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Abstract—Sparsity based techniques have been widely used
for image denoising. In this work we focus on Poisson noise and
propose initial stages for a new strategy for its removal. We start
with a method that removes the noise by converting it into an
additive Gaussian noise using the Anscombe transform, applying
a variant of the OMP-denoising algorithm. Then, following the
recent work by Salmon et. al., we bypass the need for the
Anscombe transform and rely directly on the noise statistics. The
new strategy is shown to lead to near state-of-the-art results.

I. INTRODUCTION

In the last decade, the notion of sparsity has been widely
used for image denoising [1]. The commonly used model is
y = x + e, where y ∈ Rd is the noisy image; x ∈ Rd is
the original clean image, which we aim to recover, assumed
to have a sparse representation α under a given dictionary
D ∈ Rd×n; and e is an additive noise that can be either
adversarial or with a known random distribution (usually
Gaussian). Though covering many types, not all types of noise
obey this formulation.

One such type is the Poisson distributed noise. Each sample
yi is Poisson distributed random variable with mean (and
variance) xi. Such noise occur in many applications such
as night vision, computed tomography (CT), fluorescence
microscopy, astronomy, astrophysics and spectral imaging.

Many techniques [2], [3], [4] developed for this case use
a transformation, such as the Anscombe [5] and Fisz [6]
transforms, that approximately convert the Poisson noise into
a Gaussian one for which many possible denoising algorithms
are already available.

However, such approximations of the noise is efficient only
when we have a high photon count [4], [7], [8], i.e., the
noise level is low. In the case of low photon count, i.e., high
noise level, the measurements are mostly either zero or one
indicating whether a photon was recorded in the receiver or
not. An example of such a noisy image is given in several
figures in this paper.

One approach for dealing with this problem is improving
the inverse Anscombe transform leading to better recovery
results [4]. Another approach is to bypass the use of the trans-
formation by directly relying on the Poisson noise statistics
[8] . State-of-the-art results have been obtained using non-
local PCA for patches of the noisy image, and reliance on the
statistical properties of the noise [7], [8].

In this work we present the first stages for an alternative
Poisson denoising strategy relying on the OMP-denoising

technique [9]. We start with an Anscombe based algorithm
that relies on a variant of simultaneous OMP (S-OMP) for
joint sparsity [10] and the refined inversion scheme for the
Anscombe transform [4]. Then we remove the need for the
transformation by using a new model for the image that relies
on the noise statistics as in [8]. In this model the original
signal is assumed to have a sparse representation α under a
given dictionary D but instead of having x = Dα we have
x = exp(Dα), where the exponent is calculated element-
wise. This model implies a new ℓ0-minimization problem and
we introduce a greedy technique for its approximation.

The organization of the paper is as follows. In Section II
we describe the Poisson denoising problem with more details
and present the previous work. In Section III we propose the
two sparsity-based algorithms for Poisson denoising, and in
Section IV we demonstrate their denoising performance with
a comparison to other techniques. In Section V we conclude
our work and discuss the next steps for it.

II. PROBLEM SETUP

In the Poisson denoising setup the measurement y is a
Poisson distributed noise with mean and variance x, i.e,

P (y[i]|x[i]) =

{
(x[i])yi

y[i]! exp(−xi) x[i] > 0,

δ0(y[i]) x[i] = 0,
(1)

where x[i] is the i-th element in x and δ0 is the Kronecker
delta function. It is common to measure the noise power in
terms of the peak of the signal. The peak value is defined as
xmax, where xmax is the maximal value in x.

As mentioned before, a standard way for dealing with
Poisson noise is using the Anscombe transform [5],

fAnscombe(x) = 2

√
x+

3

8
. (2)

This transformation converts a Poisson distributed data to an
approximately Gaussian distributed data with variance 1. This
property holds true whenever the mean of the Poisson data is
greater than 4. After applying the transformation, any standard
denoising technique for Gaussian noise can be applied on the
data. Having the recovery result of the Gaussian denoising
algorithm, the inverse Anscombe transform should be applied.
However, this inverse transform introduces an undesired bias
into the estimate. Because of this reason and the fact that
in many cases the mean of the data is smaller then 4, more



sophisticated techniques are desired for applying the inverse
transform. One such technique is proposed in [4].

