
1

Sparsity Based Poisson Denoising with Dictionary
Learning

Raja Giryes and Michael Elad
Department of Computer Science, The Technion - Israel Institute of Technology

Haifa, 32000, Israel
{raja,elad}@cs.technion.ac.il

Abstract—The problem of Poisson denoising appears in various
imaging applications, such as low-light photography, medical
imaging and microscopy. In cases of high SNR, several transfor-
mations exist so as to convert the Poisson noise into an additive
i.i.d. Gaussian noise, for which many effective algorithms are
available. However, in a low SNR regime, these transformations
are significantly less accurate, and a strategy that relies directly
on the true noise statistics is required. A recent work by Salmon
et al. [1], [2] took this route, proposing a patch-based exponential
image representation model based on GMM (Gaussian mixture
model), leading to state-of-the-art results. In this paper, we
propose to harness sparse-representation modeling to the image
patches, adopting the same exponential idea. Our scheme uses
a greedy pursuit with boot-strapping based stopping condition
and dictionary learning within the denoising process. The re-
construction performance of the proposed scheme is competitive
with leading methods in high SNR, and achieving state-of-the-art
results in cases of low SNR.

I. INTRODUCTION

Poisson noise appears in many applications such as night
vision, computed tomography (CT), fluorescence microscopy,
astrophysics and spectral imaging. Given a Poisson noisy
image y ∈ (N ∪ {0})m (represented as a column-stacked
vector), our task is to recover the original true image x ∈ Rm,
where the entries in y (given x) are Poisson distributed
independent random variables with mean and variance x[i],
i.e.,

P (y[i]
∣∣x[i]) = { (x[i])y[i]

y[i]! exp(−x[i]) x[i] > 0

δ0(y[i]) x[i] = 0,
(1)

where δ0 is the Kronecker delta function and x[i] and y[i] are
the i-th component in x and y respectively. Notice that Poisson
noise is not additive and its strength is dependent on the image
intensity. Lower intensity in the image yields a stronger noise
as the SNR in each pixel is

√
x[i]. Thus, it is natural to define

the noise power in an image by the maximal value in x (its
peak value)1.

Many schemes for recovering x from y exist [3], [4], [5],
[6]. A very popular strategy [7], [8], [9] relies on transforma-
tions, such as Anscombe [10] and Fisz [11], that convert the
Poisson denoising problem into a Gaussian one, for which
plenty of methods exist (e.g. [12], [13], [14]). The noise
becomes approximately white Gaussian with unit variance.

1The peak is a good measure under the assumption that the pixels’ values
are spread uniformly over the whole dynamic range. This assumption it true
for most natural images.

Fig. 1. Poisson noisy versions of the image peppers with different peak
values. From left to right: Peaks 0.1, 1, 4 and 10.

The problem with these approximations is the fact that they
hold true only when the measured pixels have high intensity
[8], [1], [2], i.e. when a high photon count is measured in the
detectors. As a thumb rule, these transformations are accurate
only when the peak value in x is larger than 3 [2]2. In this
case the noise looks very similar to a Gaussian one. When
the peak value is smaller, the structure of the noisy image is
quite different, with many zero pixels and others that have
very small (integer) values. As an example, when the peak
equals 0.1 we have almost a binary image, containing mainly
either zeros or ones. Fig 1 shows noisy versions of peppers
with different peak values. It can be seen that indeed, as
the peak value increases, the noise ”looks” more and more
like Gaussian. In this work we aim at denoising Poisson
noisy images with peak≤ 4 where both Anscombe and Fitz
transformations are less effective.

The Anscombe transform is a non-linear element-wise trans-

2One may argue that the threshold value is 2 as a conclusion from the
denoising results in [1], so this threshold value is by no means an exact and
definite one.



2

formation defined as

fAnscombe (y[i]) = 2

√
y[i] +

3

8
. (2)

Therefore, applying a denoising technique on the stablized data
results with an estimate for fAnscombe (x) rather than for x.
Thus, there is a need to apply an inverse transform in order
to get an estimate for x. Note that using the algebraic inverse
results with a biased estimator due to the non-linearity of the
transform. In [8], this problem has been addressed by provid-
ing an exact unbiased inverse for the Anscombe transform,
which eventually leads to a better recovery performance.

However, as said above, even with this exact inverse the
recovery error dramatically increases for peak< 3 [2]. In
order to deal with this deficiency, a strategy that relies directly
on the Poisson statistics is required. This direction has been
taken in [1], [2], providing a Gaussian mixture model (GMM)
[14] based approach that relies directly on the Poisson noise
properties. By dividing the image into overlapping patches,
dividing them to few large clusters and then performing a
projection onto the largest components of a PCA-like basis
for each group, state-of-the-art results have been reported for
small peak values. This approach has two versions. In the first,
the non-local PCA (NLPCA), the projection is computed by
minimizing a Poissonian Bregman divergence using Newton
steps, while in the second, the non-local sparse PCA (NL-
SPCA), the SPIRAL method [15] that adds an `1 regularization
term to the minimized objective is used resulting with a better
recovery performance.

A. Our Contribution

In this work we take a similar path as [2] in the image
patches modeling, using this for the recovery process. How-
ever, we take a different route and propose a sparse repre-
sentation modeling and a dictionary learning based denoising
strategy [13] instead of the GMM. We employ a greedy
OMP-like method for sparse coding of the patches and use
a smart boot-strapped stopping criterion. We demonstrate the
superiority of the proposed scheme in various experiments.

We have presented a preliminary version of the proposed
OMP-like technique that achieves a relatively poor recovery
performance in a local conference [16]. In this paper, both the
algorithmic and the experimental parts have been remarkably
improved.

The main contributions of this paper are:

• We introduce a greedy technique for the Poisson sparse
model. Such pursuit methods for a Gaussian noise are
commonly used, and extensive work has been devoted in
the past two decades to their construction and analysis.
Thus, a proposal of a greedy strategy for the Poisson
model is of importance and may open the door for many
other variants and theoretical study, similar to what exists
in the Gaussian regime. For example, our greedy method
can be extended for the Poisson deconvolution problem
as done for other greedy techniques in [17], [18] or serve
as a basis for Poisson inpainting [19].

We mention that in some low light Poisson denoising
applications the dictionary is already known. One ex-
ample is Fluorescence microscopy where the measured
image might be sparse by itself. Hence, in such cases
the introduction of a new recovery method by itself is
important.

• We introduce a novel stopping criteria for iterative al-
gorithm, and its incorporation into the pursuit leads to
much improved results. To the best of our knowledge,
this boot strapping based stopping criterion first appears
in our paper.

• The interplay between GMM and dictionary learning
based models has significance of its own, as seen in the
treatment of the simpler Gaussian image denoising prob-
lem. The migration from GMM to dictionary learning
poses series of difficulties that our paper describes and
solves. Note that in this paper we utilize the learning
strategy in [20].

• The integration of the above leads to state-of-the-art
results, especially for the very low SNR case.

