29

-0.003 0.023 0.003 0.086 0.031 0.122 0.106 0.053

0.1

SPDAbin
17.04 16.80 16.22 18.78 16.29 21.94 21.99 18.44

0.222 0.493 0.578 0.567 0.477 0.656 0.827 0.546

Our + bin
17.10 17.16 16.03 18.91 16.28 21.72 22.38 18.51

0.227 0.462 0.592 0.590 0.491 0.787 0.874 0.575

Impr.
0.06 0.36 -0.19 0.13 -0.01 -0.11 0.38 0.07

0.005 -0.030 0.014 0.024 0.014 0.131 0.047 0.029
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where the contribution of the subimage Si,j is

1

2
‖PSi,j(x− y)‖22 +

µ

2
‖LPSi,jx‖22 . (5.7)

The approach taken in this work is to optimize this penalty directly (if we would have chosen
to use the L2 as a regularizer). In contrast, one could apply a sub-optimal minimization
strategy that minimizes the contribution of each subimage independently and averages the
obtained values of x̂i,j. In fact, this is closely related to the approach taken in [1]. The result
of this sub-optimal approach will be

x̂sub optimal =
1

n

√
n

∑

i=1

√
n

∑

j=1

x̂i,j =
1

n

√
n

∑

i=1

√
n

∑

j=1

S−1
i,j P

−1
(

I + µLTL
)−1

PSi,jy , (5.8)

where x̂i,j minimizes contribution of the subimage Si,j

x̂i,j = S−1
i,j P

−1
(

I + µLTL
)−1

PSi,jy . (5.9)

Equation (5.8) can be rewritten as

x̂sub optimal =
1

n

√
n

∑

i=1

√
n

∑

j=1

S−1
i,j P

−1HPSi,jy , (5.10)

whereH =
(

I + µLTL
)−1

is the convolution filter we have seen before. Therefore, the formula
in (5.10) reduces to the following operations: (i) extract all possible subimages using the Si,j

operators and apply permutation P on each subimage, (ii) smooth the permuted signals
with convolutional filter H, (iii) apply inverse permutation P−1 on the results, (iv) plug
each subimage into its original place and average the results. To conclude, the formula in
Equation (5.10) is reminiscent of the denoising strategy presented in Equation (7) of part II
in [1]. We should stress, however, that the work in [1] is not a special case of the method
presented in this paper, due to various additional enhancements used in [1], which are not
exploited in this work. These include learning the linear filter, cycle-spinning over the choice
of the permutation, and more.

The work reported in [2], as well as the presented work here, constructs an objective
function with a permutation-based regularization. However, the scheme in [2] uses multiscale
decomposition within the regularization, which makes the algorithm quite involved and com-
putationally expensive. As a consequence, our method is simpler than the one proposed in [2],
while remaining very effective. In Table 12 we compare the performance of our scheme with
the algorithms presented in [1,2] for the Gaussian denoising problem. In Table 13 we bring a
comparison with [2] for image debluring. Tables 12 and 13 show that our method outperforms
the scheme in [1], and achieves results that are comparable to the ones reported in [2].

5.2. Choosing the TSP solver. In section 2 we have shown artifact magnification effect
when using a deterministic TSP solver. In this section we revisit this phenomena in order to
better explain and demonstrate it. Recall that our algorithm starts with some reconstruction
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Table 12: A comparison between the results of the proposed scheme for Gaussian denoising
and the ones reported in [1] and [2]. The results of the new method are averaged over five
experiments.

σ / PSNR 25 / 20.17 50 / 14.15

[1] [2] Ours [1] [2] Ours

Lena 31.80 32.26 31.96 28.96 29.30 29.13

Barbara 30.47 30.90 30.39 27.35 27.78 27.15

Boats 29.70 29.88 29.66 26.69 26.91 26.81

Fprint 27.34 27.32 27.15 24.13 24.06 24.22

House 32.54 32.37 33.05 29.64 29.56 30.21

Peppers 30.01 30.33 30.38 26.75 26.93 27.09

Average 30.31 30.51 30.43 27.25 27.42 27.44

σ / PSNR 75 / 10.63 100 / 8.13

[1] [2] Ours [1] [2] Ours

Lena 27.22 27.50 27.41 26.01 26.36 26.14

Barbara 25.42 25.82 25.20 24.07 24.46 23.74

Boats 24.99 25.15 25.17 23.90 24.04 24.03

Fprint 22.47 22.47 22.64 21.44 21.53 21.50

House 27.79 27.37 28.18 26.30 25.98 26.66

Peppers 24.72 24.98 25.13 23.21 23.56 23.68

Average 25.44 25.55 25.62 24.16 24.32 24.29

Table 13: A comparison between the results of the proposed scheme for image debluring and
the ones reported in [2]. Results of our scheme are averaged over five experiments.

