Fast Polar Fourier Transform

Michael Elad*

Scientific Computing and Computational Mathematics

* Joint work with Dave Donoho (Stanford-Statistics),

Collaborators

Dave Donoho
Statistics Department Stanford

Amir Averbuch
CS Department
Tel-Aviv University

Ronald Coifman
Math. Department Yale

Fast Polar Fourier Transform

\square FFT is one of top 10 algorithms of 20th century.
\square We'll extend utility of FFT algorithms to new class of settings in image processing.
\square Create a tool which is:

- Free of emotional involvement, \&
- Freely available over the internet.
\square Current Stage:
- We have the tool, and its analysis,
- Have not demonstrated applications yet.

Agenda

8. Conclusions

1. Thinking Polar - Continuum

\square For today $f(x, y)$ function of $(x, y) \in \mathfrak{R}^{2}$
\square Continuous Fourier Transform

$$
\hat{f}(u, v)=(\mathfrak{s f})(x, y)=\iint f(x, y) \exp \{-i x u-i y v\} d x d y
$$

\square Polar coordinates: $\mathrm{u}=\mathrm{r} \cdot \cos (\theta)$, $\mathrm{v}=\mathrm{r} \cdot \sin (\theta)$

$$
\begin{aligned}
\tilde{f}(r, \theta) & =\hat{f}(r \cdot \cos (\theta), r \cdot \sin (\theta))= \\
& =\iint f(x, y) \exp \{-i x r \cdot \cos (\theta)-i y \cdot \sin (\theta)\} d x d y
\end{aligned}
$$

\square Important Processes easy to continuum polar domain.

1. Thinking Polar - Continuum

Natural Operations: 1. Rotation

Using the polar coordinates, rotation is simply a shift in the angular variable.
$\square \mathrm{Q}_{0_{0}}$ - planar rotation by θ_{0} degrees
\square Rotation $f_{\theta_{0}}(x, y)=f\left(Q_{\theta_{0}}\{x, y\}\right)$
\square In polar coordinates - shift in angular variable

$$
\tilde{f}_{0}(r, \theta)=\tilde{f}\left(r, \theta-\theta_{0}\right)
$$

Natural Operations: 2. Scaling

Using the polar coordinates, 2D scaling is simply a 1D scaling in the radial variable.
$\square \mathrm{S}_{\alpha}$ - planar scaling by a factor α
\square Scaling $f_{\alpha}(x, y)=f\left(S_{\alpha}\{x, y\}\right)$
I In polar coordinates - 1D scale in radial variable

$$
\tilde{f}_{\alpha}(r, \theta)=\text { Const } \cdot \tilde{f}(\alpha r, \theta)
$$

\square Log-Polar - shift in the radial variable.

Natural Operations: 3. Registration

Using the polar coordinates, rotation+shift registration simply amounts to correlations.
$\square f(x, y)$ and $g(x, y): f(x, y)=g\left(Q_{\theta_{0}}\{x, y\}+\left\{x_{0}, y_{0}\right\}\right)$
\square Goal: recover $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}, \theta_{0}\right\}$.
\square Angular cross-correlation between $|\tilde{f}(r, \theta)|$ and $|\tilde{g}(r, \theta)|$ - Estimate θ_{0}.

- Rotation \& cross-correlation on regular Fourier transform gives the shift.

Natural Operations: 4. Tomography

Using the polar coordinates, we obtain a method to obtain the Inverse Radon Transform.
\square Radon Transform:

$$
R f(t, \theta)=\iint f(x, y) \delta(x \cos (\theta)+y \sin (\theta)-t) d x d y
$$

\square Goal: Given Rf(t, θ), recover f.
\square Projection-Slice-Theorem: $\left(\mathfrak{\Im}_{1} R f\right)(t, \theta)=\tilde{f}(r, \theta)$.
\square Reconstruction: $\operatorname{Rf} \mapsto \widetilde{\mathrm{f}}^{\sim} \mapsto \hat{\mathrm{f}} \mapsto \mathrm{f}$.

More Natural Operations

-New orthonormal bases:

- Ridgelets,
- Curvelets,
- Fourier Integral operations,
- Ridgelet packets.
- Analysis of textures.

Analysis of singularities.

■More ...