B. Organization

The organization of the paper is as follows. Section II
describes the Poisson denoising problem with more details,
and presents the previous contributions. Section III introduces
the proposed denoising algorithm, starting with the pursuit
task, moving to the clustering that we employ for achieving
non-locality in the denoising process, discussing the role
of learning the dictionary, and concluding with the overall
scheme. Section IV presents various tests and comparisons that
demonstrate the denoising performance and superiority of the
proposed scheme. Section V discusses future work directions
and conclusions.

II. POISSON SPARSITY MODEL

Various image processing applications use the fact that
image patches can be represented sparsely with a given
dictionary D ∈ Rd×n [21]. Under this assumption each patch
pi ∈ Rd (the patch is of size

√
d ×
√
d held in a column

stack representation) from x can be represented as pi = Dαi,
where αi ∈ Rn is k-sparse, i.e., it has only k non-zero
entries, where k � d. If our image is of dimension m1 ×m2

and we treat all the overlapping patches in the image then
1 ≤ i ≤ (m1 −

√
d+ 1)(m2 −

√
d+ 1).

This model leads to state-of-the-art results in Gaussian
denoising [12], [13], [21]. In order to use this sparsity-inspired
model for the Poisson noise case one has two options: (i)
convert the Poisson noise into a Gaussian one, as done in
[8]; or (ii) adapt the Gaussian denoising tools to the Poisson
statistics. As explained above, the later is important for cases
where the Anscombe is non-effective, and this approach is
indeed practiced in [1], [2], [15], [22]. Maximizing of the
log-likelihood of the Poisson distribution in (1) provides us
with the following minimization problem for recovering the
i-th patch pi from its corresponding Poisson noisy patch qi,

min
pi

1∗pi − q∗i log(pi) s.t. pi ≥ 0. (3)



3

where 1 is a vector composed of ones and the log(·) operation
is applied element-wise. Note that this minimization problem
allows zero entries in pi only if the corresponding entries in
qi are zeros as well. The minimizer of (3) is the noisy patch
qi itself, and thus using only (3) is not enough and a prior
is needed. By using the standard sparsity prior for patches as
practiced in [13] and elsewhere, pi = Dαi, we end up with
the following minimization problem:

min
αi

1∗Dαi − q∗i log(Dαi) (4)

s.t. ‖αi‖0 ≤ k,Dαi ≥ 0,

where ‖·‖0 is the `0 semi-norm which counts the number of
non-zeros in a vector. Besides the fact that (4) is a combina-
torial problem, it also imposes a non-negativity constraint on
the recovered patch, which further complicates the numerical
task at hand. In order to resolve the latter issue we follow [2]
and set pi = exp(Dαi) where exp(·) is applied element-wise
and αi is still a k-sparse vector. This leads to the following
minimization problem,

min
αi

1∗ exp(Dαi)− q∗iDαi s.t. ‖αi‖0 ≤ k. (5)

Having the non-negativity constraint removed, we still need
to have an approximation algorithm for solving (5) as it is
likely to be NP-hard. One option is to use an `1 relaxation,
which leads to the SPIRAL method [15]. Another, simpler
option is to reduce the dictionary D to have only k columns
and thus (5) can be minimized with any standard optimization
toolbox for convex optimization3. This approach is taken in the
NLPCA technique [1] where the patches of y are clustered
into a small number of disjoint groups and each group has
its own narrow dictionary. Denoting by j, {qj,1, . . . ,qj,Nj

},
{αj,1, . . . ,αj,Nj

} and Dj ∈ Rd×k the group number, its noisy
patches, the representations of the patches and their dictionary,
the minimization problem NLPCA aims at solving for the j-th
group is

min
Dj ,αj,1,...,αj,Nj

Nj∑
i=1

1∗ exp(Djαj,i)− q∗j,iDjαj,i. (6)

Notice that Dj is calculated also as part of the minimization
process as each group has its own dictionary that should be
optimized. The typical sparsity k and number of clusters used
in NLPCA are 4 and 14 respectively. As it is hard to minimize
(6) both with respect to the dictionary and to the representa-
tions, an alternating minimization process is used by applying
Newton steps updating the dictionary and the representations
alternately. Having the recovered patches, we return each to
its corresponding location in the recovered image and average
pixels that are mapped to the same place (since overlapping
patches are used). The authors in [1] suggest to repeat the
whole process, using the output of the algorithm as an input
for the clustering process and then applying the algorithm
again with the new division. An improved version of NLPCA,
the NLSPCA, is proposed in [2], replacing the Newton step

3For a given support (location of the non-zeros in α), the problem posed
in (5) is convex.

with the SPIRAL algorithm [15] for calculating the patches’
representations.

The NLPCA for Poisson denoising is based on ideas related
to the GMM model developed for the Gaussian denoising
case [14]. Of course, this method can be used for the Poisson
noise by applying an Anscombe transform. However, such an
approach is shown in [2] to be inferior to the Poisson model
based strategy in the low-photon count case.

Like [1], [2], in this work we do not use the Anscombe and
rely on the Poisson based model. However, as opposed to [1],
[2], we use one global dictionary for all patches and propose a
greedy algorithm for finding the representation of each patch.
In an approach similar to the one advocated in [13], we treat
similar patches jointly by forcing them to share the same atoms
in their representations. This introduces a non-local force and
sharing of information between different regions in the image.
A dictionary learning process is utilized in our scheme as well,
in order to improve the initial dictionary used for the data, as
the initial dictionary we embark from is global for all images.

Before moving to the next section we mention a technique
proposed in [2] to enhance the SNR in noisy images. This
method is effective especially in very low SNR scenarios such
as peak smaller than 0.5. Instead of denoising the given image
directly, one can downsample the image by applying a low-
pass filter followed by down-sampling. This provides us with
a smaller image but with a higher SNR. For example, if our
low-pass filter is a kernel of size 3 × 3 containing ones, and
we sample every third row and every third column, we end up
with a nine times smaller image that has a nine times larger
peak value. Having the low-res noisy image, one may apply
on it any Poisson denoising algorithm and then perform an
upscaling interpolation on the recovered small image in order
to return to the original dimensions. This method is referred to
as binning in [2] and related to multi-scale programs [23]. Note
that this technique is especially effective for the Anscombe
based techniques as the peak value of the processed image is
larger than the initial value.

III. SPARSE POISSON DENOISING ALGORITHM (SPDA)

Our denoising strategy is based on a dictionary learning
based approach. We start by extracting a set of overlapping
patches {qi|1 ≤ i ≤ (m1−

√
d+1)(m2−

√
d+1)} (m1 and

m2 are the vertical and horizontal dimensions of the noisy
image y respectively) of size

√
d×
√
d from the noisy image

y. The goal is to find the dictionary D that leads to the sparsest
representation of this set of patches under the exponential
formulation. In other words our target is to minimize

min
D,α1,...,αN

N∑
i=1

1∗ exp(Dαi)− q∗iDαi (7)

s.t. ‖αi‖0 ≤ k, 1 ≤ i ≤ N,

where N = (m1 −
√
d + 1)(m2 −

√
d + 1). As in [1],

[2], since minimizing both with respect to the dictionary and
the representations at the same time is a hard problem, we
minimize this function alternately. The pursuit (updating the
representations) is performed using a greedy technique which
returns a k-sparse representation for each patch, unlike the



4

Algorithm 1 Patch Grouping Algorithm

Input: y is a given image,
√
d×
√
d is the patch size to use,

l is a target group size, h is a given convolution kernel
(typically a wide Gaussian) and ε is a tolerance factor.

Output: Division to disjoint groups of patches, where the g-th
group is of size Ng ≥ l and is Qg = {qg,1, . . . ,qg,Ng

}.
Begin Algorithm:
-Convolve the image with the kernel: ỹ = y ∗ h. We take
ỹ to be of the same size of y.
-Extract all overlapping patches Q = {q1, . . . ,qN} of
size

√
d ×

√
d from y and their corresponding patches

{q̃1, . . . , q̃N} of size
√
d×
√
d from ỹ.

-Set first group pivot index: s0 = argmin1≤i≤N ‖q̃i‖22.
-Initialize g = 0 and iprev

g = s0.
while Q 6= ∅ do

-Initialize group g: Qg = ∅ and lg = 0.
-Select first candidate: ig = argmini:qi∈Q

∥∥q̃sg − q̃i

∥∥2
2

while
(
lg ≤ l or

∣∣∣∣∥∥q̃sg − q̃ig

∥∥2
2
−
∥∥∥q̃sg − q̃iprev

g

∥∥∥2
2

∣∣∣∣ ≤ ε2)
and Q 6= ∅ do

-Add patch to group j: Qg = Qg ∪{qig}, lg = lg +1.
-Exclude patch from search: Q = Q \ {qig}.
-Save previous selection: iprev

g = ig .
-Select new candidate: ig = argmini

∥∥q̃sg − q̃i

∥∥2
2
.

end while
-Set pivot index for next group: g = g + 1, sg = ig−1.

end while
-Merge the last group with the previous one to ensure its
size to be bigger than l.

global Newton step or SPIRAL which is not guaranteed to
have a sparse output. For learning the dictionary we use the
technique in [20] that updates the dictionary together with the
representations while their supports are kept fixed [2]. In order
to further boost the performance of our algorithm and exploit
the fact that similar patches in the image domain may have
the same support in their sparse representation, the patches
are clustered into a large number of small disjoint groups of
similar patches. We turn to describe in details each step of the
algorithm.

A. Patch Clustering

Ideally, as Poisson noisy images with very low SNR are
almost binary images, a good criterion for measuring the
similarity between patches would be the earth mover’s distance
(EMD). We approximate this measure by setting the distance
between patches to be their Euclidean distance in the image
after it passes through a Gaussian filter. It is clear that
the Euclidean distance is not the only option, nor the best.
Nevertheless, the reason we have selected the `2 distance
is that it gives a bigger weight for entries where we find
noisy pixels with large values. Those are usually rare and
reflect locations of high intensity in the original image. We are
expecting that patches with high intensity, which are similar in
the original image, should have concentrations of high photons
counts at the same locations.

Algorithm 2 Poisson Greedy Algorithm
Input: k,D ∈ Rd×n, {q1, . . . ,ql̃} where qi ∈ Rd is a Pois-

son distributed vector with mean and variance approximated
(modeled) by exp(Dαi), and k is the maximal cardinality
of αi. All representations αi are assumed to have the same
support. Optional parameter: Estimates of the true image
patches {p1, . . . ,pl̃}.

Output: Estimates p̂i = exp(Dα̂i) for qi, i = 1 . . . l̃.
Begin Algorithm:
-Initialize the support T 0 = ∅ and set t = 0.
while t < k do

-Update iteration counter: t = t+ 1.
-Set initial objective value: vo = inf .
for j = 1 : n do

-Check atom j: T̃ t = T t−1 ∪ {j}.
-Calculate current objective value: vc =
minα̃1,...,α̃l̃

∑l̃
i=1 1

∗ exp(DT̃ tα̃i)− q∗iDT̃ tα̃i

if vo > vc then
-Update selection: jt = j and vo = vc.

end if
end for
-Update the support: T t = T t−1 ∪ {jt}.
-Update representation estimate:

-Set [α̂t
1, . . . , α̂

t
l̃
] = [0, . . . ,0].

-Update on-support values: [(α̂t
1)T t , . . . , (α̂t

l̃
)T t ] =

argminα̃1,...,α̃l̃

∑l̃
i=1 1

∗ exp(DT tα̃i)− q∗iDT tα̃i.
if {p1, . . . ,pl̃} are given then

-Estimate error: et =
∑l̃

i=1

∥∥exp(Dα̂t
i)− pi

∥∥2
2
.

if t > 1 and et > et−1 then
-Set t = t− 1 and break (exit while and return the
result of the previous iteration).

end if
end if

end while
-Form the final estimate p̂i = exp(Dα̂t

i), 1 ≤ i ≤ l̃.

The grouping algorithm is described in details in Algo-
rithm 1. It creates disjoint groups of size (at least) l in a
sequential way, adding elements one by one. Once a group
gets to the destination size, the algorithm continues to add
elements whose distance from the first element in the group
(the pivot) is up to ε away from the distance of the last added
element (See Algorithm 1).

The reason we have selected to use this strategy for clus-
tering is due to its ability to divide the patches to groups
of similar size. The reason we target similar sizes is that
we want to guarantee that we have “enough” atoms in each
group for selecting the “correct” support for the group in the
sparse coding step (described in the next subsection). On the
other hand, we need to have as many groups as possible since
otherwise we will not have enough information for updating
the dictionary, as we select the same support for all the patches
in the same group. We could have selected a group for each
atom separately, which would result with overlapping groups,
but we have chosen not to do so due to computational reasons.



5

This is also exactly the reason why we have chosen to use the
current clustering method and not other off-the-shelf methods
as its greedy nature seems to make it faster. We should note
that we are well aware of the fact that our choice of grouping
method is suboptimal, and yet, as the results in Section IV
indicate, it is sufficiently good-performing.

B. Sparse Coding

For calculating the representations we use a joint sparsity
assumption for each group of patches with a greedy algorithm
that finds the representations of each group together. This
algorithm is iterative and in each iteration it adds the atom
that reduces the most the cost function (5) for all the repre-
sentations that belong to the same group. We further explain
this matter when we discuss Equation (8).

An important aspect in our pursuit algorithm is to decide
how many atoms to associate with each patch, i.e., what should
be the stopping criterion of the algorithm. We employ two
options. The first is to run the algorithm with a constant num-
ber of iterations. However, this choice leads to a suboptimal
denoising effect as different patches contain different content-
complexity and thus require different sparsity levels.

Bootstrapping Based Stopping Criterion: Another option is
to set a different cardinality for each group. In order to do
so we need a way to evaluate the error in each iteration with
respect to the true image and then stop the iterations once the
error starts increasing. One option for estimating the error is
using the Poission unbiased risk estimator (PURE), a variant of
the Stein’s unbiased risk estimator (SURE) for Poisson noise,
as done in [24] for the NL-Means algorithm. However, in our
context the computation of the PURE is too demanding, as
it requires re-applying the denoising method over and over
again for the same image by changing one pixel each time. In
[24], this is done efficiently due to the simple structure of the
denoising method (NL-Means) used there. In our case this (as
far as we can see) cannot be done.

Thus, we use boot-strapping – we rely on the fact that
our scheme is iterative and after each step of representation
decoding and dictionary update we have a new estimate of
the original image. We use the patches of the reconstructed
image from the previous iteration as a proxy for the patches
of the true image and compute the error with respect to them.
One might think that if the patch from the previous iteration is
used to determine the number of iterations for the same patch
in the current iteration, it will make no change and we will
“get stuck” with the same outcome. However, as an averaging
process is applied in the middle together with a dictionary
update step, we are not expected to get back the same patch
but rather a different denoising result.

Note that since we update the dictionary between iterations
and average the patches in the recovered image, we dot not get
stuck on the same patch again by using this stopping criteria.
In practice, this condition improves the recovery performance
significantly as each group of patches is represented with a
cardinality that suites its content better.

The greedy Poisson algorithm is summarized in Algo-
rithm 2. It starts with an empty support T 0 and adds one

element to it gradually in each iteration. Given the support
T t−1 of the previous iteration, the next added atom to the
support is chosen by iterating over all the atoms in the
dictionary and calculating for each the following minimization
problem:

min
α̃1,...,α̃l

l̃∑
i=1

1∗ exp(DT t−1∪{j}α̃i)− q∗iDT t−1∪{j}α̃i, (8)

where j is the index of a potential atom for addition, {qi}l̃i=1

are the patches we decode, {αi}l̃i=1 are representations of size
t (cardinality in the current iteration) and DT t−1∪{j} is D

restricted to the support T t−1 ∪ {j} (In a similar way (α̂t
i)T t

is the vector α̂t
i restricted to the entries supported on T t).

Notice that all the patches in the cluster are enforced with
the same sparsity pattern as we perform the minimization for
all the l̃ patches together and select the same atom for all.
Notice that the problem in (8) is the same as the one in (5)
but for a fixed given support. When the support is fixed it is a
convex problem, which appears also in the NLPCA technique,
and can be solved by the Newton method or by any convex
optimization toolbox.

The bootstrapping based stopping criterion is being used
only if the “oracle” patches {pi}l̃i=1 are provided. They serve
as an estimate for the patches of the true image and therefore
we add atoms to the representation till the distance from these
patches starts increasing. In this case the output of the sparse
coding is the decoded representation from the previous (t−1)
iteration.

One may argue that we should have used a Poissonian Breg-
man divergence for calculating the error and not the `2 error.
The reason we use the `2 criterion is that it is the standard
measure for checking the quality in image reconstruction. Note
that we use this distance measure with the denoised image
(which is no longer Poissonian) and not with the noisy image.

At the first time we apply the sparse coding algorithm in
our recovery process, we cannot use the bootstrapping based
stopping criterion as we do not have an estimate for the
original image yet. Therefore, we use the same cardinality
k for all groups. In the subsequent iterations the patches of
the recovered image from the previous stage are used as an
input to the algorithm for the bootstrapping stopping criterion.

Fig. 2. The piecewise constant image used for the offline training of the initial
dictionary. For each range of peak values the image is scaled appropriately.



6

Algorithm 3 Sparse Poisson Denoising Algorithm (SPDA)
Input: y,D ∈ Rd×n, k, l, h,R, L1, L where y is a Poisson

noise data with mean and variance x, the patches in x are
approximated (modeled) by exp(Dαi), k is the cardinality
to be used for the representations at the first sparse coding
step, l is the group sizes, h is the kernel filter used with
the clustering algorithm, R is the number of advanced
dictionary learning rounds, L1 is the number of inner
learning iterations at the first round and L is the number
at the rest of the rounds.

Output: x̂ an estimate for x.
Begin Algorithm:
-Extract overlapping patches from y.
-Apply the patch grouping algorithm on y with h.
-For each group apply the Poisson Greedy Algorithm with
k.
-Put in x̂ a first estimate for x by a re-projection of the
recovered patches by averaging.
-Set t = 0
while t < R do

-Update iteration counter: t = t+ 1.
if t = 1 then

Apply L1 alternating Newton update steps for (9).
else

Apply L alternating Newton update steps for (9).
end if
-Put in x̂ an estimate for x by a re-projection of the
recovered patches by averaging.
-Extract overlapping patches from x.
-For each group apply the Poisson Greedy Algorithm
with the bootstrapping stopping criterion that relies on
the patches extracted from x.

end while
-Apply the patch grouping algorithm on x̂ with no kernel
(h = [1]).
-Repeat the whole process again using the new clustering
and using the current dictionary as the initial dictionary.

C. Dictionary Learning

Given the decoded representations we proceed to update the
dictionary. We could have used the simple classical learning
mechanism and just update the dictionary atoms, which can
be done using a Newton step in a similar way to [2] (with an
addition of an Armijo rule). Instead, we utilize an advanced
learning strategy from [20]. Keeping the supports of the
representations fixed, we update both the dictionary and the
representations without changing their support.

Denoting by Ti the support of the i-th patch, the problem
we aim at solving in this case is

min
D,α̃1,...,α̃N

N∑
i=1

1∗ exp(DTi
α̃i)− q∗iDTi

α̃i. (9)

First, note that it may happen that some atoms in the dictionary
are not used by any of the representations. Therefore, we
have no information for updating them. In this case, those

are removed from the dictionary resulting with a narrower
dictionary.

Second, notice the similarity between (9) and (6). As we can
set D to be a concatenation of the different small dictionaries
in (6), we can view (9) as a generalization of (6) where groups
can share atoms. In this sense we can look at the advanced
learning strategy as a generalization of the GMM. The fact
that we use small groups and apply a sparse coding after each
advanced learning step gives more freedom and versatility to
our scheme.

With the above connection between the two, we can solve
(9) using the technique for solving (6): Applying alternating
Newton steps (with an addition of an Armijo rule) both
on the dictionary and the representations. Since these inner
iterations reinforce the relation between the dictionary atoms
and the related representation, the number of these iterations
depends on our confidence in the selected supports. We select
a different number of iterations for the first learning round
and the rest because all the supports at the first round are an
outcome of the sparse coding with a fixed cardinality and have
the same size.

Initial Dictionary Selection: The initial dictionary we use is
a dictionary trained off-line on patches of a clean piecewise
constant image shown in Fig. 2. This training process for an
initial dictionary is needed since, unlike the standard sparsity
model where many good dictionaries are present, for the
exponential sparsity model no such dictionary is intuitively
known. Notice also that the representation in the new model
is sensitive to the scale of the image, unlike the standard one
which is scale invariant. This is due to the fact that for a given
constant c we have necessarily that

Dcα = cDα (10)

but in our case

exp (Dcα) 6= c exp (Dα) . (11)

Thus, we train different initialization dictionaries for different
peak values. The training is done by applying our denoising
algorithm on a clean image (with no noise) scaled to the
required peak value. We should mention that this training is
done once and off-line.

D. SPDA Summary

Iterating over the pursuit and dictionary learning stages we
get an estimate for the image patches. For recovering the whole
image we reproject each patch to its corresponding location
with averaging. At this point it is possible to re-cluster the
patches according to the new recovered image and repeat all
the process. Our proposed sparse Poisson denoising algorithm
(SPDA) is summarized in Fig. 3 and Algorithm 3.

E. Comparison to NLPCA and NLSPCA

The main difference between our proposed algorithm and
the NLPCA and NLSPCA is reminiscent of the difference
between the K-SVD image denoising algorithm [13] and
the GMM alternative approach [14], both developed for the
Gaussian denoising problem. Furthermore, when it comes to



7

Fig. 3. The proposed sparse Poisson denoising algorithm (SPDA).

the clustering of patches, NLPCA and NLSPCA use a small
number of large clusters obtained using a k-means like algo-
rithm. In our scheme the notion of joint sparsity is used which
implies a large number of disjoint small groups that are divided
using a simple algorithm. In NLPCA and NLSPCA, a different
set of basis vectors is used for each cluster while we use
one (thicker) dictionary for all patches together, from which
subspaces are created by different choices of small groups
of atoms. Unlike NLPCA and NLSPCA, our dictionary can
change its size during the learning steps, and the cardinalities
allocated to different patches are dynamic. As a last point we
mention that NLPCA uses a Newton step and NLSPCA uses
the SPIRAL algorithm for the representation decoding while
we propose a new greedy pursuit for this task which guarantees
a destination cardinality or reconstruction error.

We compare our algorithm’s complexity to the one of
NLPCA. As we are interested only in the order of the com-
putational cost we focus on the bottlenecks of each algorithm.
In NLPCA, the major computational part is solving (6). It
is done by applying a constant number of Newton steps on
the patches and the local dictionaries. The complexity of the
Newton steps is of the order of the Hessian inversion. Using
the special properties of the Hessian in (6) it is possible to
perform its inversion with complexity O(kd

3
2 ) [1], where k

is the number of atoms in each local dictionary in NLPCA.
Therefore, given that the number of patches is N , the total
complexity of NLPCA is O(Nkd

3
2 ). For NLSPCA we get a

similar complexity.
The bottleneck in SPDA is the sparse coding. At each

iteration of adding an element to the representation, the sparse
coding passes over all the atoms in the dictionary and solves
(8) checking the potential error of each of them. For calculat-
ing this error, we use a constant number of Newton steps. As
before, the complexity of minimizing (8) is O(kd

3
2 ). Since

we start with a square dictionary and we target k non-zero
elements, the worst-case complexity is O(k2d

5
2 ) per patch, as

for each sparsity level we need to pass over all the atoms in
the dictionary and for each solve (8). Therefore, the overall
complexity of our algorithm is O(Nk2d

5
2 ), where N is the

number of processed patches.
Though our method is more computationally demanding, we

shall see in the next section that in most cases this cost leads to
better denoising results. It should be mentioned also that SPDA
is highly parallelizable which allows a great reduction in its
running time. Note also that since the size of our dictionary
may shrink between the sparse coding steps, the complexity
of the sparse coding is likely to become smaller at the latter
stages of SPDA.

IV. EXPERIMENTS

In order to evaluate the SPDA (with and without binning)
performance we repeat the denoising experiment performed in
[2]. We test the recovery error for various images with different
peak values ranging from 0.1 to 4. The tested images appear in
Fig. 4. The methods we compare to are the NLSPCA [2] and
the BM3D with the exact unbiased inverse Anscombe [8] (both
with and without binning) as those are the best-performing
methods up to date. The code for these techniques is available



8

Fig. 4. Test images used in this paper. From left to right: Saturn, Flag,
Cameraman, House, Swoosh, Peppers, Bridge and Ridges.

Parameter Value
Image Size 256× 256
Patch Size 20× 20

k in First Sparse Coding Step k = 2
Cluster Size (l) 50 (no binning),6 (binning)

Dictionary Learning Rounds R = 5
Dictionary Update Inner Iterations L1 = 2 and L = 20

Reclustering Once
Initial Dictionary (Peak≤ 0.2) Trained on Fig. 2 with Peak= 0.2

Initial Dictionary (0.2 <Peak≤ 4) Trained on Fig. 2 with Peak= 2
Initial Dictionary (Peak> 4) Trained on Fig. 2 with Peak= 18

Binning Kernel 3× 3 Ones Kernel

TABLE I
PARAMETER SELECTION

online and we use the same parameter settings as appears in
the code. For the binning we follow [2] and use a 3× 3 ones
kernel that increases the peak value to be 9 times higher, and
a bilinear interpolation for the upscaling of the low-resolution
recovered image.

For SPDA we use the following parameter setting: The size
of each patch is set to be 20 × 20 pixels. We start with a
sparse coding with a fixed sparsity k = 2. Then we apply five
rounds of sparse coding with the bootstrapping based stop-
ping criterion together with the advanced dictionary learning
mechanism that contains a joint update of the dictionary and
the representations (with fixed support). In the first round we
apply 2 inner iterations of the dictionary update and in the
rest we use 20 inner iterations. The reason we use a different
number of inner iterations at the first round is that in this
round the supports of the representations are less reliable as
they are selected with a fixed support size. After the first round,
the bootstrapping based stopping criterion is being employed
and each group is being decoded with a different cardinality
leading to a better support selection. We re-cluster using the
outcome of the above process and repeat it again.

We remind the reader that in selecting the clusters size we
have a trade-off between the number of groups and size of each
cluster. As each group selects the same support, having more
groups provides us with more information for the dictionary
update process. On the other hand, the larger the cluster the
more probable it is that we select the “right” support. Of
course, we could have used overlapping groups but we have

chosen not to do so due to computational reasons. As a rule of
thumb, we have found that having 1000 groups is enough for
the dictionary update. As our images are of size 256×256, this
implies a group size l = 50. If binning is not used and l = 6
if it is used. Note that the smaller group size in the binning
case is compensated by the fact that each patch contains more
information as it represents a larger portion in the original
image.

The initial dictionary is square (400×400) and dependent on
the peak value. For peak≤ 0.2 we use a dictionary trained on
the squares image with peak 0.2, for 0.2 <peak≤ 4 we train
for peak= 2 and for peak> 4 we train for peak= 18 (this
is relevant for SPDA with binning when the original peak is
greater than 4/9). Note that since in Poisson noise the mean
is equal to the original signal, a rough estimation for the peak
is an easy task. We note that our algorithm is not sensitive to
the initial dictionary selection: if the peak value is inaccurately
estimated and the “wrong” dictionary is selected, the recovery
is not affected significantly. Indeed, we could have trained a
different initial dictionary for each peak value. However, we
chose not to do so, in order to demonstrate the insensitivity of
our scheme to the initialization. We remark that it is possible
to use other reasonable initializations to our update process
such as the log of the absolute values of the DCT transform.
From our experience, there is not much difference in the
reconstruction result and the gap in the recovery error is in the
range of only 0.2dB4. The parameter selection is summarized
in Table I

A comparison between the recovery of the flag image with
peak= 1 is presented in Fig 5. It can be observed that this
image is recovered very accurately while in the other methods
there are many artifacts. Samples from the dictionary atoms
learned by SPDA are presented in Fig. 6. It can be observed
that the dictionary learning process captures the shape of the
stars and the lines in the flag. Figures 7, 8 and 9 present
the recovery of ridges, Saturn and house for peak= 0.2 and
peak= 2 respectively. It can be seen that for the low peak
value the binning methods capture the structure of the image
better and provide lower error. However, when the peak is
higher the binning provides degraded performance compared
to the reconstruction using the original image. In all images
the SPDA recovers the images’ details better.

Fig. 6. Samples of atoms from the dictionary D learned using SPDA for
flag with peak= 1.

The recovery error in terms of PSNR for all images and
different peak values appears in Table II. By looking at the
overall performance we can see that our proposed strategy
provides better performance on average for 5 of 6 tested peak-
values. Note that even in the case where it does not behave
better, the difference is insignificant (0.02dB for peak= 1).

4A package with the code reproducing all our results can be found at
www.cs.technion.ac.il/∼raja.



9

(a) flag image. (b) NLSPCA. PSNR = 20.37dB (c) BM3D. PSNR = 18.51dB. (d) SPDA. PSNR = 22.59dB.

(e) Noisy image. Peak = 1. (f) NLSPCAbin. PSNR = 16.91dB. (g) BM3Dbin. PSNR = 19.41dB. (h) SPDAbin. PSNR = 19.9dB.

Fig. 5. Denoising of flag with peak = 1. The PSNR is of the presented recovered images.

(a) ridges image. (b) NLSPCA. PSNR = 19.57dB (c) BM3D. PSNR = 19.66dB. (d) SPDA. PSNR = 19.82dB.

(e) Noisy image. Peak = 0.1. (f) NLSPCAbin. PSNR = 21.84dB. (g) BM3Dbin. PSNR = 18.98dB. (h) SPDAbin. PSNR = 24.43dB.

Fig. 7. Denoising of ridges with peak = 0.1. The PSNR is of the presented recovered images.



10

(a) Saturn image. (b) NLSPCA. PSNR = 22.98dB (c) BM3D. PSNR = 21.71dB. (d) SPDA. PSNR = 21.47dB.

(e) Noisy image. Peak = 0.2. (f) NLSPCAbin. PSNR = 20.35dB. (g) BM3Dbin. PSNR = 23.16dB. (h) SPDAbin. PSNR = 24.35dB.

Fig. 8. Denoising of Saturn with peak = 0.2. The PSNR is of the presented recovered images.

(a) house image. (b) NLSPCA. PSNR = 23.23dB (c) BM3D. PSNR = 24.06dB. (d) SPDA. PSNR = 24.8dB.

(e) Noisy image. Peak = 2. (f) NLSPCAbin. PSNR = 21.28dB. (g) BM3Dbin. PSNR = 24.23dB. (h) SPDAbin. PSNR = 21.51dB.

Fig. 9. Denoising of house with peak = 2. The PSNR is of the presented recovered images.



11

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average
NLSPCA 20.86 14.42 16.41 17.81 19.11 16.24 16.59 20.92 17.8
NLSPCAbin 19.13 16.07 17.15 18.71 21.89 16.12 16.93 24.05 18.75
BM3D 0.1 19.42 13.05 15.66 16.28 16.93 15.61 15.68 20.06 16.6
BM3Dbin 21.19 14.23 16.91 18.62 21.90 15.92 16.91 20.40 18.26
SPDA (our work) 17.40 13.35 14.36 14.84 15.12 14.28 14.60 19.86 15.48
SPDAbin (our work) 22.00 15.40 16.75 18.73 21.90 16.27 16.99 25.32 19.17
NLSPCA 22.90 16.48 17.79 18.91 21.10 17.45 17.46 24.22 19.54
NLSPCAbin 20.54 16.54 17.92 19.74 24.00 16.92 17.57 25.91 19.89
BM3D 0.2 22.02 14.28 17.35 18.37 19.95 17.10 17.09 21.27 18.45
BM3Dbin 23.20 16.28 18.25 19.71 24.25 17.44 17.70 23.92 20.09
SPDA (our work) 21.52 16.58 16.93 17.83 18.91 16.75 16.80 23.25 18.57
SPDAbin (our work) 23.99 18.26 17.95 19.62 23.53 17.59 17.82 27.22 20.75
NLSPCA 24.91 18.80 19.23 20.85 23.80 18.78 18.50 28.20 21.63
NLSPCAbin 20.98 17.10 18.32 20.98 26.48 17.77 18.18 26.81 20.83
BM3D 0.5 23.86 15.87 18.83 20.27 22.92 18.49 18.24 23.37 20.29
BM3Dbin 25.70 18.40 19.64 21.71 26.33 19.01 18.67 28.23 22.21
SPDA (our work) 25.50 19.67 18.90 20.51 24.21 18.66 18.46 27.76 21.71
SPDAbin (our work) 25.83 19.22 18.97 21.15 26.57 18.63 18.57 30.97 22.49
NLSPCA 26.89 20.26 20.32 22.09 27.42 19.62 18.94 30.57 23.26
NLSPCAbin 21.18 17.07 18.50 21.26 27.62 17.80 18.20 27.58 21.15
BM3D 1 25.89 18.31 20.37 22.35 26.07 19.89 19.22 26.26 22.42
BM3Dbin 27.41 19.33 20.60 23.19 28.44 20.13 19.38 30.50 23.62
SPDA (our work) 27.02 22.54 20.23 22.73 26.28 19.99 19.20 30.93 23.61
SPDAbin (our work) 27.26 19.88 19.45 21.63 28.31 18.92 18.74 32.41 23.33
NLSPCA 28.22 20.86 20.76 23.86 29.62 20.52 19.47 31.87 24.4
NLSPCAbin 21.49 16.85 18.43 21.41 27.88 17.80 18.34 28.68 21.36
BM3D 2 27.42 20.81 22.13 24.18 28.09 21.97 20.31 29.82 24.59
BM3Dbin 28.84 20.02 21.37 24.49 29.74 21.16 20.17 32.06 24.73
SPDA (our work) 29.38 24.92 21.54 25.09 29.27 21.23 20.15 33.40 25.62
SPDAbin (our work) 28.51 19.81 19.61 21.72 28.98 19.26 18.93 33.51 23.79
NLSPCA 29.44 21.25 21.09 24.89 31.30 21.12 20.16 34.01 25.41
NLSPCAbin 21.20 16.50 18.45 21.44 28.01 17.82 18.34 29.09 21.36
BM3D 4 29.40 23.04 23.94 26.04 30.72 24.07 21.50 32.39 26.89
BM3Dbin 30.19 20.51 21.98 25.48 31.30 22.09 20.80 33.55 25.74
SPDA (our work) 31.04 26.27 21.90 26.09 33.20 22.09 20.55 36.05 27.15
SPDAbin (our work) 29.43 19.85 20.12 22.87 30.93 20.37 19.24 34.44 24.66

TABLE II
EXPERIMENTS ON SIMULATED DATA (AVERAGE OVER FIVE NOISE REALIZATIONS). THE IMAGES ARE THE SAME AS THOSE IN [2]. BEST RESULTS ARE

MARKED.

For low peak values SPDAbin behaves better and for larger
ones SPDA should be preferred. The addition of the binning
to the algorithms improves their performance significantly in
the lower peak values. As the peak raises, the effectiveness of
the binning reduces. Note that the efficiency reduces slower
for BM3D. This might be explained by the fact that it relies
on the Anscombe that becomes much more effective when the
peak increases.

We remark that our algorithm benefits from structured
images, and so do the other methods. This advantage, enabling
the exploitation of self-similarities in images is very important
in real life applications, and it is used extensively in the
literature [25], [26]. In many images we are likely to find the
same patterns repeating over and over again, and especially so
when it comes to small patches.

Note that for peak intensities equal to 0.1, 0.2 NLSPCA
shows better PSNR results than SPDA, while the situation
changes if binning is used. The reason is that in such low
peak values the counts are so low that working with the same
patch-size used with the higher peaks leads to weaker results.
This may lead the dictionary learning process to learn isolated
noise points as dictionary elements as happens with SPDA
in Fig. 8. Thus, we believe that with larger patch sizes we
could get better results for this peak values. However, using

large patch sizes is not feasible computationally. Using binning
compensates this computational barrier by working on a low
resolution version of the image with the same patch size. In
the regular size, NL-PCA overcomes the resolution problem
by the fact that it uses large cluster sizes. In our case, we
cannot use large cluster sizes as we need as many clusters as
possible for the dictionary update step.

In conclusion, SPDA seems to have a good denoising quality
for Poisson noisy images with low SNR achieving state-of-
the-art recovery performance. It is interesting to explore the
contribution of each stage of the algorithm to the quality of
the recovered image. Therefore we evaluate the performance
of SPDA under five different setups: (I) Applying SPDA with
only sparse coding with k = 2; (II) Sparse coding with k = 2
followed by a sparse coding with the bootstrapping based
stopping criterion; (III) Applying SPDA with simple dictionary
learning steps without the joint representation and dictionary
update stage. If no binning is performed and peak≤ 0.2 we
use 120 learning iterations. Otherwise, we use 20 dictionary
learning iterations as the first stage, then re-cluster and apply
additional 20 iterations; (IV) Applying SPDA with the five
advanced dictionary learning steps with no reclustering; (V)
Using the setup from Table II, five advanced dictionary learn-
ing steps followed by another five steps after reclustering.



12

SPDA Setup Peak With Binning No Binning
Ans+G 16.99 17.28

I 17.21 15.22
II 17.26 15.23
III 0.1 18.84 16.50
IV 18.97 15.48
V 19.17 15.48

Ans+G 17.91 18.41
I 18.38 17.78
II 18.38 18.42
III 0.2 20.42 18.95
IV 20.47 18.72
V 20.75 18.57

Ans+G 19.80 20.94
I 18.90 20.31
II 18.72 20.57
III 0.5 22.45 21.55
IV 22.23 21.62
V 22.49 21.71

Ans+G 20.73 23.19
I 19.14 21.92
II 19.00 22.35
III 1 23.17 23.45
IV 23.02 23.43
V 23.33 23.61

Ans+G 21.69 25.08
I 19.27 23.27
II 19.25 23.71
III 2 23.74 25.41
IV 23.31 25.48
V 23.79 25.62

Ans+G 22.02 26.74
I 19.27 24.09
II 19.37 24.64
III 4 24.23 26.99
IV 24.19 27.06
V 24.66 27.15

TABLE III
THE EFFECT OF THE DIFFERENT STAGES IN SPDA: WE PRESENT THE

PSNR OF THE OUTCOME OF SPDA IN DIFFERENT STAGES AND SETUPS OF
THE ALGORITHMS: (I) ONLY SPARSE CODING WITH k = 2; (II) SPARSE

CODING WITH k = 2 FOLLOWED BY A SPARSE CODING WITH THE
BOOTSTRAPPING BASED STOPPING CRITERION; (III) IF NO BINNING IS

USED AND THE PEAKS ARE 0.1, 0.2 THEN SPDA WITH 120 SIMPLE
DICTIONARY LEARNING STEPS IS USED. OTHERWISE SPDA WITH 20

SIMPLE DICTIONARY LEARNING STEPS FOLLOWED BY ANOTHER 20 STEPS
AFTER RECLUSTERING IS USED; (IV) FIVE ADVANCED DICTIONARY

LEARNING STEPS WITH NO RECLUSTERING; (V) FIVE ADVANCED
DICTIONARY LEARNING STEPS FOLLOWED BY ANOTHER FIVE STEPS
AFTER RECLUSTERING. WE COMPARE ALSO TO A VERSION OF THE

ALGORITHM ADAPTED TO GAUSSIAN NOISE USED WITH ANSCOMBE
(ANS+G). THE AVERAGE IN THE RESULTS IS OVER FIVE NOISE

REALIZATIONS AND THE EIGHT IMAGES IN FIG. 4.

For each setup we calculate, for six different peak values,
the average PSNR over the eight images in Fig. 4. The result
is presented in Table III. First note that the gap between the
recovery result of the simple sparse coding (Setup I) and
the one of the advanced dictionary learning with reclustering
(Setup V) is 2.63dB on average which is very significant.

Looking at the contribution of each stage in the algorithm
we observe that the effect of the bootstrapping based stopping
criterion (Setup II) is negligible in the case of binning, while
it improves the recovery result by 0.3dB in the case of no-
binning. We believe that the reason is that the number of atoms
used in the recovery determines the resolution of the recovered
patches. With binning, a coarser resolution of the image is
being processed and therefore the reconstruction result is less

sensitive to the number of patches used in recovery, while
with no-binning patches with finer resolution are used and
therefore the number of atoms to be used for the decoding is
more critical to the recovery performance.

Thus, it is noticeable that the main improvement in the
recovery is due to the dictionary learning. Using only 5
dictionary learning steps we get an improvement of 2.43dB
on average. With re-clustering and an additional 5 dictionary
learning steps we get an improvement of another 0.2dB.

Though the difference between using SPDA with the ad-
vanced dictionary learning steps (Setup V) and the simple
dictionary learning steps is not significant on average, it has
two advantages: (i) For the peaks 0.1, 0.2, 0.5 where the
usage of binning is preferable the the improvement is 0.23dB
on average for SPDAbin and for peaks 1, 2, 4 where it is
better to use no binning the gap is 0.18dB for SPDA. (ii)
The convergence of the algorithm is faster with the advance
learning steps: 10 advanced learning steps versus 40 or 120
simple learning steps. Since the bottleneck of our method is
the sparse coding step and each learning step is followed by
such a one, using SPDA with the advanced dictionary learning
steps (setup V) runs four times faster than with the simple steps
(setup III).

Finally, we compare our algorithm to its “Gaussian version”
with Anscombe. This version aims at minimizing the standard
`2 error objective with the standard sparsity constraints. In
the dictionary learning steps we use the MOD algorithm [27],
[28] with the advanced update step from [20]. Other than that
we adopt exactly the same setup as in SPDA. We present
the average denoising error (over the eight test images in
Fig. 4) in Table III (The algorithm is referred to as Ans+G)
for the different peak values. Note that this algorithm does
not perform well when used with binning. The reason is that
in the binning scenario there are less patches for updating
the dictionary. Therefore we do not benefit from the learning
process with binning. Interestingly, this is not the case when
we work with the Poisson objective. This shows the advantage
of working directly with the Poisson data. Without binning
the performance of the Gaussian version benefits from the
dictionary update as there is a larger number of patches for
the learning. However, in this case as well it is better to use
SPDA. Note that SPDA outperform its Gaussian version for
all peak values except peak= 0.1, for which it is better to use
SPDA with binning anyway.

V. DISCUSSION AND CONCLUSION

This work proposes a new scheme for Poisson denoising,
the sparse Poisson denoising algorithm (SPDA). It relies on
the Poisson statistical model presented in [2] and uses a
dictionary learning strategy with a sparse coding algorithm
that employs a boot-strapping based stopping criterion. The
recovery performance of the SPDA are state-of-the-art and in
some scenarios outperform the existing algorithms by more
than 1db. However, there is still room for improvement in the
current scheme which we leave for a future work:

(i) In our current work we used the same initialization
dictionary D for all types of images. However, in many



13

applications the type of images to be observed are known
beforehand, e.g., space images or fluorescence microscopy cell
images. Off-line training of a dictionary which is dedicated to
a specific task can improve the current results.

(ii) Setting a suitable number of dictionary learning iter-
ations is important for the quality of the reconstruction. An
automated tuning technique should be considered for this
purpose [24], [29]. Setting the same number for all images
gives a mid-level results (which in overall are better than other
existing results). Basically we can say that almost in all images
we have lost output quality because of the fixed stopping point.
We should mention that in some applications this is not an
issue as the tuning can be done manually by the user based
on qualitative results and visual feedback.

ACKNOWLEDGMENT

R. Giryes thanks the Azrieli Foundation for the Azrieli
Fellowship. This research was supported by European Com-
munity’s FP7- ERC program, grant agreement no. 320649. In
addition, the authors thank the reviewers of the manuscript for
their suggestions which greatly improved the paper.

REFERENCES

[1] J. Salmon, C.-A. Deledalle, R. Willett, and Z. T. Harmany, “Poisson
noise reduction with non-local PCA,” in ICASSP, 2012., March 2012,
pp. 1109–1112.

[2] J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise
reduction with non-local PCA,” Journal of Mathematical Imaging and
Vision, pp. 1–16, 2013.

[3] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Deblurring of Pois-
sonian images using BM3D frames,” Proc. SPIE, vol. 8138, pp. 813
812–813 812–7, 2011.

[4] E. Gil-Rodrigo, J. Portilla, D. Miraut, and R. Suarez-Mesa, “Efficient
joint poisson-gauss restoration using multi-frame l2-relaxed-l0 analysis-
based sparsity,” in IEEE International Conference on Image Processing
(ICIP), Sept. 2011, pp. 1385–1388.

[5] M. A. T. Figueiredo and J. Bioucas-Dias, “Restoration of Poissonian
images using alternating direction optimization,” IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3133–3145, Dec. 2010.

[6] X. Zhang, Y. Lu, and T. Chan, “A novel sparsity reconstruction method
from Poisson data for 3D bioluminescence tomography,” J. Sci. Comput.,
vol. 50, no. 3, pp. 519–535, Mar. 2012.

[7] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and
J. Salamero, “Patch-based nonlocal functional for denoising fluorescence
microscopy image sequences,” IEEE Trans. on Med. Imag., vol. 29,
no. 2, pp. 442–454, Feb. 2010.

[8] M. Makitalo and A. Foi, “Optimal inversion of the Anscombe transfor-
mation in low-count Poisson image denoising,” IEEE Trans. on Image
Proces., vol. 20, no. 1, pp. 99–109, Jan. 2011.

[9] B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets
for poisson noise removal,” IEEE Trans. on Image Processing, vol. 17,
no. 7, pp. 1093–1108, July 2008.

[10] F. J. Anscombe, “The transformation of Poisson, Binomial and negative-
Binomial data,” Biometrika, vol. 35, no. 3-4, pp. 246–254, 1948.

[11] M. Fisz, “The limiting distribution of a function of two independent ran-
dom variables and its statistical application,” Colloquium Mathematicum,
vol. 3, pp. 138–146, 1955.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. on
Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[13] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in ICCV, 2009, 2009, pp. 2272–
2279.

[14] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with
piecewise linear estimators: From Gaussian mixture models to structured
sparsity,” IEEE Trans. on Image Processing, vol. 21, no. 5, pp. 2481 –
2499, may 2012.

[15] Z. Harmany, R. Marcia, and R. Willett, “This is SPIRAL-TAP: Sparse
poisson intensity reconstruction algorithms – theory and practice,” IEEE
Trans. on Image Processing, vol. 21, no. 3, pp. 1084 –1096, march 2012.

[16] R. Giryes and M. Elad, “Sparsity based poisson denoising,” in IEEE
27th Convention of Electrical Electronics Engineers in Israel (IEEEI),
2012, 2012, pp. 1–5.

[17] F.-X. Dupe and S. Anthoine, “A greedy approach to sparse Poisson
denoising,” in IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), 2013, Sept 2013, pp. 1–6.

[18] A. K. Quoc Tran-Dinh and V. Cevher, “Composite self-concordant
minimization,” CoRR, vol. abs/1308.2867, 2014.

[19] R. Giryes and M. Elad, “Sparsity based poisson inpainting,” in to appear
in IEEE International Conference on Image Processing (ICIP), 2014.

[20] L. Smith and M. Elad, “Improving dictionary learning: Multiple dic-
tionary updates and coefficient reuse,” IEEE Signal Processing Letters,
vol. 20, no. 1, pp. 79–82, Jan. 2013.

[21] M. Elad, Sparse and Redundant Representations: From Theory to Ap-
plications in Signal and Image Processing, 1st ed. Springer Publishing
Company, Incorporated, 2010.

[22] D. J. Lingenfelter, J. A. Fessler, and Z. He, “Sparsity regularization
for image reconstruction with poisson data,” Proc. SPIE, vol. 7246, pp.
72 460F–72 460F–10, 2009.

[23] H. Burger and S. Harmeling, “Improving denoising algorithms via a
multi-scale meta-procedure,” in Pattern Recognition, ser. Lecture Notes
in Computer Science, R. Mester and M. Felsberg, Eds. Springer Berlin
Heidelberg, 2011, vol. 6835, pp. 206–215.

[24] C.-A. Deledalle, F. Tupin, and L. Denis, “Poisson NL means: Unsuper-
vised non local means for poisson noise,” in ICIP, 2010, sept. 2010, pp.
801 –804.

[25] A. Buades, B. Coll, and J. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2005.

[26] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the
nonlocal-means to super-resolution reconstruction,” IEEE Trans. Image
Process., vol. 18, no. 1, pp. 36–51, Jan 2009.

[27] K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal directions
for frame design,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 5, 1999, pp. 2443–2446.

[28] K. Engan, K. Skretting, and J. H. Husy, “Family of iterative ls-based
dictionary learning algorithms, ils-dla, for sparse signal representation,”
Digital Signal Processing, vol. 17, no. 1, pp. 32 – 49, 2007.

[29] R. Giryes, M. Elad, and Y. C. Eldar, “The projected GSURE for
automatic parameter tuning in iterative shrinkage methods,” Applied and
Computational Harmonic Analysis, vol. 30, no. 3, pp. 407 – 422, 2011.


