
1

Patch-Ordering-Based Wavelet Frame
and Its Use in Inverse Problems

Idan Ram, Israel Cohen, Senior Member, IEEE, and Michael Elad, Fellow, IEEE

Abstract—In our previous work [1] we have introduced a
redundant tree-based wavelet transform (RTBWT), originally
designed to represent functions defined on high dimensional data
clouds and graphs. We have further shown that RTBWT can be
used as a highly effective image-adaptive redundant transform
that operates on an image using orderings of its overlapped
patches. The resulting transform is robust to corruptions in the
image, and thus able to efficiently represent the unknown target
image even when it is calculated from its corrupted version.

In this work we utilize this redundant transform as a powerful
sparsity-promoting regularizer in inverse problems in image
processing. We show that the image representation obtained with
this transform is a frame expansion, and derive the analysis and
synthesis operators associated with it. We explore the use of
this frame operators to image denoising and deblurring, and
demonstrate in both these cases state-of-the-art results.

Index Terms—Patch-based processing, redundant wavelet,
frames, denoising, deblurring, ordering, regularization.

I. INTRODUCTION

Sparse and redundant representations and the processing of
local patches have become two of the most popular approaches
in image processing in recent years. While image processing
algorithms may be based only on patch processing [2], [3] or
sparse representations [4], [5], many current state-of-the-art
algorithms make use of both concepts, usually by processing
the image patches using sparsifying transforms or learned
dictionaries [6]–[11].

In our previous work [1], [12] we have combined the
two aforementioned approaches in a different manner, and
used image patches to construct both an orthogonal and
a redundant wavelet transforms, which efficiently (sparsely)
represent entire images. These two wavelet transforms were
originally designed to represent scalar functions defined on
high-dimensional data clouds and graphs. However, we have
also shown in [1], [12] that the very same construction
can be used as an image-adaptive transform that is highly
effective for sparsifying image content. This is obtained by
converting the given image into a graph by considering all its
overlapped patches as coordinates in high-dimensional space,

I. Ram and I. Cohen are with the Department of Electrical Engi-
neering, Technion – Israel Institute of Technology, Technion City, Haifa
32000, Israel. E-mail addresses: idanram@tx.technion.ac.il (I. Ram), ico-
hen@ee.technion.ac.il (I. Cohen); tel.: +972-4-8294731; fax: +972-4-8295757.
M. Elad is with the Department of Computer Science, Technion – Israel
Institute of Technology, Technion City, Haifa 32000, Israel. E-mail address:
elad@cs.technion.ac.il

The research leading to these results has received funding from the
European Research Council under European Union’s Seventh Framework
Program, ERC Grant agreement no. 320649, and was supported by Robert
H. Hillman Foundation for Global Security - Collaboration Technion and
University Northeastern, and by the Israel Science Foundation (grant no.
1130/11), and by Japan Technion Society Research Fund.

and referring to them as features of the graph vertices. These
are accompanied by their mutual Euclidean distance to define
the graph edges, this way tying the vertices to each other.
Due to the reliance on patches, both transforms are robust
to corruptions in the image, such as additive noise, blur,
or missing values, and are able to efficiently represent the
unknown target image even when it is calculated from its
corrupted version. As we shall see hereafter, this work will
utilize this last property, and demonstrate the use of our
redundant transform proposed in [1], (termed redundant tree-
based wavelet transform – RTBWT), as a powerful sparsity-
promoting regularizer in inverse problems.

More specifically, the RTBWT is calculated for an image
by adding data-dependent operators, merged into the classical
redundant wavelet filter-bank implementation [13], [14]. In
each decomposition level several operators are used to reorder
the approximation coefficients before the wavelet filters are
applied to them. The reordering operators are obtained by
organizing feature vectors constructed from the image patches,
such that they are chained in the shortest possible path,
essentially obtaining an approximation to the solution of the
traveling salesman problem (TSP) [15]. These permutation op-
erators increase the regularity of the approximation coefficient
signals, thus causing their representation with the RTBWT to
be more efficient (sparse).