Agenda

1. Thinking Polar - Continuum
2. $\|\|$ Thinking Polar - Discrete
3. Current State-Of-The-Art
4. Our Approach - General
5. The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. Algorithm Analysis
8. Conclusions

2. Thinking Polar - Discrete

\square Certain procedures very important to digitize

- Rotation,
- Scaling,
- Registration,
- Tomography, and
- ...
\square These look so easy in continuous theory - Can't we use it in the discrete domain?
\square Why not Polar-FFT?

The FFT Miracles

\square 1D Discrete Fourier Transform

- Uniformly sampled in time and frequency - FFT.
- Complexity - $\mathrm{O}\left(5 \mathrm{Nlog}_{2} \mathrm{~N}\right)$ instead of $\mathrm{O}\left(\mathrm{N}^{2}\right)$.
- 2D Discrete Fourier Transform
- Cartesian grid in space and frequency - Separability
- Only 1D-FFT operations.
- Smart memory management.

2. Thinking Polar - Discrete

2D DFT - Cartesian Grid

$$
/ \mathbb{N} \mathrm{n}_{1}, n_{2}=-\frac{N}{2}
$$

2D FFT Complexity

\square Complexity: $\mathrm{O}\left(10 \mathrm{~N}^{2} \log _{2} \mathrm{~N}\right)$ instead of $\mathrm{O}\left(\mathrm{N}^{4}\right)$.

I Important Feature: All operations are 1D

- leading to efficient cache usage

Discrete Polar Coordinates?

Choice of grid?
$\left\{r=\frac{\pi n_{1}}{N S_{r}}\right\}_{n_{1}=0}^{N S_{r}-1},\left\{\theta=\frac{2 \pi n_{2}}{N S_{\theta}}\right\}_{n_{2}=0}^{N S_{\theta}-1}$
Resulting with NS_{0}
rays with NS
elements on each:
For $\mathrm{S}_{9}=\mathrm{S}_{\mathrm{r}}=1$, we
have N^{2} grid points.

Grid Problematics

\square Grid spacing?
\square Fate of corners?

- No X-Y separability !!

Polar FFT - Current Status

\square Current widespread belief - There cannot be a fast method for DFT on the polar grid. See e.g. The DFT: an owner's manual, Briggs and Henson, SIAM, 1995, p. 284.
\square Consequence of Non-existence:

- Continuous Fourier - vague inspiration only.
- Fourier in implementations widely deprecated.
- Fragmentation: each field special algorithm.

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. $\|\|$ Current State-Of-The-Art
4. Our Approach - General
5. The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. Algorithm Analysis
8. Conclusions

3. Current State-Of-The-Art

\square Assessing T: Unequally-spaced FFT (USFFT)

- Data in Cartesian set.
- Approximate transform in non-Cartesian set.
- Oriented to 1D - not 2D and definitely not Polar.
\square Assessing T^{\dagger} : For Tomography
- Data in Polar coordinates in frequency.
- Approximate inverse transform to Cartesian grid.
- Inspired by the projection-slice-theorem.

3. Current State-of-the-Art

USFFT - Rational

+ Destination Polar grid
- Critically sampled Cartesian grid
o Over-sampled Cartesian grid

USFFT - Detailed

\square Over-sample Cartesian grid.
\square Rapidly evaluate FT:

- Values F.
- Possibly - partial derivatives.
- Associate Cartesian neighbors to each polar grid point.
\square Approximate interpolation.

Our Reading of Literature

\square Boyd (1992) - Over-sampling and interpolation by Euler sum or Langrangian interpolation.

- Dutt-Rokhlin (1993,1995) - Over-sampling and interpolation by the Fast-Multipole method.
\square Anderson-Dahleh (1996) - Over-sampling and obtaining the partial derivatives, and then interpolating by Taylor series.
- Ware (1998) - Survey on USFFT methods.

USFFT Problematics

\square Several involved parameters:

- Over-sampling factor,
- Method of interpolation, and
- Order of interpolation.
\square Good accuracy calls for extensive over-sampling.
\square Correspondence overhead: spoils vectorizability of algorithm - causes high cache misses.
\square Emotionally involved.

