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Fast Polar Fourier Transform

FFT is one of top 10 algorithms of 20th century.

We'll extend utility of FFT algorithms to new 
class of settings in image processing.

Create a tool which is:
Free of emotional involvement, & 

Freely available over the internet.

Current Stage:
We have the tool, and its analysis,

Have not demonstrated applications yet.
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Thinking Polar – Continuum Background 
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Motivation
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Results
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1. Thinking Polar - Continuum 

For today f(x,y) function of (x,y)∈ℜ2

Continuous Fourier Transform

( ) ( )( ) ( ) { }∫ ∫ −−=ℑ= dxdyiyvixuexpy,xfy,xfv,uf̂

( ) ( )
( ) { }∫ ∫ θ⋅−θ⋅−=

=θ⋅θ⋅=θ

dxdy)sin(iy)cos(ixrexpy,xf

)sin(r),cos(rf̂,rf
~

Polar coordinates:   u=r·cos(θ) , v=r·sin(θ)

Important Processes easy to continuum polar domain.
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Natural Operations: 1. Rotation

Using the polar coordinates, rotation is simply a shift in 
the angular variable.

1. Thinking Polar - Continuum

Qθ0
– planar rotation by θ0 degrees

Rotation 

In polar coordinates – shift in angular variable

( ) { }( )y,xQfy,xf
00 θθ =

( ) ( )0,rf
~

,rf
~

0
θ−θ=θθ
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Natural Operations: 2. Scaling

Using the polar coordinates, 2D scaling is simply a 1D 
scaling in the radial variable.

1. Thinking Polar - Continuum

Sα – planar scaling by a factor α

Scaling

In polar coordinates – 1D scale in radial variable

Log-Polar – shift in the radial variable.

( ) { }( )y,xSfy,xf αα =

( ) ( )θα⋅=θα ,rf
~

Const,rf
~
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Natural Operations: 3. Registration

Using the polar coordinates, rotation+shift registration 
simply amounts to correlations.

1. Thinking Polar - Continuum

f(x,y) and g(x,y): 

Goal: recover                .

Angular cross-correlation between 
– Estimate θ0.

Rotation & cross-correlation on regular Fourier transform 
gives the shift.

( ) { } { }( )00 y,xy,xQgy,xf
0

+= θ

{ }000 ,y,x θ

( ) ( )θθ ,rg~and,rf
~



- 10 -

Natural Operations: 4. Tomography

Using the polar coordinates, we obtain a method to 
obtain the Inverse Radon Transform.

1. Thinking Polar - Continuum

Radon Transform: 

Goal: Given Rf(t,θ), recover f.

Projection-Slice-Theorem:                              .

Reconstruction:                         .

( ) ( )∫∫ −θ+θδ=θ dxdyt)sin(y)cos(x)y,x(f,tRf

( )( ) ( )θ=θℑ ,rf
~

,tRf1

ff̂f
~

Rf aaa
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More Natural Operations
1. Thinking Polar - Continuum

New orthonormal bases:

Ridgelets,

Curvelets,

Fourier Integral operations,

Ridgelet packets.

Analysis of textures.

Analysis of singularities.

More …

r

θ
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Agenda

1. Thinking Polar – Continuum 

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General
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6. From Pseudo-Polar to Polar

7. Algorithm Analysis 

8. Conclusions
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2. Thinking Polar - Discrete

Certain procedures very important to digitize
Rotation, 

Scaling, 

Registration, 

Tomography, and 

…

These look so easy in continuous theory – Can’t we 
use it in the discrete domain? 

Why not Polar-FFT?



- 14 -

The FFT Miracles

1D Discrete Fourier Transform

Uniformly sampled in time and frequency – FFT. 

Complexity – O(5Nlog2N) instead of O(N2).

2. Thinking Polar - Discrete

2D Discrete Fourier Transform

Cartesian grid in space and frequency – Separability

Only 1D-FFT operations.

Smart memory management.
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2D DFT – Cartesian Grid

2. Thinking Polar - Discrete

N
2π

N
2π1

2
N

2
Nn,n2y

1x

21
Nn2
Nn2 −

−=
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1D FFT to rows
5N2logN

Cartesian 
2D-FFT 10N2logN

Cartesian 
Data

N-by-N

1D FFT to columns
5N2logN

2D FFT Complexity

Complexity: O(10N2log2N)
instead of O(N4).