As said above, in this work we utilize the RTBWT as a
powerful sparsity-promoting regularizer in inverse problems
in image processing. We start by introducing a simpler im-
plementation to the RTBWT, which is based on the widely
known “à trous” algorithm [16], [17]. This algorithm is a dif-
ferent implementation of the redundant wavelet transform that
applies in each decomposition level upsampled versions of the
wavelet filters to the whole approximation coefficient vectors.
Thus, our scheme essentially adds to each decomposition level
of this transform a single permutation operator that reorders
the approximation coefficients before they are filtered, leading
to the “à trous” implementation of our transform. We use this
scheme and ideas from [18] to show that the RTBWT is a
valid frame expansion, with the same bounds as the common
redundant wavelet transform.

In our previous works [1], [3], [12] we observed that
the performance of patch-ordering-based algorithms improve
when a subimage averaging scheme is used. For algorithms
using the RTBWT, this consists of applying the transform
to different subimages of the treated image and then jointly
operating on the transform coefficients of all the subimages.
We refer to all the transform coefficients of the different
subimages as a single extended representation of the treated
image, and next take a path similar to the one described in

2

0a 1
1P

1,
1

pa

g

2o↓
1
2a

1
2d

h
1
1a

2
1P

2,
1

pa

g

3
2a

2
2d

h

2o↓

2e↓

2o↓

2e↓

1,
0

Pa
h

2e↓ 2
1a

1dg

1
0P

4
2a

2
2a

Fig. 1: RTBWT decomposition scheme.

Task: Apply on y an L-level RTBWT decomposition.
Parameters: The image y, the operators {Ps

ℓ}2
ℓ

s=1,
ℓ = 0 . . . L− 1, and the filters h̄ and ḡ.
Initialization: Set a1

0 = a0 = y.
Main Iteration: Perform the following steps for
ℓ = 0, . . . , L− 1:

• Perform the following steps for s = 1, . . . , 2ℓ:
– Apply Ps

ℓ on as
ℓ and obtain as,p

ℓ .
– Filter as,p

ℓ with ḡ and obtain ds
ℓ+1.

– Filter as,p
ℓ with h̄ and decimate the result with

∗ ↓ 2o and obtain a2s−1
ℓ+1 .

∗ ↓ 2e and obtain a2s
ℓ+1

Output: The approximation coefficient vectors aL and
detail coefficient vectors {dℓ}Lℓ=1.

Algorithm 1: RTBWT L-level decomposition scheme.

[11] for the BM3D algorithm. We construct matrices which
act as analysis and synthesis operators [19], and are used to
obtain this extended representation and reconstruct the image
from it. We then show that these matrices constitute a frame
and its dual. We explore the use of these operators in image
denoising and deblurring algorithms. Despite the fact that
the resulting transform is image dependent, we treat it as a
fixed linear operator and use it within a sparsity-promoting
regularizer, when handling image-processing tasks posed as
inverse problems. We demonstrate state-of-the-art results in
denoising and deblurring using this approach.

The paper is organized as follows: In Section II, we describe
the image-derived redundant tree-based wavelet transform.
We also introduce the à trous based implementation of the
transform, and use it to analyze its frame properties. Section
III introduces the RTBWT subimage averaging frame, and
analyzes its properties. Sections II and III can be skipped by
readers interested in the image processing applications side
of this work. In Section IV, we explore the use of this frame
to image denoising and deblurring, and present experimental
results that demonstrate their advantages. We summarize the
paper in Section V.

II. REDUNDANT TREE-BASED WAVELET TRANSFORM

This and the next sections are dedicated to a careful con-
struction and study of the frames that will be later used for

1
1Pɶ2o↑1

2a

1
2d

3
2a

2
2d

hɶ
2e↑

4
2a

2
2a

2o↑ hɶ
2e↑

gɶ
gɶ

2
1Pɶ

1
0Pɶ2o↑1

1a

1d

hɶ
2e↑2

1a

gɶ
2,
1

pa

1,
1

pa 1,
0

pa

0a

Fig. 2: RTBWT reconstruction scheme.