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. Current State-Of-The-Art
4. $\|\|$ Our Approach - General
5. The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. Algorithm Analysis
8. Conclusions

4. Our Approach - General

We propose a

Fast Polar Fourier Transform

with the following features:

- Low complexity - O(Const $\cdot \mathrm{N}^{2} \log _{2} \mathrm{~N}$)
- Vectorizability - 1D operations only
- Non-Expansiveness - Factor 2 (or 4) only
- Stability - via Regularization
- Accuracy - 2 orders of magnitude over USFFT methods

Our Strategy

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. Current State-Of-The-Art
4. Our Approach - General
5. $\|\|$ The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. Algorithm Analysis
8. Conclusions

5. The Pseudo-Polar FFT

\square Developed by Averbuch, Coifman, Donoho, Israeli, and Waldén (1998).
\square Basic idea: A "Polar-Like" grid that enables

- EXACT Fourier transform,
- FAST computation,
- 1D operations only.
\square Applications: Tomography, image processing, Ridgelets, and more.

The Pseudo-Polar Skeleton

- ${ }^{2} S_{\mathrm{r}}$ equi-spaced concentric squares,
- NS ${ }_{t}$ 'equi-spaced' (not in angle)
-We separate our treatment to basically vertical and basically horizontal lines.

Fast Fourier Transform

\square The destination samples are uniformly sampled vertically,
\square Per each row, destination samples are uniformly sampled horizontally,

- Fractional Fourier

Transform is the answer (Chirp-Z), with complexity: $\mathrm{O}\left(20 \mathrm{Nlog}_{2} \mathrm{~N}\right)$.
[Why?]

PP-FFT versus 2D-FFI

The PP-FFT - Properties

- Exact in exact arithmetic.
\square No parameters involved !!
\square Complexity - $\mathrm{O}\left(50 \cdot \mathrm{~N}^{2} \log _{2} \mathrm{~N}\right)$ versus $\mathrm{O}\left(\mathrm{N}^{4}\right)$.
-1D operations only.
\square For the chosen grid $\left(\mathrm{S}_{\mathrm{r}}=\mathrm{S}_{\mathrm{t}}=2\right)-\kappa \approx 5$.

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. Current State-Of-The-Art
4. Our Approach - General
5. The Pseudo-Polar Fast Transform
6. I\| From Pseudo-Polar to Polar
7. Algorithm Analysis
8. Conclusions

6. From Pseudo-Polar to Polar

000000000
 000000000

Fast and Exact Fourier Trans. on a polar-like grid

\square| 2 stages of 1D
 interpolations
 to get to the
 polar grid |
| :---: |

2 stages of 1D interpolations to get to the polar grid

The Interpolation Stages

The original PseudoPolar GridWarping to equi-spaced angles

Warping each ray to have the same step

First Interpolation Stage

ω_{y}
Rotation of the rays to have equi-spaced angles (S-Pseudo-Polar grid):

E Every row is a trigonometric polynomial of order N ,
\square FRFT on over-sampled array and 1D interpolation,
\square Very accurate.

The Required Warping

Basically vertical lines:

$$
\left.\begin{array}{l}
\left\{\omega_{y}=\frac{2 \pi \ell}{N S_{r}}, \omega_{x}=\frac{2 m}{N S_{t}} \omega_{y}\right\}_{\ell, \mathrm{m}=}^{N S_{t} / 2-1}-N S_{t} / 2
\end{array}\right\} \begin{aligned}
& \left\{\omega_{x}=\omega_{y} \cdot \tan \left(\frac{m \pi}{2 N S_{t}}\right)\right\}_{\mathrm{m}=}^{N S_{t} / 2-1}
\end{aligned}
$$

[Why?]

New ω_{x}

Original ω_{x}

The Actual Interpolation

Second Interpolation Stage

$$
\omega_{\mathrm{y}}
$$

- As opposed to the previous step, the rays are not trigonometric polynomials of order N ,
- We proved that the rays are band-limited (smooth) functions,
\square Over-sampling and interpolation is expected to perform well.

Oyer-Sampling Along Rays

O Over-sampling along rays cannot be done by taking the 1D ray and over-sampling it.
$\square S_{\mathrm{r}}>1$:

- More concentric squares.
- S_{r} longer 1D-FFT's at the beginning of the algorithm.
- S_{r} times FRFFT operations.

