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Background 
and Main 
Objective  



This is the “simplest” inverse problem 

Noise (AWGN) Clean Measured 

Image Denoising: Definition  

 y x e

 

Filter 

An output as  
close as  
possible to  y x



Image Denoising – Past Work 

Searching Web-of-Science (May 4th, 2017) with 
   TOPIC = image and noise and (denoising or removal) 

Leads to ~4700 papers 



Image Denoising – What’s Out There?  

Year 

L2-based 
Regularization 

PDE-Methods 
Robust 
statistics  

Heuristic 
Spatially 
adaptive 
filtering  

Wavelet 

Sparsity Methods  

Neural-Networks 

1970       1975       1980       1985       1990       1995       2000       2005       2010       2015 

K-SVD 

BM3D NCSR 

Heuristic: 
Bilateral 

Thresholding 
Cycle-Spinning TNRD Frames 

Wiener 

Anisotropic Diffusion 

TV Beltrami Hubber-Markov 

GSM SURE 

Patch-Methods  

Kernel-Regr. 
               EPLL 

DenoiseNet 

Self-Similarity 
Methods NLM 

NL-Bayes NLM-PCA 



Is Denoising Dead?  

To a large extent, removal of  additive noise from an 
image is a solved problem in image processing  

This claim is based on several key observations:  
 There are more than 20,000 papers studying this problem 
 The proposed methods in the past decade are highly impressive 
 Very different algorithms tend to lead to quite similar output quality 
 Work investigating performance bounds confirm this  

[Chatterjee & Milanfar, 2010], [Levin & Nadler, 2011] 
 

Bottom line: Improving image denoising algorithms   
seems to lead to diminishing returns 



Noise Removal, Sharpening 



Noise Removal, Sharpening 



Compression Artifact Removal 



Compression Artifact Removal 



Some Visual Effects 

Old man Younger More fun 

Image courtesy Andrzej Dragan  



Image Denoising – Can we do More?  

SO 
if improving image denoising algorithms                             

is a dead-end avenue … 

THEN 
Lets seek ways to leverage existing denoising 

algorithms in order to solve  

OTHER (INVERSE) PROBLEMS  



Inverse Problems ? 
 Given the measurement y, recover its origin signal, x 

 

 A statistical tie between x and y is given 
 

 Examples: Image deblurring, inpainting, tomographic 
reconstruction, super-resolution, … 

 

 Classic inverse problem:  
 

 The Bayesian approach: use the conditional probability 
Prob(x|y) in order to estimate x. How? 
 Maximize the conditional probability (MAP) 
 Find the expected x given y  
 … 

 2y x v where v ~ 0,  H I



“The Little Engine that Could” ? 

As we are about to see,  
image denoisers  

(we refer to these as “engines”)  
are capable of far more than just  

… denoising,  
And thus this sub-title 



Laplacian 
Regularization 

Prior-Art 1: 



 Often times we can describe our denoiser as a pseudo- 
linear Filter 

 
 True for K-SVD, EPLL, NLM, BM3D and other algorithms,    

where the overall processing is divided into a non-linear     
stage of decisions, followed by a linear filtering 

 

 Typical properties of W:  
 

 Row stochastic: 1 is an eigenvector, spectral radius is 1 
 Fast decaying eigenvalues 
 Symmetry or Non-negativity of W? Not always … 

Pseudo-Linear Denoising 

  Filter x (x)xW



The “residual” 

Given this form:  
 
 

 
We may propose an image-adaptive (-)Laplacian:  

The Image Laplacian 

  Filter x (x)xW

  



(x) x

(x)x

I W

L

   Laplacian x x (x)xW



Laplacians as Regularization 

Regularization 

Filter Residual Signal 

This idea appeared is a series of papers in several variations:   
   [Elmoataz, Lezoray, & Bougleux 2008] [Szlam, Maggioni, & Coifman 2008]   

    [Peyre, Bougleux & Cohen 2011] [Milanfar 2013] [Kheradmand & Milanfar 2014]  
    [Liu, Zhai, Zhao, Zhai, & Gao 2014] [Haque, Pai, & Govindu 2014] [Romano & Elad 2015] 

 


 Tx,y x x
2

L

      T T1 1
x x x x x x

2 2
L W

Log-Likelihood  
Data Fidelity 



Laplacians as Regularization 

The problems with this line of work are that: 
 

1. The regularization term is hard to work with since L/W is  
a function of x. This is circumvented by cheating and     
assuming a fixed W per each iteration 

 

2. If so, what is really the underlying energy that is being minimized?  
 

3. When the denoiser cannot admit a pseudo-linear interpretation  
of W(x)x, this term is not possible to use 

 