Task: reconstruct y from an L-level RTBWT decompo-
sition.
Parameters: The approximation coefficient vectors aL

and detail coefficient vectors {dℓ}Lℓ=1, the operators
{P̃s

ℓ}2
ℓ

s=1, ℓ = 0 . . . L− 1, and the filters h̃ and g̃.
Main Iteration: Perform the following steps for
ℓ = L, . . . , 1:

• Perform the following steps for
s = 1, . . . , 2ℓ−1:
– Interpolate a2s−1

ℓ with ↑ 2o and a2s
ℓ

with ↑ 2e, sum the results, and filter with h̃.
– Filter ds

ℓ with g̃.
– Sum the results of the two previous steps and

obtain as,p
ℓ−1.

– Apply P̃s
ℓ−1 on as,p

ℓ−1 and obtain as
ℓ−1.

Output: The reconstructed signal a0 = y.

Algorithm 2: RTBWT L-level reconstruction scheme.

regularizing inverse problems. Readers that are more interested
in the inverse problem formulation and its subsequent appli-
cations can skip these two sections and proceed their reading
in Section IV.

A. Decomposition and Reconstruction Schemes

Let Y be an image of size N1 × N2 where N1N2 = N ,
and let y be the column stacked version of Y. The redun-
dant tree-based wavelet transform (RTBWT), introduced in
[1], is designed to efficiently (sparsely) represent its input
vector, which in our case is y. The transform is constructed
by modifying an implementation of the redundant wavelet
transform proposed by Shensa [13] and Beylkin [14]. Figure
1 describes the decomposition scheme of the RTBWT. h̄ and
ḡ denote the wavelet decomposition filters of an orthonormal
discrete wavelet transform, and they are applied using cyclic
convolution. ↓ 2o and ↓ 2e denote 2 : 1 decimators that keep
the odd and even samples of their input, respectively. aℓ and dℓ

denote the approximation and detail coefficient vectors in the
ℓth scale, respectively, where a0 = y. We note that for ℓ > 1
these signals do not appear explicitly in the decomposition
scheme, and instead it employs the signals denoted by asℓ
and ds

ℓ , which contain subsets of the samples in aℓ and dℓ,
respectively. asℓ is obtained from aℓ by starting from the sth

3

sample, and keeping every 2ℓth sample. ds
ℓ is obtained from

dℓ by starting from the sth sample, and keeping every 2ℓ−1th
sample. We notice that a10 = a0 and d1

1 = d1.
The operators Ps

ℓ make the difference between our proposed
wavelet decomposition scheme and the common redundant
wavelet transform [13], [14]. Each such operator produces a
permuted version as,pℓ of its input vector asℓ , and it may be
interpreted as a linear and unitary operator given that vec-
tor. These operators “smooth” the approximation coefficient
signals in the different levels of the decomposition scheme.
In Section II-B we explain how to obtain these operators
from the image patches. Assuming that the operators Ps

ℓ are
known, Algorithm 1 is used to apply an L-level RTBWT
decomposition.

In a similar manner, Figure 2 describes the reconstruction
scheme of the redundant tree-based wavelet transform. If h and
g denote the wavelet reconstruction filters, then h̃ = 1

2h and
g̃ = 1

2g are applied using cyclic convolution. The interpolators
denoted by ↑ 2o and ↑ 2e place the samples of their input
vector in the odd and even locations of their output vector,
respectively. The operator P̃s

ℓ reorders a vector so as to cancel
the ordering done by Ps

ℓ , i.e. P̃s
ℓ = (Ps

ℓ)
−1 = (Ps

ℓ)
T .

Assuming that the operators P̃s
ℓ are known, Algorithm 2

reconstructs y from an L-level RTBWT decomposition. We
next explain how the operators Pt

ℓ,s are determined in each
level of the RTBWT.

B. Building the Operators Ps
ℓ

We wish to design the operators Ps
ℓ in a manner which

results in an efficient (sparse) representation of the input image
by the proposed transform. The wavelet transform is known
to produce a small number of large coefficients when it is
applied to piecewise regular signals [16]. Thus, we would like
the operator Ps

ℓ , applied to asℓ , to produce a signal as,pℓ which
is as regular as possible. We start with the finest level, and try
to find the permutation that the operator P1

0 applies to a0 = y.
When the image Y is known, the optimal solution would be
to apply a simple sort operation on y. However, since we
are interested in the case where y may be corrupted (noisy,
blurred, contain missing pixels, etc.), we would try to find a
near-optimal ordering operation using the image patches.