The Actual Interpolation

$$
\begin{aligned}
& \mathrm{N} \cdot 5\left(\mathrm{NS}_{\mathrm{r}}\right) \cdot \log \left(\mathrm{NS}_{\mathrm{r}}\right) \\
& \hline \text { 1DFFT to over-sampled columns }
\end{aligned}
$$

$$
N S_{r} \cdot 20\left(N S_{t}\right) \cdot \log \left(N S_{t}\right)
$$

1D Over-sampled (S) FRFFT to rows
$\mathrm{O}\left\{\left(\mathrm{NS}_{\mathrm{r}}\right) \cdot \mathrm{N}\right\}$
1D Interpolation

To Summarize

We propose a

Fast Polar Fourier Transform

with the following features:

- Low complexity - O(Const $\left.\cdot \mathrm{N}^{2} \log _{2} \mathrm{~N}\right)$
- Vectorizability - 1D operations only
- Non-Expansiveness - Factor 2 (or 4) only
- Stability - via Regularization
- Accuracy - 2 orders of magnitude over USFFT methods

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. Current State-Of-The-Art
4. Our Approach - General
5. The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. $\|\|$ Algorithm Analysis
8. Conclusions

7. Algorithm Analysis

We have a code performing the Polar-FFT in Matlab:

$$
\begin{gathered}
\mathrm{Y}=\text { Polar_FFT }(\mathrm{X}) ; \\
\mathrm{OR} \\
\mathrm{Y}=\mathrm{Polar}_{-} \mathrm{FFT}\left(\mathrm{X}, \mathrm{~S}_{\mathrm{t}}, \mathrm{~S}_{\mathrm{r}}\right) ;
\end{gathered}
$$

Where: X - Input array of N -by- N samples $\mathrm{S}_{\mathrm{t}} \mathrm{S}_{\mathrm{r}}$ - Over-sampling factors in the approximations

Y - Polar-FFT result as an 2 N -by- 2 N array with rows being the rays and columns being the concentric circles.

The Implementation

\square The current Polar-FFT code implements Taylor method for the first interpolation stage and spline ONLY (no-derivatives) for the second stage.
\square For comparison, we demonstrate the performance of the USFFT method with over-sampling S and interpolation based on the Taylor interpolation (found to be the best).

Error for Specific Signal

- Input is random 32-by-32 array,
- USFFT method uses one parameter whereas there are two for the up-sampling in the Polar-FFT.
- Thumb rule:
$\mathrm{S}_{\mathrm{r}} \cdot \mathrm{S}_{\mathrm{t}}=\mathrm{S}^{2}$.

Error For Specific Signals

\square Similar curves obtained of $\left\|\left\|_{\infty}\right\|_{\infty}\right.$ and $\|\left\|^{*}\right\|_{2}$ norms.
\square Similar behavior is found for other signals.
\square Conclusion: For the proper choice of S_{t} and S_{r}, we get 2-orders-of-magnitude improvement in the accuracy comparing to the best USFFT method.
\square Further improvement should be achieved for Taylor interpolation in the second stage.

- US-FFT takes longer due the 2D operations.

The Transform as a Matrix

All the involved
transformations (accurate and approximate) are
linear - they can be represented as a matrix of size $4 \mathrm{~N}^{2}$-by- N^{2}.

Reqularization of T/A

\square An input signal of N -by-N is transformed to an array or 2 N -by-2N.
\square For $\mathrm{N}=16$, \mathbf{T} size is 1024 -by-256, and $\mathrm{k} \approx 60,000$ (bad for inversion).
\square Adding the assumption that the Frequency corners should be zeroed, we obtain

$$
\underline{\mathrm{y}}=\mathrm{T}_{\text {Polar }} \underline{\mathrm{x}} \quad \square\left[\begin{array}{c}
\mathbf{T}_{\text {Polar }} \\
\mathbf{T}_{\text {Corner }}
\end{array}\right] \underline{x}=\left[\begin{array}{l}
\underline{\mathrm{y}} \\
\underline{0}
\end{array}\right]
$$

and the condition number becomes $k \approx 5$
!!!

Discarding the Corners?

\square If the given signal was sampled at 1.4142 the Nyquist Rate, the corners can be removed.
\square If it is not, oversampling it can be done by FFT.

Error Analysis - Worst Signal

Approximation error is : $\left(\mathbf{A}_{\text {Polar-fTT }}-\mathbf{T}\right) \underline{\mathbf{x}}=\underline{\mathrm{e}}_{\text {Polar-FTT }}$