Important Feature: All 
operations are 1D           
– leading to           
efficient cache usage
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Discrete Polar Coordinates?

2. Thinking Polar - Discrete

Choice of grid?

π-π

-π

π

,
NS

n
r

1NS

0nr
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1

−

=
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Grid Problematics

2. Thinking Polar - Discrete

Grid spacing?

Fate of corners?

No X-Y separability !!
π-π

-π

π

ωx

ωy
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Polar FFT - Current Status

2. Thinking Polar - Discrete

Current widespread belief - There cannot be a 
fast method for DFT on the polar grid. See e.g. 
The DFT: an owner’s manual, Briggs and 
Henson, SIAM, 1995, p. 284. 

Consequence of Non-existence:
Continuous Fourier – vague inspiration only.

Fourier in implementations widely deprecated.

Fragmentation: each field special algorithm.
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3. Current State-Of-The-Art

Assessing T: Unequally-spaced FFT (USFFT)

Data in Cartesian set.

Approximate transform in non-Cartesian set.

Oriented to 1D – not 2D and definitely not Polar.

Assessing T†: For Tomography

Data in Polar coordinates in frequency.

Approximate inverse transform to Cartesian grid.

Inspired by the projection-slice-theorem.
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USFFT - Rational

3. Current State-of-the-Art
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+ Destination Polar 
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USFFT - Detailed

Over-sample Cartesian grid.

Rapidly evaluate FT:

Values F.

Possibly - partial derivatives.

Associate Cartesian neighbors to each             

polar  grid point.

Approximate interpolation. 

3. Current State-of-the-Art
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Our Reading of Literature

3. Current State-of-the-Art

Boyd (1992) – Over-sampling and interpolation
by Euler sum or Langrangian interpolation. 

Dutt-Rokhlin (1993,1995) - Over-sampling and 
interpolation by the Fast-Multipole method.

Anderson-Dahleh (1996) – Over-sampling and 
obtaining the partial derivatives, and then 
interpolating by Taylor series.

Ware (1998) – Survey on USFFT methods.
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USFFT Problematics

3. Current State-of-the-Art

Several involved parameters:

Over-sampling factor,

Method of interpolation, and

Order of interpolation.

Good accuracy calls for extensive over-sampling.

Correspondence overhead: spoils vectorizability of 
algorithm - causes high cache misses.

Emotionally involved.
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4. Our Approach - General

Low complexity – O(Const·N2log2N)

Vectorizability – 1D operations only

Non-Expansiveness – Factor 2 (or 4) only

Stability – via Regularization

Accuracy – 2 orders of magnitude over USFFT methods 

We propose a                                                    
Fast Polar Fourier Transform

with the following features:
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Our Strategy

Fast and Exact 
Fourier Trans. 
on a polar-like 

grid 

1D 
interpolations 
to the polar 

grid

Pseudo 
Polar 
Grid
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Agenda
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5. The Pseudo-Polar FFT

Developed by Averbuch, Coifman, Donoho, 

Israeli, and Waldén (1998). 

Basic idea: A “Polar-Like” grid that enables 

EXACT Fourier transform, 

FAST computation,

1D operations only.

Applications: Tomography, image processing, 

Ridgelets, and more.
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The Pseudo-Polar Skeleton

5. The Pseudo-Polar FFT

-3 -2 -1 0 1 2 3

-3
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3

ωx

ωy
NSr equi-spaced 
concentric squares,

NSt ‘equi-spaced’ 
(not in angle)

We separate our 
treatment to 
basically vertical
and basically 
horizontal lines.
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Fast Fourier Transform

5. The Pseudo-Polar FFT

ωx

ωy

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3The destination samples 
are uniformly sampled 
vertically,

Per each row, destination 
samples are uniformly 
sampled horizontally,

Fractional Fourier 
Transform is the answer 
(Chirp-Z), with complexity:  
O(20Nlog2N).