Image Method Test 1 Test 2 Test 3 Test 4 Tests 5 Test 6

Lena
[2] 8.56 6.92 8.86 5.52 4.95 6.91

ours 8.38 7.08 9.30 5.48 5.22 6.30

Barbara
[2] 8.06 4.57 6.01 2.20 1.41 6.06

ours 7.75 4.04 5.82 1.95 1.24 5.43

House
[2] 10.44 8.79 13.11 6.38 5.95 7.56

ours 10.41 9.10 13.46 6.33 6.35 6.74

C.man
[2] 9.24 7.38 10.21 4.34 4.68 5.26

ours 9.26 7.59 10.40 4.58 5.22 5.06

Average
[2] 9.08 6.92 9.55 4.61 4.25 6.45

ours 8.95 6.96 9.75 4.58 4.50 5.88
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(a) The initial image
(IDD-BM3D)
PSNR = 28.63dB

(b) Output with Lin-Kernighan
PSNR = 28.01dB

(c) Output with Algorithm 1
PSNR = 29.02dB

Figure 10: The output of our scheme with the Lin-Kernighan heuristics or Algorithm 1 for
approximating the TSP problem. The reconstruction scheme is applied for test 4 of the image
debluring task, and initialized with the IDD-BM3D result.

result, which is naturally not perfect and thus may contain artifacts. Our regularization relies
on a permutation of patches from this image. Thus, a permutation obtained by a more exact
TSP solver is in fact creating and magnifying artifacts, since it will assign patches with the
same artifacts as neighbors in our ordering. If, on the other hand, one uses the more crude
(and somewhat random) ordering that we propose, such similar patches will be separated in
the ordering, thus leading to a smoothing out effect of some of these artifacts. In section 2
Figure 1 is showing an example of artifact magnification in the Gaussian denoising test.
To complete this presentation, we bring here examples of this effect in other applications.
In Figure 10 we compare between the outputs of the proposed method with Lin-Kernighan
heuristics and Algorithm 1 for the debluring task. In Figures 11 and 12 we do the same
comparison for the super-resolution and Poisson denoising tasks respectively. Our conclusion
from these experiments is that a more exact TSP solver magnifies artifacts in all applications.

5.3. Patch Reordering for Better Sparsification. In order to better understand the role
of the permutation in the proposed algorithm, we compare the tail distribution functions
of the Laplacian result with our ordering versus a zig-zag scan. The Laplacian result are
calculated by computing the vector l = MLPx, which is the essence of the regularization
term we propose. Using all images listed in Table 3 (referring to the Gaussian denoising
test) we compute the cumulative distribution function, CDF (k) = Pr(|li| ≤ k) by applying a
cumulative sum on the histogram of the components of |l|. For comparison we calculate this
CDF (k) while replacing our P with the one obtained by a horizontal zig-zag scan ordering.
A comparison of the tail distribution function, Pr(|li| > k) = 1− CDF (k) for zig-zag scan
and our permutation is shown in Figure 13. As can be seen, our ordering leads to better
sparsification of the Laplacian result, when applied to clean images. More specifically, the
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(a) The initial image (NSCR)
PSNR = 26.87dB

(b) Output with Lin-Kernighan
PSNR = 27.86dB

(c) Output with Algorithm 1
PSNR = 28.00dB

Figure 11: The output of our scheme with the Lin-Kernighan heuristics or Algorithm 1 for
approximating the TSP problem. The reconstruction scheme is applied for super-resolution
task (with noise σ = 5), and initialized with the NSCR result.

(a) The initial image (SPDA)
PSNR = 25.96dB

(b) Output with Lin-Kernighan
PSNR = 22.76dB

(c) Output with Algorithm 1
PSNR = 27.00dB

Figure 12: The output of our scheme with the Lin-Kernighan heuristics or Algorithm 1 for
approximating the TSP problem. The reconstruction scheme is applied for Poisson denoising
task with peak = 4, and initialized with the SPDA result.

probability Pr(|li| > k) for the zig-zag scan exhibits a tendency to have more non-zeros, and
heavier tail, i.e. bigger values.

5.4. Poorly Oredered Pixels. As already mentioned in Section 2, due to greedy nature of
the NN heuristics in Algorithm 1, the last part of the reordered image is not as smooth as the
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Figure 13: A comparison of the tail distribution functions of the Laplacian result with our
ordering versus the zig-zag scan

rest of the ordering. Nevertheless, the reconstruction results of our algorithm, as shown in the
previous section, seem to be of good quality, which may be puzzling. We therefore performed
several experiments to better understand this behavior, and here we propose an explanation
for this phenomenon.