Worst error : $\left\{\underline{X}_{\text {wosst }} \mathrm{e}_{\text {woost }}^{2}\right\}=\operatorname{Arg} / \operatorname{Max} \frac{\left\|\left(\mathbf{A}_{\text {polas-frr }}-\mathbf{T}_{\text {polas }}\right) \underline{x}\right\|_{2}^{2}}{\|\underline{x}\|_{2}^{2}}$
Worst relative error : $\left\{\underline{\underline{x}}_{\text {woosty }}, e_{\text {woost }}^{2}\right\}=\operatorname{Arg} / \operatorname{Max} \frac{\left\|\left(\boldsymbol{A}_{\text {poiar-fT }}-\mathbf{T}_{\text {Polar }}\right) \underline{x}\right\|_{2}^{2}}{\left\|\mathbf{T}_{\text {polar }} \underline{x}\right\|_{2}^{2}}$

Worst Signal - Results

$$
\mathrm{N}=16 \rightarrow \mathbf{T} \in C^{1024 \times 256}, \mathrm{~S}=\mathrm{S}_{\mathrm{r}}=\mathrm{S}_{\mathrm{t}}=4
$$

USFFT

worst signal (abs.
Value) $\lambda=3.469$

The worst case signal in the freq. Domain (abs. and shifted)

Polar-FFT

worst signal (abs.
Value) $\lambda=0.0319$

The worst case signal in the freq. Domain (abs. and shifted)

Relative Worst Signal - Results

Same parameters: $\mathrm{N}=16 \rightarrow \mathbf{T} \in C^{1024 \times 256}, \mathrm{~S}=\mathrm{S}_{\mathrm{r}}=\mathrm{S}_{\mathrm{t}}=4$

| USFFT
 worst signal (abs. |
| :--- | :--- | :--- |
| Value) $\lambda=0.0613$ |, | Polar-FFT |
| :--- |
| worst signal (abs. |
| Value) $\lambda=0.0023$ |

Comparing Approximations

\square Solve for the eigenvalue/vectors of the matrix
and obtained $\left\{\lambda_{k}, x_{k}\right\}_{k=1}^{\mu^{2}}\left(\lambda_{k}\right.$ in ascending order).
\square Compare to $\mathbf{A}_{\text {UsFFT }}$ by computing

$$
\alpha_{k}=\left\|\left(\mathbf{A}_{\text {vsfit }}-\mathbf{T}_{\text {podas }}\right) \underline{x}_{k}\right\|_{2}^{2}
$$

using the above eigenvectors and compare to λ_{k}.

Comparing Approximations - Results

Mean Squared Error

Agenda

1. Thinking Polar - Continuum
2. Thinking Polar - Discrete
3. Current State-Of-The-Art
4. Our Approach - General
5. The Pseudo-Polar Fast Transform
6. From Pseudo-Polar to Polar
7. Algorithm Analysis
8. $\|$ Conclusions

8. Conclusions

\square We have proposed a fast, accurate, stable, and reliable Polar Discrete-Fourier-Transform.
\square By this we extend utility of FFT algorithms to new class of settings in image processing.
\square Future plans:

- Extend the analysis and improve further,
- Demonstrate applications,
- Publish the code for the procedure and some applications over the internet.

Beyond this slides are the appendix or redundant slides

USFFT for T ${ }^{\dagger}$

\square Over-sample Polar grid (and possibly partial derivatives).
\square Associate polar neighbors to each Cartesian grid point.
\square Approximate interpolation to get the Cartesian grid values.
\square Perform the Cartesian 2D Inverse-FFT.

Our Reading of Literature

Direct Fourier method with over-sampling and interpolation (also called gridding) - see
\square Natterer (1985).
\square Jackson, Meyer, Nishimura and Macovski (1991).
\square Schomberg and Timmer (1995).
\square Choi and Munson (1998).

The Pseudo-Polar Sampling

Basically vertical lines:

$$
\begin{gathered}
\left\{\omega_{\mathrm{y}}=\frac{2 \pi \ell}{\mathrm{NS}\}_{\mathrm{r}}}\right\}_{\ell=-\mathrm{NS}}^{\mathrm{NS} / 2} \mathrm{NS}_{\mathrm{r}} /-1 \\
\left\{\omega_{\mathrm{x}}=\frac{2 \mathrm{~m}}{\mathrm{NS} \omega_{\mathrm{t}}} \omega_{\mathrm{y}}\right\}_{\mathrm{m}=}^{\mathrm{NS}=} \mathrm{NS}_{\mathrm{t}} / 2-1
\end{gathered}
$$

For $\mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{r}}=1$, we have N^{2} grid points

The Pseudo-Polar FT - Stage 1

$$
\begin{aligned}
& F\left(\omega_{x}, \omega_{y}\right)=\sum_{k_{1}=0}^{N-1} \sum_{k_{2}=0}^{N-1} f\left[k_{1}, k_{2}\right] \exp \left\{-i k_{1} \omega_{y}-i k_{2} \omega_{y}\right\}= \\
&=\sum_{k_{1}=0}^{N-0} \sum_{k_{2}=0}^{N-1} f\left[k_{1}, k_{2}\right] \exp \left\{-i k_{1} \frac{2 m}{N S_{t}} \omega_{y}-i k_{2} \omega_{y}\right\}= \\
&\left.=\sum_{k_{1}=0}^{N-1} \exp \left\{-i k_{1} \frac{2 m}{N S_{t}} \omega_{y}\right\}\right\} \sum_{k_{2}=0}^{N-1} f\left[k_{1}, k_{2}\right] \exp \left\{-i k_{2} \omega_{y}\right\} \\
&=\left\{k_{k}, t\right]
\end{aligned}
$$

This part is obtained by 1D-FFT along the rows !!

The Pseudo-Polar FT - Stage 2

$$
F\left(\omega_{x}, \omega_{y}\right)=F[m, \ell]=\sum_{k_{1}=0}^{N-1} \hat{f}\left[k_{1}, \ell\right] \exp \left\{-i k_{1} m \frac{2 \omega_{y}}{N S_{t}}\right\}
$$

\square This summation takes columns of $\hat{f}\left[\mathrm{k}_{1}, \ell\right.$] (being equispaced 1D signals) and computes Fourier transform of it.
\square The destination grid points are also 1D equi-spaced in the frequency domain, BUT THEY ARE NOT IN THE RANGE $[-\pi, \pi]$, but rather [$-\omega_{y}, \omega_{y}$].
This task is called Fractional Fourier/Chirp-Z Transform.

Fractional Fourier Transform

$$
F[m]=\sum_{k=0}^{N-1} f[k] \exp \left\{-i \frac{2 \pi k m}{N} \cdot \alpha\right\}
$$

\square For $\alpha=1$ we get the ordinary 1D-FFT,
\square For $\alpha=-1$ we get the ordinary 1D-IFFT,
-There exists a Fast Fractional Fourier Transform with the complexity of $\mathrm{O}\left(20 \cdot \mathrm{Nlog}_{2} \mathrm{~N}\right)$, based on 1D-FFT operations.

See: Fast fractional Fourier transforms and applications, by D. H. Bailey and P. N. Swarztrauber, SIAM Review, 1991, and also Bluestein, Rabiner, and Rader (1960's).

FR-FFT Detailed

$$
\begin{aligned}
& F[m]=\sum_{k=0}^{N-1} f[k] \exp \left\{-i \frac{2 \pi k m}{N} \cdot \alpha\right\}= \\
& =\sum_{k=0}^{N-1} f[k] \exp \left\{-i \frac{\pi\left[(k-m)^{2}-k^{2}-m^{2}\right]}{N} \cdot \alpha\right\}= \\
& =\underbrace{i \frac{\pi \frac{m^{2}}{N}}{N}} \cdot \sum_{k=0}^{N-1} f[k] \cdot e^{i \frac{\pi k^{2}}{N} \alpha} \cdot \exp \left\{-i \frac{\pi(k-m)^{2}}{N} \alpha\right\} \\
& \text { Pre-Multiplication }
\end{aligned}
$$

Interpolation As 1D Operation

$$
\begin{aligned}
F\left(\omega_{x}, \omega_{y}\right) & =\sum_{k_{1}=0}^{N-1} \sum_{k_{2}=0}^{N-1} f\left[k_{1}, k_{2}\right] \exp \left\{-i k_{1} \omega_{x}-i k_{2} \omega_{y}\right\}= \\
& =\sum_{k_{1}=0}^{N-1} \exp \left\{-i k_{1} \tan \left(\frac{m \pi}{2 N S_{t}}\right) \omega_{y}\right\} \sum_{k_{2}=0}^{N-1} f\left[k_{1}, k_{2}\right] \exp \left\{-i k_{2} \omega_{y}\right\}= \\
& =\sum_{k_{1}=0}^{N-1} \exp \left\{-i k_{1} \tan \left(\frac{m \pi}{2 N S_{t}}\right) \omega_{y}\right\} \hat{f}\left[k_{1}, \ell\right]
\end{aligned}
$$

\square It is a 1D operation - But it is not the Fractional-FFT.
\square Can be computed by over-sampled FRFFT and interpolation.