Let yi denote the ith sample in the vector y, and let xi

denote the column stacked version of the
√
n ×

√
n patch

around the location of yi in Y. A key assumption in our
work is that under some distance measure w(xi,xj), proximity
between the two patches xi and xj suggests proximity between
their center pixels yi and yj . Thus, we shall try to reorder the
patches xi so that they form a smooth path, hoping that the
corresponding reordered one-dimensional (1D) signal a1,p0 will
also be smooth. The “smoothness” of the reordered signal a1,p0

can be measured using its total variation measure

∥a1,p0 ∥TV =
N∑
j=2

|a1,p0 (j)− a1,p0 (j − 1)|. (1)

Let {xp
j}Nj=1 denote the patches {xi}Ni=1 in their new order.

Then by analogy, we evaluate the “smoothness” of the path

through the patches xp
j by the measure

TV (xp
j) =

N∑
j=2

w(xp
j ,x

p
j−1). (2)

We note that we can treat the patches xi as points in Rn, and
the image as a function y defined on these points. In case that
w is the Euclidean distance, and assuming that y is Lipschitz
continuous, i.e., there exists a real constant K ≥ 0 such that

|yi − yj | ≤ K∥xi − xj∥2 (3)

for every two patches xi and xj , we obtain

N∑
j=2

|a1,p0 (j)− a1,p0 (j − 1)| ≤ K

N∑
j=2

∥xp
j − xp

j−1∥2, (4)

which means that K ·TV (xp
j) is an upper bound for ∥a1,p0 ∥TV ,

and thus seeking the shortest path with respect to the set
{xp

j}Nj=1 does a good service also to the original TV measure
in Equation (1).

Minimizing TV (xp
j) comes down to finding the shortest

path that passes through the set of points xi, visiting each
point only once. This can be regarded as an instance of the
traveling salesman problem (TSP) [15], which can become
very computationally exhaustive for large sets of points. We
choose a simple and crude approximation to the solution,
which is to start from an arbitrary point (random or pre-
defined), and continue from each point to its nearest neighbor,
not visiting any point twice. Let qj denote a vector containing
the two-dimensional (2D) spatial coordinate of the patch xj

in the image Y. We restrict the nearest neighbor search
performed for each patch xj to a square neighborhood of
size B × B around qj . When no unvisited patch remains
in that neighborhood, we search for nearest neighbors among
all the unvisited patches in the whole image. This restriction
decreases the overall computational complexity, and our ex-
periments show that with a proper choice of B it also leads
to improved results, as it forces more relevant neighbors in
the ordering. The permutation applied by the operator P1

0 is
defined as the order of the found path.

In order to use the aforementioned method to find the
operators {Ps

ℓ}2
ℓ

s=1 which are applied to the signals {asℓ}2
ℓ

s=1

in a scale ℓ > 0, we are required to associate a set of feature
points with these signals . More specifically, we predict the
proximity between the samples of the signal asℓ , by associating
a feature point xs

ℓ,j with each sample asℓ(j). Also, in order to
measure the spatial proximity between the feature points, we
associate a 2D spatial coordinate qs

ℓ,j to each feature point
xs
ℓ,j . The calculation of the feature points and their coordinates

is carried out in a recursive manner. We use the set of ℓ-th scale
feature points {xs

ℓ,j}2
−ℓN

j=1 to calculate the two sets of feature
points {x2s−1

ℓ+1,j}2
−ℓ−1N

j=1 and {x2s
ℓ+1,j}2

−ℓ−1N
j=1 , used in the ℓ+1th

scale. This is done in analogy to the way we obtain the signals
a2s−1
ℓ+1 and a2sℓ+1 from the signal asℓ . We first order the feature

points {xs
ℓ,j}2

−ℓN
j=1 according to the permutation defined by

Ps
ℓ , and place them in a matrix Xs,p

ℓ . We then filter the rows
of the result with h̄T , and obtain the sets of feature points

4

1
3,1x

1
2,1x 1

2,2x

1
1,1x 1

1,3x 1
1,2x 1

1,4x

1x 3x 2x 5x 4x 8x 6x 7x

1
0,1x 1

0,3x 1
0,2x 1

0,5x 1
0,4x 1

0,8x 1
0,6x 1

0,7x0=ℓ

1=ℓ

2=ℓ

3=ℓ

Fig. 3: An illustration of a “generalized” tree.