[Why?]
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PP-FFT versus 2D-FFT

5. The Pseudo-Polar FFT

1D FFT to columns
5N2logN

1D FFT to rows
5N2logN

Cartesian 
2D-FFT 10N2logN

1D FFT to columns
5N2logN

1D FRFFT to rows
20N2logN

PP-FFT 
vertical25N2logN

Cartesian 
Data

N-by-N

2D-FFTPP-FFT
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The PP-FFT - Properties

5. The Pseudo-Polar FFT

Exact in exact arithmetic.

No parameters involved !!

Complexity - O(50·N2log2N) versus O(N4).

1D operations only.

For the chosen grid (Sr=St=2) - κ≈5.
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6. From Pseudo-Polar to Polar

Fast and Exact 
Fourier Trans. 
on a polar-like 

grid 

2 stages of 1D 
interpolations 
to get to the 

polar grid
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The Interpolation Stages

6. From Pseudo-Polar to Polar

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

The original Pseudo-
Polar Grid

Warping to equi-spaced 
angles

Warping each ray to 
have the same step

ωx

ωy
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First Interpolation Stage

6. From Pseudo-Polar to Polar

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Every row is a 
trigonometric polynomial of 
order N,

FRFT on over-sampled 
array and 1D interpolation,

Very accurate.

Rotation of the rays to 
have equi-spaced angles 
(S-Pseudo-Polar grid):

ωx

ωy
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The Required Warping

6. From Pseudo-Polar to Polar

Basically vertical lines:
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The Actual Interpolation

6. From Pseudo-Polar to Polar

1D FFT to columns

5N2logN

1D FRFFT to rows

20N2logN

PP-FFT Vertical25N2logN

Cartesian 
Data

N-by-N

S-PP-FFTPP-FFT

1D FFT to columns

5N2logN

1D Over-sampled (S) FRFFT     
to rows

20N2S·log(NS)

1D Interpolation

O{N2}

S-PP-FFT Vertical(20S+5)N2logN
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6. From Pseudo-Polar to Polar

Second Interpolation Stage

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

ωx

ωy
As opposed to the previous 
step, the rays are not 
trigonometric polynomials 
of order N,

We proved that the rays 
are band-limited (smooth) 
functions,

Over-sampling and 
interpolation is expected to 
perform well.
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6. From Pseudo-Polar to Polar

Over-Sampling Along Rays

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3Over-sampling along 
rays cannot be done 
by taking the 1D ray 
and over-sampling it. 

Sr>1:
More concentric squares.

Sr longer 1D-FFT’s at the 
beginning of the algorithm.

Sr times FRFFT operations. 

ωx

ωy
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The Actual Interpolation

6. From Pseudo-Polar to Polar

Cartesian 
Data

N-by-N

1DFFT to over-sampled columns

N·5(NSr)·log(NSr)

NSr·20(NSt)·log(NSt)

1D Over-sampled (S) FRFFT     
to rows

1D Interpolation

O{(NSr)·N} O{N·N}

1D Interpolation

Polar-FFT Vertical

Full Polar FFT 
O{40SrStN2logN}

S-PP-FFT Vertical
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Low complexity – O(Const·N2log2N)

Vectorizability – 1D operations only

Non-Expansiveness – Factor 2 (or 4) only

Stability – via Regularization

Accuracy – 2 orders of magnitude over USFFT methods

We propose a                                                    
Fast Polar Fourier Transform

with the following features:

To Summarize

6. From Pseudo-Polar to Polar
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7. Algorithm Analysis

We have a code performing the Polar-FFT in Matlab:

Where:  X     – Input array of N-by-N samples

St,Sr – Over-sampling factors in the approximations

Y     – Polar-FFT result as an 2N-by-2N array with rows being 
the rays and columns being the concentric circles.

Y=Polar_FFT(X);   

OR                
Y=Polar_FFT(X,St,Sr);
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The Implementation

7. Algorithm Analysis

The current Polar-FFT code implements Taylor 
method for the first interpolation stage and spline 
ONLY (no-derivatives) for the second stage.

For comparison, we demonstrate the performance 
of the USFFT method with over-sampling S and 
interpolation based on the Taylor interpolation 
(found to be the best). 
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||Approximation error||1

Error for Specific Signal 

7. Algorithm Analysis

Taylor USFFT

St=4

• Input is random 
32-by-32 array,

• USFFT method 
uses one 
parameter 
whereas there 
are two for the 
up-sampling in 
the Polar-FFT.

• Thumb rule: 
Sr·St= S2.

St=2 

St=3

St=1

Thumb rule: Sr=4St
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Error For Specific Signals

7. Algorithm Analysis

Similar curves obtained of ||*||∞ and ||*||2 norms.

Similar behavior is found for other signals.

Conclusion: For the proper choice of St and Sr, we 
get 2-orders-of-magnitude improvement in the 
accuracy comparing to the best USFFT method. 

Further improvement should be achieved for Taylor 
interpolation in the second stage. 

US-FFT takes longer due the 2D operations.
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The Transform as a Matrix

7. Algorithm Analysis

All the involved 
transformations (accurate 

and approximate) are 
linear - they can be 

represented as a matrix of 
size 4N2-by-N2.

Ya=Ax
Or   

Yt=Tx

Approximate

True



- 51 -

Regularization of T/A

7. Algorithm Analysis

An input signal of N-by-N is transformed to an 
array or 2N-by-2N. 

For N=16, T size is 1024-by-256, and κ≈60,000
(bad for inversion).









=








=

0
y

xxy
Corner

Polar
Polar T

T
T

Adding the assumption that the Frequency 
corners should be zeroed, we obtain

and the condition number becomes κ≈5 !!!
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Discarding the Corners?

7. Algorithm Analysis

π-π

-π

π

2
π

2
π

2
π−

2
π−

If the given signal was 
sampled at 1.4142 the 
Nyquist Rate, the 
corners can be 
removed.

If it is not, over-
sampling it can be done 
by FFT.



- 53 -

7. Algorithm Analysis

Error Analysis – Worst Signal

( ) FFTPolarFFTPolar ex −− =− TAApproximation error is : 

{ } ( )
2
2

2
2

x x

x
Max/Arge,x PolarFFTPolar2

worstworst

TA −
= −Worst error :

{ } ( )
2
2

2
2

x x

x
Max/Arge,x

Polar

PolarFFTPolar2
rworstrworst

T

TA −
= −Worst relative error :
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7. Algorithm Analysis

Worst Signal - Results

N=16 → T∈C 1024×256, S=Sr=St=4

USFFT
worst signal (abs. 

Value) λ=3.469

The worst case 
signal in the freq. 
Domain (abs. and 

shifted)

Polar-FFT
worst signal (abs. 
Value) λ=0.0319

The worst case 
signal in the freq. 
Domain (abs. and 
shifted)
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7. Algorithm Analysis

Relative Worst Signal - Results

Same parameters: N=16 → T∈C 1024×256, S=Sr=St=4

USFFT          
worst signal (abs. 
Value) λ=0.0613

The worst case 
signal in the freq. 
Domain (abs. and 

shifted)

Polar-FFT
worst signal (abs. 
Value) λ=0.0023

The worst case 
signal in the freq. 
Domain (abs. and 
shifted)
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7. Algorithm Analysis

Comparing Approximations

( ) ( )PolarFFTPolarPolarFFTPolar
H TATA −− −−

Solve for the eigenvalue/vectors of the matrix 

and obtained              (    in ascending order).

Compare to         by computing

using the above eigenvectors and compare to    .

USFFTA

{ } 2N

1kkk x,
=

λ kλ

( ) 2
2kk xPolarUSFFT TA −=α

kλ
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7. Algorithm Analysis

Comparing Approximations - Results

0 200 400 600 800 1000 1200
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2

USFFT

Polar-FFT
Eigen-space 
of the Polar-
FFT

Mean Squared Error

[N=32]
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8. Conclusions

We have proposed a fast, accurate, stable, and 
reliable Polar Discrete-Fourier-Transform.

By this we extend utility of FFT algorithms to 
new class of settings in image processing.

Future plans:
Extend the analysis and improve further,

Demonstrate applications,

Publish the code for the procedure and some 
applications over the internet.
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Beyond this slides are 
the appendix or 
redundant slides 
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USFFT for T†

3. Current State-of-the-Art

Over-sample Polar grid (and possibly 

partial derivatives).