In order to avoid side effects related to the initialization, we start our experiment by
computing an oracle-permutation, i.e., applying Algorithm 1 on the original clean image
(Lena)1. First we plot a graph of the absolute value of the 1D gradient of the reordered
image. As can be seen in Figure 14a, approximately 15% of the ordering towards the end is
not smooth, just as expected. The location of these pixels in the image is shown in Figure 15b,
and as can be seen, these pixels are mostly in edge and texture areas.

We now perform a Gaussian denoising experiment with σ = 75 (µ = 0.13), and our interest
is in seeing how the MSE of the output pixels depends on their location in the ordering. We
divide the permuted image into 50 groups of pixels with 50% overlap between them, and plot
a graph of the average MSE versus location in the ordering, where the x-axis corresponds to
the center of each group and the y-axis is the MSE for the groups. This graph is shown in

1We repeated the following line of experiments for several images and the conclusions remain the same.
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Figure 14b. Indeed, it is clear that the MSE grows as we tend towards the end of the ordering,
implying that the last pixels is ill-treated. However, even for these seemly poorly-served pixels,
the obtained MSE is significantly lower than the noise level – in this test, the MSE of the last
group is 4.8e−3, where the noise level is (σ/255)2 = 86.5e−3. This suggests that even though
the last ordered pixels seem to have poor choice of neighbors, their treatment is still rather
effective. So, how come this happens?

The answer resides in the sub-image accumulation proposed in our regularization scheme.
If a pixel falls in the last part of the ordering, as shown above, it does not imply that this
pixel may not be sufficiently close to its neighbors in the patch-ordering, because the poor
neighbor assignments are true only in terms of the ordering applied to the central pixels of the
patches. The very same poorly-positioned pixels are highly likely to be assigned with effective
neighbors in other orderings, as each pixel participates in n such optional permutations. In
order to demonstrate this, we check how many pixels fall in the last 15% of all n orderings.
For the image Lena this count drops to 3.6% of the pixels, and the location of these pixels is
shown in Figure 15c. These pixels are characterized by the fact that they have no relevant
neighbors in the image, regardless of the permutation strategy adopted. As such, they are
expected to be ill-treated in the restoration procedure.

5.5. Initialization Strategy. The prime drawback of the proposed method is that it relies
on a good initialization. In order to demonstrate this we run a Gaussian denoising experiment
on Lena with σ = 50 and without BM3D initialization. In this experiment we apply seven
rounds of minimization of the penalty function, each followed by a construction of the per-
mutation. The first iteration uses the noisy image itself for building the permutation, while
the next iterations rely on the temporary output. We use µ = 0.45 for the first iteration,
µ = 0.12 for the second, and µ = 0.08 for the rest. As for the remaining parameters, we used
the values listed in table 1. Qualitative and quantitative results of this experiment are shown
in Figure 16. Clearly, the result falls short compared to BM3D and other state-of-the-art
denoising methods. Thus, our algorithm relies heavily on a good-quality initialization, and
further work is required for seeking alternatives to this initialization strategy.

6. Conclusion. In this paper we have extended the work in [1], which introduced the
concept of patch ordering for handling image denoising and inpainting. Our work exploits the
existing interrelation between image patches by building a MAP estimator with permutation-
based smoothness-promoting prior on the objective image. The presented scheme is applicable
to diverse set of inverse problems in image processing, and in this work we demonstrate its
effectiveness for Poisson image denoising, Gaussian image denoising, image deblurring and
single image super resolution. In most these tests, our method improved the image quality
comparing to the initial image, in some experiments showing an improvement that goes beyong
1dB.

Note that throughout the experiments reported above, we have set the patch ordering
only once, based on the initialization image, and then restored a better outcome using our
algorithm. In principle, one should iterate this process, by updating the ordering based on
the improved image, and then minimizing the MAP functional again. Our initial tests suggest
that this is not effective if we are using the same ordering algorithm as described in Section 2.
In our future work we plan to investigate alternative ordering that would lead to an overall
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Figure 14: (a) The absolute value of the 1D gradient of the reordered Lena image; (b) The
MSE of Gaussian denoising of Lena with σ = 75. Last 15% pixels marked with red line.