{x2s−1
ℓ+1,j}2

−ℓ−1N
j=1 and {x2s

ℓ+1,j}2
−ℓ−1N

j=1 by keeping only the odd
and even columns of the resulting matrix, respectively.

A similar process is used to calculate the two sets of
spatial coordinates {q2s−1

ℓ+1,j}2
−ℓ−1N

j=1 and {q2s
ℓ+1,j}2

−ℓ−1N
j=1 cor-

responding to {x2s−1
ℓ+1,j}2

−ℓ−1N
j=1 and {x2s

ℓ+1,j}2
−ℓ−1N

j=1 , respec-
tively. However, here we filter the rows of the result with a
normalized filter h̄T

a , which satisfies

h̄a[n] = |h̄[n]|/
∑
k

|h̄[k]|, (5)

so as to guarantee no drift in the coordinates.
We note that every time we advance from one scale to

the next, the number of features points used to calculate
a single reordering operator decreases by a factor of two.
Therefore, when we move to the coarser level we increase
both dimensions of the search area by a factor of

√
2, so as to

keep the number of candidate neighbors to consider. Thus, the
size of the search area used in the ℓth scale is 2

ℓ
2B × 2

ℓ
2B.

Having calculated the feature points xs
ℓ+1,j and their coordi-

nates qs
ℓ+1,j , they can be fed to the approximate shortest path

search method described above to obtain each of the operators
Ps

ℓ+1 in the ℓ + 1th scale. The calculation scheme of all the
ordering operators Ps

ℓ that are used in an L-level RTBWT
decomposition is summarized in Algorithm 3. We note that
Similarly to the decomposition scheme of the generalized tree-
based wavelet transform (GTBWT) described in [12], the rela-
tion between the feature points in a full decomposition can be
described using tree-like structures. Each such “generalized”
tree contains all the feature points which have participated in
the calculation of a single feature point xs

L,j from the coarsest
scale. Figure 3 shows an example of such a “generalized” tree,
corresponding to length N = 8, using a filter h̄ of length 4
and disregarding boundary issues in the different levels. We
next describe an alternative implementation of the RTBWT,
and use it to show the frame properties of the transform.

C. À Trous Implementation and Frame Properties

The common and widely known “à trous” algorithm [16],
[17] is an alternative implementation for the redundant wavelet
transform. Instead of explicitly applying the filters h̄ and ḡ
to subsets of the signals aℓ, the à trous algorithm applies

Task: calculate all the operators {Ps
ℓ}2

ℓ

s=1, ℓ = 0 . . . L−
1, used in an L-level RTBWT decomposition.
Parameters: The image patches {xj}Nj=1, their 2D co-
ordinates {qj}Nj=1, the distance function w, the filters h̄
and h̄a, and the search area size B.
Initialization: Set x1

0,j = xj and q1
0,j = qj .

Main Iteration: Perform the following steps for
ℓ = 0, . . . , L− 1:
Set B̃ = 2

ℓ
2B and Ñ = 2−ℓN .

• Perform the following steps for s = 1, . . . , 2ℓ:
Calculate Ps

ℓ:
– Choose a random index 1 ≤ j ≤ Ñ and set

Ω(1) = {j}.
– Perform the following steps for

k = 1, . . . , Ñ − 1:
∗ Set Ak to be the set of indices of the co-

ordinates qs
ℓ,j which reside inside a B̃ × B̃

neighborhood around qs
ℓ,Ω(k).

∗ If |Ak \ Ω| > 0, find xs
ℓ,j1

– the minimizer of
w(xs

ℓ,j ,x
s
ℓ,Ω(k)) such that j1 ∈ Ak and j1 /∈ Ω.

∗ Else, find xs
ℓ,j1

– the minimizer of
w(xs

ℓ,j ,x
s
ℓ,Ω(k)) such that j1 /∈ Ω.

