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Model?

\ 4

Effective removal of noise (and many other applications)
relies on an proper of the signal
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Which Model to Choose?

Q There are many different ' Principal-Component-Analysis
ways to model signals and Anisotropic diffusion
iImages with varying degrees Markov Random Field
of success.

Wienner Filtering

d The following is a partial list of DCT and JPEG |

such models for images: Wavelet & JPEG-2000
0 Good models should be simple Piece-Wise-Smooth
while matching the signals:
)

Beltrami-Flow
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Sparseland

Wavelet Approximation

Theory

Theory

Linear

Sparseland Algebra
-

Super-
Resolution e

Signal

Transforms

Denoising |Demosaicing

Blind Source
Separation
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The Sparseland Model for Images

d Task: model image patches of size [HOXE0 pixels. 5 1.,=

d We assume that a of such I L -
Image patches Is given, containing %

atom : T

- - |
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d The Model: every image patch T e T
can be described as a linear :": i :En'ir'ﬁﬁ &
combination of atoms. L] < ‘& =G0 Al
B Rl FraKY Dl
O This model describes every image ™= 23 1 -ile
patch as a combination =-|' ;:EEE"I@HE
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Difficulties With Sparseland

d Problem 1: Given an image patch, how ¢ -
can we find its ? o,

O Problem 2: Given a family of signals, ("o~ =

how d find the dict e s =""v he
ow do we fin t’?e ictionary to EEFEE:' 5L =
represent it well” i e Eac
_ _ cE- W - EEI i
3 Problem 3: Is this model flexible A e T
enough to describe various sources? m.* anin, T
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Difficulties With Sparseland
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Image Denoising (Gray) (riad & anaron (06)]
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The obtained dictionary after
10 iterations
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Image Denoising (Gray) (iad & anaron (1 06)]
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The results of this algorithm compete
favorably with the state-of-the-art: E.qg.,
d We get ~1dB better results
compared to GSM+steerable wavelets

. [Portilla, Strela, Wainwright, & Simoncelli ('03)].

EI Competitive works are [Hel-or & Shaked (" 06)]
and [Rusanovskyy, Dabov, & Egiazarian ('07)]. Both

also lean on Sparseland.
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The obtained dictionary after
10 iterations
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Denoising (Color) (v, elad & sapiro, (06);

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [1icauiey e o coa)
which implements a learned MRF model (Field-of-Experts)

Original Noisy (12.77dB) Result (29.87dB)
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Inpainting (v, elad & sapiro, (06))

Our experiments lead to state-of-the-art inpainting results.

Original 80% missing Result
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Inpainting (v, elad & sapiro, (06))

Our experiments lead to state-of-the-art inpainting results.
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Video Denoising (rroter & Flad (06)]
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Video Denoising (rroter & Flad (06)]

e A

Our xperiments lead to state:bf-the-art video
denoising results, giving ~0.5dB better results on

average, compared to [soades, Col & Morel (05)1 @and
[Rusanovskyy, Dabov, & Egiazarian ('06)]

o e

Original Noisy (0=50) Denoised
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Facial Image Compression
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Facial Image Compression
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To Conclude

Effective (yet simple)
model for signals/images
is key in getting better
algorithms for various
applications

It has been deployed to
many applications, in all
leading to state-of-the-art
results. More work is required
to extend its usability to
other domains.
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Which

model to
choose?

Sparseland is an emerging

model with high potential.
It is based on sparse and
redundant representations
of signals, and learned
dictionaries

Is it working well?
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