   


 Tx,y x x x
2

W



The Plug-and-Play-Prior 
(P3) Scheme 

Prior-Art 2: 



The P3 Scheme 
 The idea of using a denoiser to solve general denoising 

problems was proposed under the name “Plug-and-Play-
Priors” (P3) [Venkatakrishnan, Wohlberg & Bouman, 2013]  
 

 Main idea: Use ADMM to minimize the MAP energy 

   MAP
x

x̂ min x,y x
2


  

   
x ,v

min x,y v s.t. x v
2


  



The P3 Scheme 

 The above relies on a well-known concept in optimization 
called the augmented Lagrange algorithm, where u is the 
scaled Lagrange multiplier vector 

   
x,v

min x,y v s.t. x v
2


  

   
2

2x,v
min x,y v x v u

2 2

 
    



The P3 Scheme 

 Minimize the above iteratively, in an alternating-direction 
fashion, w.r.t. the two unknowns (and update u=u-v+x): 
 

        1.                                                   : Simple inverse problem 
 
        2.                                                   : Denoising of (x+u) !  

   
2

2x,v
min x,y v x v u

2 2

 
    

 
2

2x
min x,y x v u

2


  

 
2

2v
min v x v u

2 2

 
   



P3 Algorithm 

 
2

2x
min x,y x v u

2


  

 
2

2v
min v x v u

2 2

 
   

Initialize 
  

  u u v x

x, v, u

Implicit Prior:             
This is a key feature of P3 – The idea 
that one can use ANY denoiser as a 
replacement for this stage, even if 

(v) is not known 

k
0  

If the involved terms are convex,  
this algorithm is guaranteed to 

converge to the global optimum  
of the original function 



P3 Algorithm 

 
2

2x
min x,y x v u

2


  

 
2

2v
min v x v u

2 2

 
   

Initialize 
  

  u u v x

x, v, u

Implicit Prior:             
This is a key feature of P3 – The idea 
that one can use ANY denoiser as a 
replacement for this stage, even if 

(v) is not known 

k
0  

If the involved terms are convex,  
this algorithm is guaranteed to 

converge to the global optimum  
of the original function 



P3 Shortcomings 
 The P3 scheme is an excellent idea, but it has few  

troubling shortcomings: 
  

 Parameter tuning is TOUGH when using a general denoiser 
 This method is tightly tied to ADMM without an option for 

changing this scheme 
 CONVERGENCE ? Unclear (steady-state at best)  
 For an arbitrarily denoiser, no underlying & consistent                  

COST FUNCTION 
 

 In this work we propose an alternative which is closely 
related to the above ideas (both Laplacian regularization 
and P3) which overcomes the mentioned problems: RED 



RED: First Steps  



Regularization by Denoising [RED] 

[Romano, Elad & Milanfar, 2016] 

We suggest: 
 

               … for an arbitrary denoiser f(x) 

   T1
x x x x

2
  W

 x 0   

1. x 0

2. x f x

3. Orthogonality







Regularization by Denoising [RED] 

[Romano, Elad & Milanfar, 2016] 

We suggest: 
 

               … for an arbitrary denoiser f(x) 

 x 0   

1. x 0

2. x f x

3. Orthogonality





    T1
x x x f x

2
  



Which f(x) to Use ?  

Almost any algorithm you want may be used     
here, from the simplest Median (see later), all the  

way to the state-of-the-art CNN-like methods 
 

We shall require f(x) to satisfy several  
properties as follows … 



Denoising Filter Property I 

 Differentiability:  

 Some filters obey this requirement (NLM, 
Bilateral, Kernel Regression, TNRD) 

 Others can be -modified  to satisfy this          
(Median, K-SVD, BM3D, EPLL, CNN, …) 

   
n n

f(x): 0,1 0,1



Denoising Filter Property II 

 Local Homogeneity: for                       , we  
have that  

 

Filter 

 

Filter 

=
 

   c 1 1

f(cx) cf(x)

c

c



Are Denoisers Homogenous ? 

f((1 )x) (1 )f(x)    

Peppers 

0.01 

=5 

Scatter-plot of the two 
sides of this equation, 

along with the STD     
from the equality 



Implication (1) 

  Directional Derivative: 

Homogeneity  

 


  
  


x

0

f(x d) f(x)
f x d lim

 


  
  


x

0

f(x x) f(x)
f x x lim



  


0

(1 )f(x) f(x)
lim f(x)

d x



Looks Familiar ?  

n×n Matrix 

  This is much more general than   
and applies to any denoiser  
satisfying the above conditions   

  We got the property   xf x x f(x)  

f(x) (x)x W



Implication (2) 

  For small 

 

 

 

 
Implication: Filter stability. Small additive 

perturbations of the input don’t change the  
filter matrix   

Directional 
Derivative 

 xf(x h) f(x) f x h   

      x xf x x f x h

     xf x x h

2
h



Denoising Filter Property III 

  Passivity via the spectral radius:  

 

Filter 

         x xr f x max f x 1

         x xx r f x x f x x f(x)



Are Denoisers Passive ? 