Associate polar neighbors to each 

Cartesian grid point. 

Approximate interpolation to get the 

Cartesian grid values. 

Perform the Cartesian 2D Inverse-FFT.
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Our Reading of Literature

3. Current State-of-the-Art

Natterer (1985).

Jackson, Meyer, Nishimura and Macovski (1991).

Schomberg and Timmer (1995). 

Choi and Munson (1998). 

Direct Fourier method with over-sampling and 
interpolation (also called gridding) – see 
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The Pseudo-Polar Sampling

Basically vertical lines:
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For St=Sr=1, we have 
N2 grid points ωx

ωy

A. The Fractional Fourier Transform
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The Pseudo-Polar FT – Stage 1

A. The Fractional Fourier Transform

{ }
1 2

1

N 1 N 1

1 y 1 2 2 y
k 0 k 0t

f̂ k ,

2m
exp ik f k ,k exp ik

NS

− −

= =

=   

 
= − ω − ω    

 
∑ ∑

l

1444442444443

This part is obtained by 1D-FFT along the rows !!

( ) { }
1 2

N 1 N 1

x y 1 2 1 x 2 y
k 0 k 0

F , f k ,k exp ik ik
− −

= =

ω ω = − ω − ω =  ∑ ∑

1 2

N 1 N 1

1 2 1 y 2 y
k 0 k 0 t

2m
f k ,k exp ik ik

NS

− −

= =

 
= − ω − ω =    

 
∑ ∑
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The Pseudo-Polar FT – Stage 2

( ) [ ]∑
−

= 





 ω
−==ωω

1N

0k t

y
11yx

1
NS
2

mikexp,kf̂],m[F,F ll

The destination grid points are also 1D equi-spaced in 
the  frequency domain, BUT THEY ARE NOT IN THE 
RANGE [-π,π], but rather [-ωy,ωy].

[ ]l,kf̂ 1This summation takes columns of              (being equi-
spaced 1D signals) and computes Fourier transform of it. 

This task is called Fractional Fourier/Chirp-Z Transform.

A. The Fractional Fourier Transform
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Fractional Fourier Transform

[ ]∑
−

= 





 α⋅

π
−=

1N

0k N
km2

iexpkf]m[F

For α=1 we get the ordinary 1D-FFT,

For α=-1 we get the ordinary 1D-IFFT,

There exists a Fast Fractional Fourier Transform with the 
complexity of O(20·Nlog2N), based on 1D-FFT operations.
See: Fast fractional Fourier transforms and applications, by D. H. Bailey and P. N.
Swarztrauber, SIAM Review, 1991, and also Bluestein, Rabiner, and Rader (1960’s).

A. The Fractional Fourier Transform
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Post      
Multiplication

Convolution

Pre-Multiplication

[ ]

[ ] ( )[ ]

[ ] ( )∑

∑

∑

−

=

απαπ

−

=

−

=













α
−π

−⋅⋅⋅=

=












α⋅
−−−π

−=

=






 α⋅

π
−=

1N

0k

2
N
ki

N
mi

1N

0k

222

1N

0k

N
mk

iexpekfe

N
mkmk

iexpkf

N
km2

iexpkf]m[F

22

FR-FFT Detailed

A. The Fractional Fourier Transform

[Back]
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Interpolation As 1D Operation

B. From Pseudo-Polar to Polar

{ }
1 2

N 1 N 1

1 y 1 2 2 y
k 0 k 0t

m
exp ik tan f k ,k exp ik

2NS

− −

= =

  π = − ω − ω =     
   

∑ ∑

It is a 1D operation – But it is not the Fractional-FFT. 

Can be computed by over-sampled FRFFT and interpolation.

( ) { }
1 2

N 1 N 1

x y 1 2 1 x 2 y
k 0 k 0

F , f k ,k exp ik ik
− −

= =

ω ω = − ω − ω =  ∑ ∑

1

N 1

1 y 1
k 0 t

m ˆexp ik tan f k ,
2NS

−

=

  π = − ω      
   

∑ l


