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1. Motivation and Goals 

 2. Wavelet for Graphs: Formulation  
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We use these developed tools in order to better process 
images … and specifically compress facial images 

The true 
objective: Find 
how to bring 

sparse 
representation 
to processing of 

such signals 

Processing of Non-
Conventionally 

Structured Signals  

Many signal-
processing tools 

(filters, alg., 
transforms, …) 
are tailored for 

uniformly 
sampled signals  

Now we encounter 
different types of 

signals: e.g., point-
clouds and graphs. 

Can we extend 
classical tools to 

these signals? 

Our goal: 
Generalize the 

wavelet 
transform to 
handle this 

broad family 
of signals 

 We are given a graph: 
o The 𝑖 − 𝑡ℎ node is characterized by a  𝑑-dimen. 

feature vector 𝑥𝑖 
o The 𝑖 − 𝑡ℎ node has a value 𝑓𝑖 
o The edge between the 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ nodes 

carries the distance 𝑤 𝑥𝑖 , 𝑥𝑗  for an arbitrary 

distance measure 𝑤 ⋅,⋅ . 
 

 Assumption: a “short edge” implies close-by 
values, i.e.    

 

               𝑤 𝑥𝑖 , 𝑥𝑗  small  𝑓𝑖 − 𝑓𝑗  small 
           

            for almost every pair 𝑖, 𝑗 . 
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𝑓6 
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𝑓13 

 A Different Way to look at this data structure:  
 

o We start with a set of 𝑑-dimensional vectors                                                   

𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ IR𝑑 . These could be: 
 Feature points for a graph’s nodes,     
 Set of coordinates for a point-cloud. 
 

 

o A scalar function is defined on these coordinates,                                                      
𝑓: X → IR , giving  𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁 . 
 

o We may regard this dataset as a set of 𝑁 samples 
taken from a high dimensional function 𝑓: IR𝑑 → IR . 

 

o The assumption that small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 

𝑓𝑖 − 𝑓𝑗   for almost every pair 𝑖, 𝑗  implies that 

the function behind the scene, 𝑓, is “regular”. 

… 

X= 𝑥1, 𝑥2, … , 𝑥𝑁  

𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑁  

… 

Why Wavelet?  
Wavelet for regular piece-wise smooth signals is a highly effective 

“sparsifying transform”. We would like to imitate this for our data structure. 

Wavelet 
Transform 

    Sparse     
       (compact)    
Representation 

f 
    𝑓1, 𝑓2, … , 𝑓𝑁  

 4. Building the Permutations 
 Core Concept – TSP: 
 

o Lets start with P0 – the permutation applied on the incoming signal. 
 

o Recall: the wavelet transform is most effective for piecewise regular signals. → thus, P0 
should be chosen such that P0f  is most “regular”. 
 

o Lets use the feature vectors in X, reflecting  the order of the values, fk. Recall:  
 

 
o Thus, instead of solving for the optimal permutation that “simplifies” f, we  order the 

features in X to the shortest path that visits in each point once, in what will be an instance 
of the Traveling-Salesman-Problem (TSP): 
 
 
 
 

min
P

 𝑓𝑝 𝑖 − 𝑓𝑝 𝑖 − 1

𝑁

𝑖=2

 min
P

 𝑤 𝑥𝑖
𝑝
, 𝑥𝑖−1

𝑝

𝑁

𝑖=2

 

Small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗   for almost every pair 𝑖, 𝑗  
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 We handle the TSP task by                              a 
greedy (and crude) approx.: 
 

o Initialize with an arbitrary index j;  
o Initialize the set of chosen indices to Ω(1)={j};  
o Repeat k=1:1:N-1 times: 

• Find xi – the nearest neighbor to xΩ(k) such that iΩ;  
• Set Ω(k+1)={i};  

o Result: the set Ω holds the proposed ordering. 

IR𝑑 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟𝒑 

 What About the Inner Permutations? 
  

o So far we concentrated on P0 at the finest level of the multi-scale pyramid. 
 

o In order to construct P1, P2, … , PL-1, the permutations at the other pyramid’s  
levels, we use the same method, applied on propagated (reordered, filtered and 
sub-sampled) feature-vectors through the same wavelet pyramid: 

 
 

𝐗𝟎 = 𝐗 
P0 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟏 
P1 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟐 
P2 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟑 
P3 

LP-Filtering (h) 
& Sub-sampling  
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𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟𝒑 

 3. The Proposed Methodology 
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 Wavelet for Graphs: I wish we would have thought of it first … 
 
 
 
 
 
 
 
 
 
 
 
 

 The Main Idea (1) - Permutation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The Main Idea (2) - Permutation 

Permutation using 
𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑁  

P T 
𝐟𝒑 

𝐟 T-1 P-1 
f 𝒑 

𝐟   Processing 

Permutation 1D Wavelet 

𝑎𝑙 𝑎𝑙+1 

𝑑𝑙+1 

ℎ  

𝑔  

↓ 2 

↓ 2 

𝑎𝑙+2 

𝑑𝑙+2 

↓ 2 

↓ 2 

ℎ  

𝑔  

P𝑙 P𝑙+1 

o In fact, we propose to perform a different permutation in each resolution level of the 
multi-scale pyramid: 
 
 
 
 
 
 
 

o Naturally, these permutations will be applied reversely in the inverse transform.  
o Thus, the difference between this and the plain 1D wavelet transform applied on f 

are the additional permutations, thus preserving the transform’s linearity and 
unitarity, while also adapting to the input signal.  

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

𝐟𝒑 

 5. What About Image Compression? 
 The problem: Compressing photo-ID images. 

 General purpose methods (JPEG, JPEG2000) do not     take 
into account the specific family.  

 By adapting to the image-content (e.g. pixel                       
ordering), better results could be obtained. 

 For our technique to operate well, we find the best 
common pixel-ordering fitting a training set of images.  

 Our pixel ordering is therefore designed on patches of size 
1×1×d pixels from the training volume. 

 Geometric alignment of the image is very helpful                                                  
and should be done [Goldenberg, Kimmel, & E. (‘05)].  
 

 

 

 

 Every row in the above array corresponds to a face image. 

 Once we have formed the above array of data, our 
permutation-based wavelet can be designed.  

 When applying this transform to a given new face image, 
it is expected to sparsify it very well → compression.  

1×1 
pixels 

Training set (2500 images) 

Detect main features and warp the 
images (20 bytes)  

O
n

 th
e train

in
g set

 

Find the common ordering that 
creates the smoothest path 

Warp, remove the mean,  permute, 
apply wavelet on the 1D signal and 

code 

On the        
test image 

2D→1D, apply wavelet and code 
leading coefficients 

Compute the mean image                 
and subtract it 

The original images  
 
 
 
 
 
 

JPEG2000  
 
 
 
 
 
 
 

Our scheme  
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 Rate Distortion Curves 
 
 
 

Post-processing is obtained by 
applying a trained (Least-Squares) 

5×5 filter to each and every pixel in 
the resulting decompressed image 
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