 A direct inspection of this property implies 
computing the Jacobian of f(x) and evaluating its 
spectral radius r by the Power-Method:  

 
 

 

 After enough iterations,                    

 The problem is getting the Jacobian 

 

 


 

 

x k
k 1

x k

f x h
h

f x h

 T
k 1 kr h h



Are Denoisers Passive ? 
 The alternative is based on the Taylor expansion 

 
 The Power Method becomes: 

 

 

 This leads to a value smaller than 1 for K-SVD,   
BM3D, NLM, EPLL, and the TNRD   

    xf(x h) f(x) f x h      xf x h f(x h) f(x)

 

 


 

 

x k
k 1

x k

f x h
h

f x h

 

 


 


 

k
k 1

k

f x h f(x)
h

f x h f(x)



Summary of Properties 

 The 3 properties that f(x) should follow: 

 

 

 

 

 Why are  
these  
needed? 

  

Differentiability  Homogeneity  Passivity  

 xf x exists f(cx) cf(x)    xr f x 1

Directional 
Derivative   

Filter 
Stability 

        xf x h f x x h   xf x x f(x)

? 



RED: Advancing 



Regularization by Denoising (RED) 

Surprisingly, this expression is differentiable:  

  T1
(x) x x f x

2
  

      T1
(x) x x f x

2

   
1

x f(x) f(x)x
2

 x f(x)

   xf x x f(x)

the residual 

* 

   
2

2

1
(x) x f x

2
* Why not                                 ?  

and Homogeneity 



Passivity guarantees positive  
definiteness of the Hessian  
and hence convexity  

Regularization by Denoising (RED) 

  T1
(x) x x f x

2
  

   (x) x f x

      x(x) f xI 0

   xr f x 1

Relying on the 
differentiability 



RED for Inverse Problems 

Regularization 
Log-Likelihood  
Data Fidelity 

Our regularization term is convex                              
and thus the whole expression is convex if the           

Log-likelihood term is convex as well 

    T

x
min x,y x x f x

2


 



Regularization L2-based Data Fidelity 

This energy-function is convex 
 

Any reasonable optimization algorithm will get 
to the global minimum if applied correctly 

RED for Linear Inverse Problems 

  
2 T

2x

1
min x y x x f x

2 2


  H



Numerical Approach: Gradient Descent 

Guaranteed to converge for 0<<1, when H is stable 

Drawback: Every iteration applies f(x) but mildly 
“inverting” the blur effect 

  
2 T

2x

1
min x y x x f x

2 2


  H

   
        

T T
k 1 k kx x y f(x )I H H I H



   
        

T T
k 1 k kx x y f(x )I H H I H

M b 
b 

M 

k 1xf(x) kx

Numerical Approach: Gradient Descent 



Numerical Approach II: ADMM 

 First: apply variable splitting by setting x = v in the second term: 
 
 

 
 Second: Use Augmented Lagrangian: 

  
2 T

2x

1
min x y x x f x

2 2


  H

  
2 T

2x,v

1
min x y v v f v s.t. x v

2 2


   H

  
2 2T

2 2x,v

1
min x y v v f v x v u

2 2 2

 
     H



Numerical Approach II: ADMM 

Solve a simple 
linear system 

The P3 differs from this ADMM in this stage, offering to compute  

Solve by fixed point iteration 

2 2

2 2x

1
min x y x v u

2 2


   H

  
2T

2v
min v v f v x v u

2 2

 
   

 Third: Optimize w.r.t. x and v alternatingly 
 

 Update x: 
 
 Update v:  

 
           v f v x v u 0     

    k 1 k k 1v f v x v u 0      
   k

k 1

f v x u
v 

  


 

 k 1v f x u  



Numerical Approach II: ADMM 

Solve a simple 
linear system 

The P3 differs from this ADMM in this stage, offering to compute  

Solve by fixed point iteration 

2 2

2 2x

1
min x y x v u

2 2


   H

  
2T

2v
min v v f v x v u

2 2

 
   

 Third: Optimize w.r.t. x and v alternatingly 
 

 Update x: 
 
 Update v:  

 
           v f v x v u 0     

    k 1 k k 1v f v x v u 0      
   k

k 1

f v x u
v 

  