(a) The original image (b) Last 15% of the ordering
marked Red

(c) Pixels that fall in last 15%
of all orderings marked Red

Figure 15: (a) The original image Lena; (b) The last 15% of ordering marked Red; (c) Pixels
that fall in the last 15% of all orderings (3.6% in this experiment) marked Red.
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(a) Noisy Lena

PSNR = 14.16dB
(b) Reconstructed: 1’st iteration

PSNR = 24.55dB

(c) Reconstructed: 7’th iteration
PSNR = 27.62dB

(d) BM3D result
PSNR = 29.05dB

Figure 16: Example of Gaussian denoising results with noisy initialization for the Lena image
with σ = 50.

improvement. In a wider context, we are also seeking ways to depart from the greedy ordering
method depicted in Algorithm 1 in various ways, such that the final outcome is further
improved.

Appendix. L-BFGS.

This appendix provides brief description of the L-BFGS algorithm taken from [30]. For
this section we denote by f(x) a smooth function of x, where x ∈ R

n is a real vector of
length n.

L-BFGS is a limited memory quasi-Newton method, which approximates the inverse of the
Hessian matrix instead of calculating the exact one. In additional, it stores only m vectors of
length n (m ≪ n) that capture curvature information from recent iterations, instead of saving
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the full n× n approximation of the Hessian. Each step of L-BFGS is given by

pk = −Hk∇f(xk)

xk+1 = xk + αkpk, k = 0, 1, 2 . . . , (A.1)

where xk is x at iteration k, αk is the step length, and Hk is the approximation of the inverse
of the Hessian of f(x) at xk (i.e. H−1

k is the approximated Hessian). The Hk matrix is
updated at every iteration using the formula

Hk+1 = V T
k HkVk + ρksks

T
k , (A.2)

where

ρk =
1

yT
k sx

, Vk = I − ρkyks
T
k , (A.3)

and
sx = xk+1 − xx, yk = ∇f(xk+1)−∇f(xk) . (A.4)

Instead of maintaining a full Hk matrix of size n× n, L-BFGS stores it implicitly, by stor-
ing m vector pairs {si,yi}. Given an initial inverse Hessian approximation H0

k , and m vector
pairs {si,yi}, i = k −m, ..., k − 1, the Hk matrix can be found by repeated application of
Equation (A.2)

Hk =
(

V T
k−1 . . . V

T
k−m

)

H0
k (Vk−m . . . Vk−1)

+ ρk−m

(

V T
k−1 . . . V

T
k−m+1

)

sk−msTk−m (Vk−m+1 . . . Vk−1)

+ ρk−m

(

V T
k−1 . . . V

T
k−m+2

)

sk−m+1s
T
k−m+1 (Vk−m+2 . . . Vk−1)

+ . . .

+ ρk−1sk−1s
T
k−1 . (A.5)

Therefore, the product Hk∇f(xk) can be obtained by a recursive algorithm that involves
vector multiplications and summations (Algorithm 2).

After each step of L-BFGS, the oldest vector pair {sk−m,yk−m} is deleted from memory
and replaced by the new pair {sk,yk} obtained using Equation (A.4). At each step of the
algorithm, αk is chosen to satisfy the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
Tpk (A.6)

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk .

L-BFGS is summarized in Algorithm 3. In our simulations we used minFunc implementation
[16] with m = 8. Example of a typical L-BFGS convergence graph is shown in Figure 17.
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Algorithm: L-BFGS two loop recursion

Parameters: m - number of stored vectors, H0
k - initial inverse Hessian

approximation, ∇f(xk) - gradient of f(x) at point xk.
Initialization: q = ∇f(xk)
for i = k − 1, k − 2, . . . , k −m do

αi = ρis
T
i q;

q = q − αiyi;

end

for i = k −m,k −m+ 1, . . . , k − 1 do

β = ρiy
T
i r;

r = r+ si(αi − β);

end

Output: Hk∇f(xk) = r.

Algorithm 2: L-BFGS two-loop recursion

Algorithm: L-BFGS

Parameters: m - number of stored vectors.
Initialization: Choose starting point x0, and set k = 0.
repeat

- Choose H0
k (for example H0

k = I);
- Compute pk = −Hk∇f(xk) using Algorithm 2;
- Compute xk+1 = xk + αkpk, where αk satisfies the Wolfe conditions in
Equation (A.6);

if k > m then

- Discard the vector pair {sk−m,yk−m} from storage;
end

- Update: yk = ∇f(xk+1)−∇f(xk), k = k + 1, and sk = xk+1 − xk;

until convergense;
Output: xk is a solution of the minimization problem.

Algorithm 3: L-BFGS
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Figure 17: Example of L-BFGS convergence: f(xk) vs. iteration number during Gaussian
denoising of Peppers image with σ = 25.
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