Another alternative, as posed in [7], [8], is to work directly
with the Poisson data, removing the need for the transforma-
tion. By maximizing the log-likelihood of (1) and eliminating
terms independent of x we get the following minimization
problem

argmin
x

1Tx− yT log(x), (3)

where 1 ∈ Rd is a vector composed of ones.
Using the standard sparsity model for x in (3), x = Dα,

leads to the need to add a non-negativity constraint on x.
In order to avoid this, we use a sparsity model for x that
introduces non-negativity naturally. Following [8], we set
x = exp(Dα) where α is a k-sparse vector. With this setup
we end up with the minimization problem

argmin
α

1T exp(Dα)− yTDα s.t. ∥α∥0 ≤ k (4)

The work in [7], [8] applied a related model on the
patches of the image, proposing the non-local PCA algorithm
(NLPCA). In this method overlapping patches are extracted
from the noisy image y and then clustered into a small number
of disjoint groups {qj,1, . . . ,qj,pj}. Each group j has its own
dictionary Dj that contains only a few (much less then the
patches dimension) columns. For each index j, the dictionary
Dj and the representations {αj,1, . . . ,αj,pj} of the patches
{qj,1, . . . ,qj,pj} are calculated by solving1

[Dj , α̂j,1, . . . , α̂j,pj ] = (5)

argmin
Dj ,α̂j,1,...,α̂j,pj

pj∑
i=1

1T exp(Djαj,i)− yTDjαj,i.

This minimizing process gives an estimation q̂j,i =
exp(Djαj,i) for each patch. The recovered image is a result
of a reprojection step that returns each reconstructed patch into
its corresponding place in the image and averages. Since the
clustering step is performed over the noisy image, the whole
process is performed again with a clustering that relies on the
reconstructed image.

The NLPCA for Poisson denoising is based on a variant
that was developed for the Gaussian case [11]. This Gaussian
technique can be used, of course, for the Poisson case by
applying an Anscombe transform, but this approach was shown
to be inferior for the case of low-photon count [7], [8].

Based on the above discussion we consider two techniques
for Poisson denoising in the next section. Both rely on the
OMP-denoising strategy proposed in [9] for the Gaussian case,
and the NLPCA technique [7], [8].

III. THE EXPLORED ALGORITHM

The first technique we consider uses the Anscombe trans-
form and is presented in Fig 1. In the first step the Anscombe

1The non-local sparse PCA (NLSPCA) [8], a variation of NLPCA, adds an
ℓ1 regularization term on αj,i.

Algorithm 1 Gaussian Greedy Algorithm (an S-OMP variant)
Require: k,D, {q1, . . . ,ql} where qi ∈ Rd is a Gaussian

distributed vector with mean pi = Dαi, and k is the
cardinality of αi. All representation vectors αi are assumed
to be jointly sparse, i.e., have the same support.

Result: p̂i = Dα̂i an estimate for pi = Dαi.
Initialize the support T 0 = ∅ and set t = 0.
while t < k do
t = t+ 1.
Find new support element and representation estimate:
[α̂t

1, . . . , α̂
t
l , j

t] =

argminα1,...,αl,j

∑l
i=1

∥∥y −DT t−1∪{j}αi

∥∥2
2
.

Update the support: T t = T t−1 ∪ {jt}.
end while
Form the final estimate p̂i = Dα̂t

i, 1 ≤ i ≤ l.

Algorithm 2 Poisson Greedy Algorithm
Require: k,D, {q1, . . . ,ql} where qi ∈ Rd is a Poisson

distributed vector with mean and variance pi = exp(Dαi),
and k is the cardinality of αi. All representation vectors αi

are assumed to be jointly sparse, i.e., have the same support.
Result: p̂i = exp(Dα̂i) an estimate for pi = exp(Dαi).

Initialize the support T 0 = ∅ and set t = 0.
while t < k do
t = t+ 1.
Find new support element and representation estimate:
[α̂t

1, . . . , α̂
t
l , j

t] =
argminα1,...,αl,j

∑l
i=1 1

T exp(DT t−1∪{j}αi)−
yTDT t−1∪{j}αi.
Update the support: T t = T t−1 ∪ {jt}.

end while
Form the final estimate p̂i = exp(Dα̂t

i), 1 ≤ i ≤ l.

transform is performed on the noisy image y. Then a set of
overlapping patches qi

2 of size
√
d×

√
d is extracted from the

transformed image. The set of patches is clustered into small
groups of size l, using a Gaussian filter on y and grouping
patches with small ℓ2 norm between them in the filtered image.
A joint sparse coding step is performed for each group of
patches with a variant of S-OMP presented in Algorithm 1.
This step achieves a denoising effect for each patch. Having
the group of denoised patches q̂i, we return each of them to the
place from which it was extracted in the image by averaging
them. Having the reconstructed image we perform the refined
inverse Anscombe transform proposed in [4].

In order to bypass the need for the Anscombe transform, the
sparse coding step in the Anscombe based strategy should be
replaced with a step that takes into account directly the Poisson
statistics. In other words, we would like to have an approxi-
mation technique for solving (4). Such a method is proposed

21 ≤ i ≤ (m1 −
√
d + 1)(m2 −

√
d + 1) where m1 and m2 are the

vertical and horizontal dimensions of the noisy image y respectively.



Fig. 1. The proposed Anscombe based Poisson denoising algorithm.

in Algorithm 2. The algorithm adds in a greedy way elements
to the representation of the approximated patch in a similar
way to what is done in the Gaussian algorithm. However, the
minimization step for finding the new representation does not
have a closed form solution like in the Gaussian case. We use
the Matlab optimization toolbox for this task. As a dictionary,
the two dimensional orthogonal DCT is used, with no training
process involved. This leaves room for future improvement.

Having the Poisson greedy algorithm, we can now propose
a new technique for Poisson image denoising. The proposed
method is very similar to the Anscombe based one and is
presented in Fig 2. It includes almost the same steps but
without the Anscombe transformation and with the Poisson
greedy algorithm instead of the Gaussian greedy algorithm.

IV. EXPERIMENTS

We test these algorithms in the case of low photon count. In
all experiments we set l = 50. Figure 3 presents reconstruction
results of a noisy text image (peak = 0.2). It can be observed
that the Anscombe technique gives a sharper text while the
model based technique recovers better the background.

Figures 4 and 5 present the reconstruction result for the
noisy Saturn image with peak=0.2 and peak=0.1 respectively.

Fig. 2. The proposed model based Poisson denoising algorithm.

We compare in Fig. 4 our performance with the ones of
NLPCA and NLSPCA [8] that achieve state-of-the-art results.
Indeed, these methods achieve better reconstruction results
than our techniques in terms of PSNR, but overall, the outcome
looks very similar visually. We should add that our methods
do not employ learned dictionary, which has the potential to
boost further our outcome.

V. DISCUSSION AND CONCLUSION

In this work we have presented two techniques for Poisson
denoising. Both are patch based and rely on a sparse model for
the patches of the original image. The first uses the Anscombe
transform and then performs a variant of OMP-denoising using
joint sparsity for the patches. The second works directly with
the Poisson statistics using a new sparse model for the patches
in the image. Both methods present comparable performance
but do not achieve yet state-of-the-art results. Both presented
methods suffer from two drawbacks.

• In OMP-denoising [9] the stopping criterion for OMP is
error based. However, in this work we used a cardinality
based stopping criterion that forces a constant sparsity
for all patches. Thus, an error based stopping criterion is
needed. However, it is not clear what this criterion should
be in our case. One approach that may be considered is
using a generalization of the Stein unbiased risk estimator
(SURE) for the Poisson noise case [12], [13].

• In [9] it was demonstrated that learning the dictionary
D enhances the performance. Similarly, in [8] the small



(a) Text image.
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(b) Poisson noisy image. Peak = 0.2.

(c) Anscombe based proposed method
with k = 3. PSNR = 14.71dB.

(d) Model based proposed method with
k = 2. PSNR = 14.79dB.

Fig. 3. Denoising of a text image with peak = 0.2.

dictionaries were learned. Thus, it should be natural
to add a dictionary learning phase into the algorithms.
As mentioned before, this change is more critical to
the Poisson model based algorithm since less is known
about the dictionaries that suites this model and the
two dimensional DCT used in our work suites more the
standard sparsity model than the proposed one.

In a future work we will explore both issues aiming at
improving the performance of both methods. However, we
believe that the second method has more potential and will
profit more from the suggested improvements.
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(a) Saturn image
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(b) Poisson noisy image. Peak =0.2.

(c) Anscombe based proposed method with k =
2. PSNR = 22.44dB.

(d) Model based proposed method with k = 2.
PSNR = 22.27dB.

(e) NLPCA. PSNR = 22.97dB. (f) NLSPCA. PSNR = 22.74dB.

Fig. 4. Denoising of Saturn image with peak = 0.2

(a) Anscombe based proposed method with k =
2. PSNR = 19.58dB.

(b) Model based proposed method with k = 2.
PSNR = 19.51dB.

Fig. 5. Denoising of Saturn image with peak = 0.1