 

 k 1v f x u  



Numerical Approach: Fixed Point 

Guaranteed to converge due to the passivity of f(x) 

  
2 T

2x

1
min x y x x f x

2 2


  H

    T x y x f x 0    H H

    T
k 1 k 1 kx y x f x 0     H H

    
1T T

k 1 kx y f x


     H H I H



Numerical Approach III: Fixed Point 

     
1 1T T T

k 1 kx y f x
 

       H H I H H H I

M b 

b 

f(x) k 1x kx M 



A connection to CNN 

 While CNN use a trivial and weak non-
linearity f(●), we propose a very aggressive 
and image-aware denoiser 

 

 Our scheme is guaranteed to minimize a 
clear and relevant objective function 

f(x) M f(x) M 
k 1x kxk 1x 

M f(x)
k 1z  kz

M f(x)
k 1z 

 k 1 kz f z b  M

k 1z  kz



A connection to CNN 

 While CNN use a trivial and weak non-
linearity f(●), we propose a very aggressive 
and image-aware denoiser 

 

 Our scheme is guaranteed to minimize a 
clear and relevant objective function 

f(x) M f(x) M 
k 1x kxk 1x 

M f(x)
k 1z  kz

M f(x)
k 1z 

 k 1 kz f z b  M
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RED Underlying Model 
RED assumes the following Prior 
 
 
Theorem:  With respect to the above prior, f(x) is 

the MMSE estimator 
 

Conjecture:  With respect to this prior, minimizing 
 
 
 gives the optimal MMSE solution  

     TProb x C exp c x x f x    

  
2 T

2x

1
min x y x x f x

2 2


  H



So, again, Which f(x) to Use ?  

 Almost any algorithm you want may be used     
here, from the simplest Median (see later), all the 
way to the state-of-the-art CNN-like methods 

 
Comment: Our approach has one hidden parameter – the level 

of the noise (σ) the denoiser targets. We simply fix 
this parameter for now. But more work is required to 
investigate its effect  



RED and P3 
Equivalence 



RED vs. P3 ? 

 ADMM can be used for both P3 and RED,  
leading to two similar (yet different) algorithms 

 

 These algorithms differ in the update stage of v 
(assign y=x+u): 
 P3:  v=f(y) 
 RED: v is the solution of (v-f(v))-(y-v)=0 

 

 Question: Under which conditions on f(x) (and )     
              would the two be the same?  



RED for Denoising? 

 Assume f(x)=Wx in these equations, in order to 
simplify them: 
 P3: v=f(y)=Wy 
 RED:  (v-f(v))-(y-v)=(v-Wv)-(y-v)=0 
 

 Thus, for getting the same outcome we require   

   y 0v yv v&v     W W

   y 0y y y    W WWW



RED for Denoising? 

 We got the equation 
 
 
 

 
 Answer: The two algorithms coincide if the  

eigenvalues of W are either 1 or /, i.e. only      
when the denoiser is highly degenerated 

    2 y y 0            I W W I W I W

   y 0y y y    W WWW



Denoising via RED 



RED for Denoising? 

  
2 T

2x

1
min x y x x f x

2 2


  

  x y x f x 0    

 f x x W

    
1

x y x x 0 x y


        W I I W

This is a “sharper” version of the original denoiser, known    
to modify the trading between bias and variance  

        [Elmoataz et al. ’08],[Bougleux et al. ‘09] 



RED for Denoising? 
Question: Could we claim this just gives Wy?  

(i.e. RED is equivalent to the denoiser it is built upon?) 

Answer: Lets plug x=Wy into the equation  
 
 
 

The two filters are equivalent if the  
eigenvalues of W are either 1 or 1/ 

Surprisingly: This condition is similar (equivalent for =1) to  
the one leading to equivalence of RED and P3 

  21 y 0       I W W

   yx y x x 0 y 0yy         W WW W W



RED in Practice 



Examples: Deblurring 

Uniform 
9×9 kernel 
and WAGN 

with 2=2 
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Examples: 3x Super-Resolution 

Degradation: 
- A Gaussian 7×7 

blur with width 
1.6  

- A 3:1 down-
sampling and 

- WAGN with =5 
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Sensitivity to Parameters  



Sensitivity to Parameters  



Conclusions 



What have we Seen Today ? 

 RED – a method to take a denoiser and use it sequentially 
for solving inverse problems  

 

 Main benefits: Clear objective being minimized, Convexity, 
flexibility to use almost any denoiser and any optimization 
scheme 

 

 One could refer to RED as a way to substantiate earlier 
methods (Laplacian-Regularization and the P3) and fix them  

 

 Challenges: Trainable version? Compression? MMSE 
conjecture?  
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