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Fast Polar Fourier Transform

d FFT is one of top 10 algorithms of 20th century.

d We'll extend utility of FFT algorithms to new
class of settings in image processing.

O Create a tool which is:
= Free of emotional involvement, &
= Freely available over the internet.
Q Current Stage:

= We have the tool, and its analysis,
= Have not demonstrated applications yet.
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1. Thinking Polar - Continuum

A For today f(x,y) function of (x,y)eR?

1 Continuous Fourier Transform
f(u,v) = (3F)(x,y) = | [£(x, y)exp{-ixu—iyvidxdy
A Polar coordinates: u=r-cos(6) , v=r-sin(0)
f(r,0)=f(r - cos(e),r - sin(0)) =
= ”f(x, y)exp{-ixr - cos(8) — iy - sin(0) Jdxdy

 Important Processes easy to continuum polar domain.




1. Thinking Polar - Continuum




1. Thinking Polar - Continuum

Natural Operations: 1. Rotation

Using the polar coordinates, rotation is simply a shift in
the angular variable.

Q- planar rotation by 6, degrees

0 Rotation fy (X, y)= f(Qeo %, v})

A In polar coordinates — shift in angular variable

?(;o (r,0)=f(r,6-0p)




1. Thinking Polar - Continuum

Natural Operations: 2. Scaling

Using the polar coordinates, 2D scaling is simply a 1D
scaling in the radial variable.

4 S, — planar scaling by a factor o

A Scaling f,(x,y)=f(S,{x,y})

A In polar coordinates — 1D scale in radial variable

t.(r,8) = Const - f (ar, )

A Log-Polar — shift in the radial variable.




1. Thinking Polar - Continuum

Natural Operations: 3. Registration

Using the polar coordinates, rotation+shift registration
simply amounts to correlations.

O f(xy) and g(xy): f(x,y)=g(Qq, &, v}+ X0, Yo}
Q Goal: recover {Xq, Yo, 6o »

0 Angular cross-correlation between‘?"(r, 9)‘ and "cj’(r, 9)‘
— Estimate 6,.

 Rotation & cross-correlation on regular Fourier transform
gives the shift.




1. Thinking Polar - Continuum

Natural Operations: 4. Tomography

Using the polar coordinates, we obtain a method to
obtain the Inverse Radon Transform.

1 Radon Transform:

Rf(t, 0) = [[f(x,y)3(x cos(6) +y sin(6) — t)dxdy
A Goal: Given Rf(t,0), recover f.
3RFNL, 0) = T(r, 0).

N

[ Projection-Slice-Theorem:

O Reconstruction: Rf — ?' —fiof.
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1. Thinking Polar - Continuum

More Natural Operations

dNew orthonormal bases:
= Ridgelets,
= Curvelets,
= Fourier Integral operations,

= Ridgelet packets.

dAnalysis of textures.

dAnalysis of singularities.

dMore ...
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2. Thinking Polar - Discrete

A Certain procedures very important to digitize
= Rotation,
= Scaling,
= Registration,
= Tomography, and
A These look so easy in continuous theory — Can’t we
use it in the discrete domain?

d Why not Polar-FFT?
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2. Thinking Polar - Discrete

The FFT Miracles

[ 1D Discrete Fourier Transform
= Uniformly sampled in time and frequency — FFT.
= Complexity — O(5Nlog,N) instead of O(N?).

A 2D Discrete Fourier Transform
= Cartesian grid in space and frequency — Separability
= Only 1D-FFT operations.

= Smart memory management.
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2. Thinking Polar - Discrete

2D DFT — Cartesian Grid

A (Dy
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2D FFT Complexity

Cartesian N-by-N

0 Complexity: O(10N?log,N) Data
instead of O(N%).

A Important Feature: All 5N<logN
operations are 1D 1D FFT to columns
— leading to 5N2logN

1D FFT to rows

Cartesian
2D-FFT | 10N%logN
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2. Thinking Polar - Discrete

Discrete Polar Coordinates?

Choice of grid?

NS, -1
-2
NS | . o
Resulting with NS,

rays with NS,
elements on each:




2. Thinking Polar - Discrete

Grid Problematics

0 Grid spacing? .'.'.‘& //“‘“\‘

1 Fate of corners?

~
-TC ‘, /; \¥\\§‘. T ] Wy
0 No X-Y separability !! ““Qf/ \"’l’
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2. Thinking Polar - Discrete

Polar FFT - Current Status

[ Current widespread belief - There cannot be a
fast method for DFT on the polar grid. See e.q.
The DFT: an owner’s manual, Briggs and
Henson, SIAM, 1995, p. 284.

d Consequence of Non-existence:

= Continuous Fourier — vague inspiration only.
= Fourier in implementations widely deprecated.
= Fragmentation: each field special algorithm.
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3. Current State-Of-The-Art

d Assessing T: Unequally-spaced FFT (USFFT)
» Data in Cartesian set.
= Approximate transform in non-Cartesian set.
= Oriented to 1D — not 2D and definitely not Polar.

Q Assessing T': For Tomography
= Data in Polar coordinates in frequency.
= Approximate inverse transform to Cartesian grid.

= Inspired by the projection-slice-theorem.
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3. Current State-of-the-Art

USFFT - Rational
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3. Current State-of-the-Art

USFFT - Detailed

Cartesian grid.
A Rapidly evaluate FT:
= Values F.
= Possibly - partial derivatives.

[ Associate Cartesian neighbors to each
polar grid point.

 Approximate interpolation.
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3. Current State-of-the-Art

Our Reading of Literature

 Boyd (1992) — and interpolation
by Euler sum or Langrangian interpolation.

A Dutt-Rokhlin (1993,1995) - and
interpolation by the Fast-Multipole method.

d Anderson-Dahleh (1996) — and
obtaining the partial derivatives, and then
interpolating by Taylor series.

A Ware (1998) — Survey on USFFT methods.

Y




3. Current State-of-the-Art

USFFT Problematics

[ Several involved parameters:
= Qver-sampling factor,
= Method of interpolation, and
= Order of interpolation.
[ Good accuracy calls for extensive over-sampling.

[ Correspondence overhead: spoils vectorizability of
algorithm - causes high cache misses.

 Emotionally involved.
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4. Our Approach - General

We propose a

with the following features:

= Low complexity — O(Const*N?log,N)

Vectorizability — 1D operations only

Non-Expansiveness — Factor 2 (or 4) only

Stability — via Regularization

Accuracy — 2 orders of magnitude over USFFT methods

-27 -




Our Strategy

N

Fast and Exact

Fourier Trans.

on a polar-like
grid

)

1D
interpolations
to the polar
grid
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5. The Pseudo-Polar FFT

A Developed by Averbuch, Coifman, Donoho,
Israeli, and Waldén (1998).

[ Basic idea: A “Polar-Like” grid that enables
= EXACT Fourier transform,
= FAST computation,
= 1D operations only.
A Applications: Tomography, image processing,
Ridgelets, and more.
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5. The Pseudo-Polar FFT

The Pseudo-Polar Skeleton

)

: Y o
NS, equi-spaced 3
concentric squares,

ol
NS, ‘equi-spaced’
(not in angle)

-_—
T

dWe separate our
treatment to

o
T

and

lines.




5. The Pseudo-Polar FFT

Fast Fourier Transform

Q)
d The destination samples ?

are uniformly sampled
vertically, 2

O Per each row, destination  1-
samples are uniformly
sampled horizontally,

d Fractional Fourier At
Transform is the answer
(Chirp-2), with complexity:
O(20NIog;N).

Why? . e




5. The Pseudo-Polar FFT

PP-FFT versus 2D-FFT

Cartesian’ N-by-N

Data
PP-FFT 2D-FFT
5N?logN 5N?logN
1D FFT to columns 1D FFT to columns
20N?logN 5N?logN
1D FRFFT to rows 1D FFT to rows
PP-FFT Cartesian

25N?%logN | vertical 2D-FFT | 10N%logN
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5. The Pseudo-Polar FFT

The PP-FFT - Properties

1 Exact in exact arithmetic.

 No parameters involved !!

0 Complexity - O(50°N%log,N) versus O(N%).
A 1D operations only.

Qd For the chosen grid (5,=5,=2) - «=5.
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6. From Pseudo-Polar to Polar

Fast and Exact 2 stages of 1D

Fourier Trans. ‘ interpolations

on a polar-like to get to the 1
grid polar grid
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6. From Pseudo-Polar to Polar

The Interpolation Stages
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6. From Pseudo-Polar to Polar

First Interpolation Stage

(Dy \
Rotation of the rays to I Ne—ee @ —( —@— )— 990
have equi-spaced angles Al

1 L
d Everyrowis a ~ \S}% | J/p//

trigonometric polynomial of 0 | | [

order N, //ﬁ///// \;\“\“@\

A FRFT on over-sampled
array and 1D interpolation, 21 T\

d Very accurate. 3l / \




The Required Warping

New o,

Basically vertical lines: .------ﬂ

. -
PETNENE. 0
=
AT

s _ I'A-...I
[

'31------l
[Why?] Orlglnal ®y
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6. From Pseudo-Polar to Polar

The Actual Interpolation

Cartesian | N-by-N

Data
PP-FFT S-PP-FFT
5N2logN 5N2logN
1D FFT to columns 1D FFT to columns
2C-
20N2logN 20N25°log(NS)
to rows
O{N2}
25N2logN | PP-FFT Vertical 1D Interpolation

(20S+5)N%logN | S-PP-FFT Vertical
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6. From Pseudo-Polar to Polar

Second Interpolation Stage

® \

y
O As opposed to the previous l ))/(VT %?&
step, the rays are not a3 >< \ > ><
trigonometric polynomials < X{ﬁﬂ T >
of order N, 1 Zﬁ zgg ; g iﬁ
0 We proved that the rays 0 =
are band-limited (smooth) ? % %%giz
functions, 1 vl D(y
a .Over-sam-plin-g and 2t K<\Z\KL R . ><><
interpolation is expected to NCA ] | X7
perform well. 3 Tl | 11 K0
3 2 4 0 1 2 3@
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6. From Pseudo-Polar to Polar

Over-Sampling Along Rays
0 \ \ \ ‘ \

y
1 Over-sampling along 31 LR 1
\ \ ] /
rays cannot be done s e e
by taking the 1D ray | e i
. . NS Y—\ | 17
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S >1: n \\\\:;:\ﬁﬁ%%;ﬁj/—// i
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p=a ARSI T
=S longer 1D-FFT'satthe ' | L/L#ﬁ% T
e _ 7T %
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-2 / \
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6. From Pseudo-Polar to Polar

The Actual Interpolation

N-by-N Cartesian

ik Full Polar FFT
0{40S,S,N2logN}
N*5(NS,)"log(NS,)
1DFFT to over-sampled columns
NS, -20(NS,)"log(NS,)
1D Over-sampled (S) FRFFT
to rows Polar-FFT Vertical

O{(NS,)N} O{N-*N}

1D Interpolation 1D Interpolation

S-PP-FFT Vertical
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6. From Pseudo-Polar to Polar

To Summarize

We propose a

with the following features:

= Low complexity — O(Const*N?log,N)

Vectorizability — 1D operations only

= Non-Expansiveness — Factor 2 (or 4) only

Stability — via Regularization

Accuracy — 2 orders of magnitude over USFFT methods
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7. Algorithm Analysis

We have a code performing the Polar-FFT in Matlab:
Y=Polar FFT(X);

OR
Y=Polar FFT(X,S.,S,)’

Where: X - Input array of N-by-N samples
S.,S, — Over-sampling factors in the approximations

Y  —Polar-FFT result as an 2N-by-2N array with rows being
the rays and columns being the concentric circles.
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/. Algorithm Analysis

The Implementation

A The current Polar-FFT code implements Taylor
method for the first interpolation stage and spline
ONLY (no-derivatives) for the second stage.

d For comparison, we demonstrate the performance
of the USFFT method with over-sampling S and
interpolation based on the Taylor interpolation
(found to be the best).
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/. Algorithm Analysis

Error for Specific Signal

| |Approximation error||,

2

10
. Ir;pgt i; 2random o Thumb rule: S,=4S, |
32-by-32 array, T
e USFFT method 0
uses one 10 S —1
parameter L
whereas there 107 AN e HCEE
are two for the — =
up-sampling in B \
the Polar-FFT. 10 A\ = 5
AN
. N\
.gr?gmlgzrule. e S;e‘\\ G -
r~t=> . — t=r
| or S2

10 20 30 40 50 60 70 80 90 100
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/. Algorithm Analysis

Error For Specific Signals

O Similar curves obtained of ||*||., and [|*|]|, norms.
A Similar behavior is found for other signals.

Q Conclusion: For the proper choice of S,and S,, we
get 2-orders-of-magnitude improvement in the
accuracy comparing to the best USFFT method.

A Further improvement should be achieved for Taylor
interpolation in the second stage.

A US-FFT takes longer due the 2D operations.
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/. Algorithm Analysis

The Transform as a Matrix

Approximate

All the involved l
transformations (accurate Y — AX
and approximate) are —d Il
linear - they can be

Or
represented as a matrix of Y —_— TX
size 4N2-by-N-2. _t T T —
True
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/. Algorithm Analysis

Reqularization of T/A

[ An input signal of N-by-N is transformed to an
array or 2N-by-2N.

A For N=16, T size is 1024-by-256, and
(bad for inversion).

[ Adding the assumption that the Frequency
corners should be zeroed, we obtain

Tpolar } {Y}
Y = TpolarX { X=|=
B o TCorner 0

and the condition number becomes 1]
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/. Algorithm Analysis

Discarding the Corners?

A If the given signal was
sampled at 1.4142 the
Nyquist Rate, the .
corners can be 7
removed. 5/

V2

Q If it is not, over- - oK
sampling it can be done
by FFT. A
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/. Algorithm Analysis

Error Analysis — Worst Signal

Approximation error is : (Apolar_,:FT — T)x = CpolarFrr

2

B TPoIar )X p)

H(APoIar—FFT

Arg/Max
X x5

_worst I worst }

Worst error :{x

X‘z

Al‘g/ MaX H(APoIar—FFT i T;olar)
X T, X

A Polar—

Z2rworst I rworst }

Worst relative error :{x
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/. Algorithm Analysis

Worst Signal - Results

N=16 — Te (1024256 5=G =G =4

USFFT
worst signal (abs.
Value) 1=3.469

The worst case
signal in the freq.
Domain (abs. and

shifted)

-

Polar-FFT
worst signal (abs.

» Value) A=0.0319

The worst case
signal in the fregq.
Domain (abs. and
shifted)
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/. Algorithm Analysis

Relative Worst Signal - Results

Same parameters: N=16 — Te (192%2%, S=5 =5,=4

USFFT
worst signal (abs.
Value) A=0.0613

Polar-FFT
worst signal (abs.
Value) A=0.0023

%

The worst case
signal in the fregq.
Domain (abs. and

shifted)

The worst case
signal in the fregq.
Domain (abs. and
shifted)

. Fa ™ #
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/. Algorithm Analysis

Comparing Approximations

A Solve for the eigenvalue/vectors of the matrix

(A B TPolar)H (A B TPolar)

Polar—FFT Polar—FFT

and obtained {u, x I\, (3 in ascending order).

d Compare to A, ... by computing

USFFT

O(‘k = H(AUSFFI' B TPoIar)Xng

using the above eigenvectors and compare to % .
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/. Algorithm Analysis

Comparing Approximations - Results

Mean Squared Error

10

0]
10 |

-2
10 =

-4
10

6
10
10° Eigen-space

of the Polar-
el FFT
0 200 400 600 800 1000 1200
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8. Conclusions

We have proposed a fast, accurate, stable, and
reliable Polar Discrete-Fourier-Transform.

By this we extend utility of FFT algorithms to
new class of settings in image processing.

Future plans:
= Extend the analysis and improve further,
= Demonstrate applications,

=  Publish the code for the procedure and some
applications over the internet.

- 50 -




Beyond this slides are
the appendix or
redundant slides

- 60 -



3. Current State-of-the-Art

USFFT for T'

Polar grid (and possibly
partial derivatives).

1 Associate polar neighbors to each
Cartesian grid point.

 Approximate interpolation to get the
Cartesian grid values.

1 Perform the Cartesian 2D Inverse-FFT.
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3. Current State-of-the-Art

Our Reading of Literature

Direct Fourier method with over-sampling and
interpolation (also called gridding) — see

1 Natterer (1985).

d Jackson, Meyer, Nishimura and Macovski (1991).
d Schomberg and Timmer (1995).

A Choi and Munson (1998).
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A. The Fractional Fourier Transform

The Pseudo-Polar Sampling

®

. L y | | |
Basically vertical lines: 3| N N N T 7
NN N VT
NS NSy LS
21t/ /1 2 T N b b d L
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Sr =—NS% \;\\\\|/// s
S 1O O I O WN
NSe /4 ’ |1 i//IN Lot
{w 2m } 2 T TN T
X = ne Py 1} A A TN
NS; m_—NSV T TN
2 TN NN
DT VN NN
For St=Sr=1l we have | ESVARV/AR S S W N NN
> : 3L/ /7 T VN N\
N2 grid points | | |
3 2 1 0 1 2 K (DX
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The Pseudo-Polar FT — Stage 1

N-1 N-1
F((D ® ):kz_:o kZ:O f[kl,kzjexp{ —-ikjo, —iK,® }

1 1

- Y £k, k, Jexp {—ikl am —ikzooy} _
k;=0 k,=0 NSt
N-1 Zm N-1

= exp {—ik1 wy} > flky,k, Jexp{-ik,o, |
K, =0 NS, k=0 :

=%|:k1 ,K:l

This part is obtained by 1D-FFT along the rows !!
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A. The Fractional Fourier Transform

The Pseudo-Polar FT — Stage 2

N-1 _ 26
F(cox,(oy): FIm, 1= > flky, ¢ ]exp{—lklm y}
o NS;

A This summation takes columns of f“[kl v (being equi-

spaced 1D signals) and computes Fourier transform of it.

A The destination grid points are also 1D equi-spaced in
the frequency domain, BUT THEY ARE NOT IN THE
RANGE [-n,n], but rather [-o,,o,].

A This task is called Fractional Fourier/Chirp-Z Transform.
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A. The Fractional Fourier Transform

Fractional Fourier Transform

N-1
Fiml- 3 filesp| 12757
k=0 X
A For =1 we get the ordinary 1D-FFT,

d For a=-1 we get the ordinary 1D-IFFT,

L There exists a Fast Fractional Fourier Transform with the
complexity of O(20°Nlog,N), based on 1D-FFT operations.

See: Fast fractional Fourier transforms and applications, by D. H. Bailey and P. N.
Swarztrauber, SIAM Review, 1991, and also Bluestein, Rabiner, and Rader (1960’s).
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A. The Fractional Fourier Transform

FR-FFT Detailed

N-1
Fiml =Y f[k]exp{— i anll(m .a} _

k=0

N-1
= flk]exp:
k=0

( .n[(k—m)2 —k? —m21
\

Pre-Multiplication

_.a

~—
Convolution

[Back]




Interpolation As 1D Operation

N-1 N-1

F((DX’COY) =) 2 f[klrkz]eXp{—ikl(Dx —ikza)y} =

kl :O kz :O

f 1 N1
=Y expi-ik; tan£2n|\|1§ jmy Y. flkik, Jexpi-k,o, | =
. : <

k1:0 k2=0
L= (. mmn Il 2

= exp-< —ik, tan flk,,?
klz=0 pi : (ZNSt)wyj I:l :I

It is a 1D operation — But it is not the Fractional-FFT.
[ Can be computed by over-sampled FRFFT and interpolation.
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