∗ Set Ω(k + 1) to be j1.
– The set Ω holds the ordering applied by Ps

ℓ .
Calculate ℓ+ 1th scale feature points:
– Order the feature points {xs

ℓ,j}Ñj=1 according to
the permutation defined by Ps

ℓ .
– Place the reordered points in the columns of a

matrix Xs,p
ℓ .

– Apply the filter h̄T to the rows of Xs,p
ℓ and

∗ keep the odd columns of the result so as to

obtain the points {x2s−1
ℓ+1,j}

Ñ
2
j=1.

∗ keep the even columns of the result so as to

obtain the points {x2s
ℓ+1,j}

Ñ
2
j=1.

Calculate ℓ+ 1th scale coordinates:
– Order the coordinates {qs

ℓ,j}Ñj=1 according to
the permutation defined by Ps

ℓ .
– Place the reordered points in the columns of a

matrix Qs,p
ℓ .

– Apply the filter h̄T
a to the rows of Qs,p

ℓ and
∗ keep the odd columns of the result so as to

obtain the points {q2s−1
ℓ+1,j}

Ñ
2
j=1.

∗ keep the even columns of the result so as to

obtain the points {q2s
ℓ+1,j}

Ñ
2
j=1.

Output: The operators {Ps
ℓ}2

ℓ

s=1, ℓ = 0 . . . L− 1.

Algorithm 3: Calculation of all the reordering operators used in an
L-level RTBWT decomposition.

upsampled versions of these filters directly to aℓ. The up-
sampled filters are obtained by inserting “holes” (trous in
French) between nonzero filter taps. We next show that the
RTBWT can also be applied using a modification of the à
trous algorithm. We then use this scheme to show that the
RTBWT is a frame expansion, with the same bounds as the
common redundant wavelet transform. We note that the à trous
implementation and the frame properties of the RTBWT are
valid in general, and are not restricted to the image-derived
RTBWT.

5

h

g

0P0a 1a

1d

0
pa

1h

1g

1P 2a

2d

1
pa

Fig. 4: RTBWT à trous based decomposition scheme.

We first notice that in the aforementioned implementation of
the RTBWT decomposition scheme, the operators Ps

ℓ operate
in the ℓth scale on disjoint subvectors asℓ of aℓ. Therefore,
these operators can be replaced by a single operator Pℓ which
operates on aℓ, and produces the reordered signal apℓ . Let
Rs

ℓ be a matrix which extracts the signal asℓ from the signal
aℓ. Then we construct the permuted signal apℓ by extracting
all the signals {asℓ}2

ℓ

s=1 from aℓ, applying to each signal asℓ
the corresponding operator Ps

ℓ , and returning all the permuted
signals back to their original location. More specifically,

apℓ =
2ℓ−1∑
s=1

(Rs
ℓ)

TPs
ℓR

s
ℓaℓ = Pℓaℓ (6)

where the matrices (Rs
ℓ)

T return the permuted signals back
to their locations. This way we have defined the permutation
matrix

Pℓ =
2ℓ−1∑
s=1

(Rs
ℓ)

TPs
ℓR

s
ℓ . (7)

We can use the operators Pℓ to modify the à trous algorithm,
and obtain the à trous implementation of the RTBWT decom-
position scheme. Let h̄ℓ be a filter obtained from h̄ by inserting
2ℓ − 1 zeros between each sample, where h̄0 = h̄. Also,
let ḡℓ be a filter obtained from ḡ in a similar manner. Both
filters are applied using cyclic convolution. Then assuming
that the operators Pℓ are known, we can apply the RTBWT
by repeating for ℓ = 0 . . . L − 1 the following filter bank
operations, described in Figure 4,

apℓ = Pℓaℓ (8)
aℓ+1[n] = apℓ [n] ∗ h̄ℓ[n] (9)
dℓ+1[n] = apℓ [n] ∗ ḡℓ[n]. (10)

We note that when the operators Pℓ are removed, our scheme
coincides with the common à trous algorithm.

In a similar manner, the operators P̃ s
ℓ = (Ps

ℓ)
−1, which

operate on the signals as,pℓ can also be replaced by a single
operator P̃ℓ = (Pℓ)

−1. We use the operators P̃ℓ to construct
the à trous implementation of the RTBWT reconstruction
scheme. Let hