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Brief Introduction

In this talk we revisit some of the
MOST BASIC IDEAS IN IMAGE PROCESSING

| will try to convince you that even there,
core concepts that seem fixed and settled
MIGHT BE QUESTIONED
AND APPROACHED IN A NEW WAY



Part |

2D — 1D Conversion



Here is an Image ...

J An image is a 2D signal.
 As such, there is no sense of causality between the pixels.
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We are Interested in Image Processing

In this talk, we focus on the need to process such images,
performing tasks such as :

Noise removal.

Filling-in missing values.

Restoration (deblurring, super-resolution).
Reconstruction (e.g. Tomography).
Dithering.

Compression.
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2D — 1D Conversion ?

Often times, a proposed solution to any of the above tasks
starts by 2D to 1D conversion :

After such a conversion, the image is treated as a regular 1D
signal, with implied sampled order and causality.



2D — 1D : How to Convert ?

 There are many ways to convert an image into a 1D signal. Two
very common methods are:

Hilbert-

1 Note that both are “space-filling curves” and
image-independent, but we need not restrict
ourselves to these types of 2D —1D conversions.



2D — 1D : Why Convert ?

The scientific literature on image processing is loaded with
such conversions, and the reasons are many:

d Because serializing the signal helps later treatment.
(d Because (imposed) causality can simplify things.

d Because this enables us to borrow ideas from 1D signal processing (e.g.
Kalman filter, recursive filters, adaptive filters, prediction, ...).

1 Because of memory considerations.

1 Because of run-time considerations.

Note that it is never claimed that 2D — 1D would lead to
Improved performance in terms of output quality



2D — 1D Processing Examples

DPCM Image Compression

h IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-23, NO. 4, JuLY 1977

Kalman Filtering in Two Dimensions

JOHN W. WOODS, MEMBER, IEEE, AND CLARK H. RADEWAN, MEMBER, IEEE

Abstract—The Kalman filtering method is extended to two di- We start with a brief review of the concept of state and

€] Filtering f
. e f"eﬂﬁionﬁ-“e resulting computational load is found to be excessive. jts role in 1-D Kalman filtering. Then we define the 2-D
D e n O I S I n T'wo new approximations are then introduced. One, called the strip Kalman scalar and vector filters, and we point out their
processor, updates a line segment at a time; the other, called the e < SETTted 7
undesirable computational properties in that the state

reduced update Kalman filter, is a scalar processor, The reduced
update Kalman filter is shown to be optimum in that it minimizes vector grows with the Imagce sizc. Next, we present the

the post update mean-square error (mse) under the constraint of  Kalman strip filter and the reduced update Kalman filter.
updating only the nearby previously processed neighbors. There-  pinally, we present examplee of application of the filters
sulting filter is a general two-dimensional recursive filter. 2

in a simulated data environment.

While this 2D — 1D trend is an “old-fashion” trick, it is still very
much active and popular in industry and academic work.



2D — 1D :Islta Good ldea ?

1 If anyone proposes a solution to an image processing
problem that starts by a 2D — 1D conversion, we should
immediately think:

SUBOPTIMAL SOLUTION 1!

 The reasons for this belief are obvious:
= Loss of neighborhood relations.
=  Unnatural causality.

1 So, we conclude that this approach is not a good idea !!

ARE WE SURE ?
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Part i

Our Core ldea
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Lets Propose a New 2D — 1D Conversion

How about permuting the pixels into a 1D signal by a

SORT OPERATION ?

We sort b 2D—1D -

the gray-values

but also keep the
[X,y] location of %0 ! 2 3 4 5 6 Z
each x19
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New 2D — 1D Conversion : Smoothness

4 x10°
 Given any 2D — 1D conversion based on a permutation P, we

may ask how smooth is the resulting 1D signal obtained :

\}
TV{f P} = Z|fp(k) k= 1)
k=2

 The sort-ordering leads to the smallest possible TV measure, i.e.
it is the smoothest possible.

1 Who cares? We all do, as we will see hereafter.
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New 2D — 1D Conversion : An Example
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This means that simple
smoothing of the 1D signal
is likely to lead to a very
good denoising

Find the Sort
Permutation
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New 2D — 1D Conversion : An Example
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This is Just Great!

This denoising result we just got is nothing short of amazing,
and it is far better than any known method

Is it real? Is it fair?

Neighborhood wise, note that this result is
even better than treating the image
A in native 2D because ..

W MM u I k L) l

)
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This is Just Great!

All this is wonderful ... but ...

Given a corrupted image (noisy,
blurred, missing pixels, ...)

WE CANNOT KNOW THE
SORTING PERMUTATION OPERATOR

So the above result is impractical.
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This is Just Great!

All this is wonderful ... but ...

Given a corrupted image (noi-y,
blurred, mi "~

So, Are
We Stuck ?

’ .

So the above result is impractical.
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We Need an Alternative for Constructing P

Our Goal — Sorting the pixels based
on their TRUE gray value

The problem — the given data is
corrupted and thus pixel
gray-values are not to be trusted
The idea: Assign a feature vector x to
each pixel, to enrich its description
Our approach: Every pixel will be
“represented” by the patch around it
We will design P based on
these feature vectors

19



An Alternative for Constructing P

We will construct P by the

following stages:

1. Break the image into all its
overlapping patches.

2. Each patch represents the
pixel in its center.

3. Find the SHORTEST PATH
passing through the
feature vectors (TSP).

4. This ordering induces the
pixel ordering P.

20



Traveling Salesman Problem (TSP)

n [ Patches x; of size y/n X 4/n are

R points in R".
 In the Traveling Salesman

e Problem we seek the shortest
g path that visits every point.
TSP in general is too hard to
-------------- solve, and thus approximation
algorithms are used.

>

.

s d
\

min ) [l =P |
1=2

21



The Proposed Alternative : A Closer Look

Observation 1: Do we Get P ?

If two pixels have the same (or
close) gray value, this does not
mean that their patches are alike.
However ...

If several patches are alike, their
corresponding centers are likely
to be close-by in gray-value

Thus, the proposed ordering
will not reproduce the P, but
at least get close to it,
preserving some of the order.

o AN

M 22



The Proposed Alternative : A Closer Look

Observation 2: “Shortest-Path” ? " TSP Greedy Approximation:
o Initialize with an arbitrary

O In the shortest-path (and TSP), the path index j;

visits every point once, which aligns o Initialize the set of chosen

with our desire to permute the pixels indices to Q(1)={j};

and never replicate them. oRepeat k=1:1:N-1 times:

* Find X; — the nearest neighbor

O If the patch-size is reduced to 1X1 to Xqq Such that ig€Q;

pixels, and the process is applied on e Set Q(k+1)={i};

the original (true) image, the o Result: the set Q holds the

obtained ordering is exactly P. ;

N proposed ordering. v

N I\
min D 165(0) = fp(k = )| G min > xP — x|
k=2 =2
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The Proposed Alternative : A Closer Look

Observation 3: Corrupted Data ?

O If we stick to patches of size 1X1 pixels,
we will simply sort the pixels in the
degraded image — this is not good nor
informative for anything.

1 The chosen approach has a robustness
w.r.t. the degradation, as we rely on
patches instead of individual pixels.

N
Argmin > [IxP = xP_i|
=2

N The order is similar, not
~ Argminz”iip -z | necessarily the
P = distances themselves

24



Part Il

Image Denoising
& Inpainting

25



The Core Scheme

Corrupted Image &

Process the
/ | 1D signal
S| ' g
Extract

X = {&;,%;, ..., XN} Extract all
patches
the

Approximate ‘ induced
ordering

the TSP
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Why Should This Work
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The “Simple Smoothing” We Do

Simple We can do
. smoothing but better by a
Training works fine training phase

image

| ; ’— Apply the +
8 9. permutation —3
Orlglnal imé{;e ‘ on the plXGlS - t

Compute Apply the Apply
the TSP ®) permutation =) a 1D
permutation on the pixels filter h

Naturally, this is done off-line and on other images

28



Filtering — A Further Improvement

Cluster the patches to smooth and textured sets, and train
a filter per each separately _

The results we show
hereafter were obtained by:
(i) Cycle-spinning

(i) Sub-image averaging
(iii) Two iterations

(iv) Learning the filter, and
(v) Switched smoothing.

29



Denoising Results Using Patch-Reordering

o/PSNR [dB]

10/28.14 25/20.18 50/14.16

K-SVD
1t iteration 35.33 31.58 28.54
2"d jteration 35.41 31.81 29.00
Barbara K-SVD 34.41 29.53 25.40
1st iteration 34.48 30.46 27.17
2"d jteration 34.46 30.54 27.45
K-SVD 36.00 32.12 28.15
1st iteration 35.58 32.48 ASRCYS
2"d jteration 35.94 32.65 29.93

Bottom line: (1) This idea works very well;
(2) It is especially competitive for high noise levels; and
(3) A second iteration almost always pays off.

30



What About Inpainting?

0.8 of the pixels are missing

o Order these
e Extract all (with patches as before
- : ‘ overlaps) patches ‘ distance uses
Reconstruction: 29.71dB* ‘
e Y
_ f—"\ Take the center-

row — it represents
a permutation of
the image pixels to
a regular function

Fill the missing values
in a simple (cubic
interpolation) way

‘ * This result is obtained with (i) cycle-spinning,
(ii) sub-image averaging, and (iii) two iterations.

31



The Rationale

issing

a

Er

i

0.8 of the pixels are m

Ordering
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Inpainting Results — Examples

PSNR= 6.65 dB PSNR=30.25 dB PSNR=29.97 dB PSNR=30.25 dB PSNR=31. ‘)(w (IB

e P ER R E

PSNR= 5.84 dB PS\R~ 29.21 dB P\\R— 29.69 dB P\\R— 29.03 dB PSNR= 32.71 dB

Given data Bi-Cubic Sparse 1st iteration 3rd jteration
80% missing  interpolation representation of the of the
pixels recovery proposed alg. proposed alg.
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Inpainting Results

Reconstruction
results from 80%
missing pixels
using various
methods:

Barbara

Method PSNR [dB]
Bi-Cubic 30.25
DCT + OMP 29.97
Proposed (1%t iter.) 30.25
Proposed (2" iter.) 31.80
Proposed (3" iter.) 31.96
Bi-Cubic 22.88
DCT + OMP 27.15
Proposed (1%t iter.) 27.56
Proposed (2 iter.) 29.34
Proposed (3" iter.) 29.71
Bi-Cubic 29.21
DCT + OMP 29.69
Proposed (1%t iter.) ASHOK
Proposed (2" iter.) 32.10
Proposed (3" iter.) 32.71

Bottom line:

(1) This idea works
very well;

(2) Itis operating much
better than the
classic sparse-rep.
approach; and

(3) Using more
iterations always
pays off, and
substantially so.
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Part IV

Image Compression

35



Facial Image Compression

The problem: Compressing photo-ID images.

General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

By adapting to the image-content (e.g. pixel
ordering), better results could be obtained.

For our technique to operate well, we find the
best common pixel-ordering fitting a training
set of facial images.

Our pixel ordering is therefore designed on
patches of size 1X1Xn pixels from the training
volume.

Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. (‘05)].

36



Detect main features and warp
the images (20 bytes)

\

Compute the mean image
and subtract it

v

Find the common ordering that
creates the smoothest path

¥

2D—1D, apply wavelet and
code leading coefficients

v

Warp, remove the mean,
permute, apply wavelet on the
1D signal and code

Compression by Pixel-Ordering

Training set (2500 images)
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Results

028
dh

RMSE=13.58 RMSE=7.98

Our scheme
RMSE=9.49

Post-processing

RMSE=8.12 RMSE=6.53 RMSE=5.84

400 bytes 600 bytes 800 bytes
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Rate-Distortion Curves

== Qur Scheme
= QOur Scheme + PP

K-SVD + PP
S . | : : ==+ JPEG-2000 I
5
300 400 500 600 700 800 900 1000 1100 1200
Compressed image size [Bytes]




Part V

Time to Finish

40



Conclusions

2D to 1D conversion We propose such We demonstrate

»

adaptive way the patch domain compression

the effectiveness of
this approach to
image denoising,
inpainting and

is not necessarily
a bad idea, and
especially so if

done in an image

a 1D ordering
based on
approximating the
shortest path in

)

What next? Many things ...

d Use this paradigm for general inverse problems
O Why just permutation and not other orderings
O Merge with statistical modeling of images

O Improve the TSP approximation

a ..
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Thank you to
Chen Sagiv and Jacob Cohen
for a very interesting event and
for inviting me

Questions ?
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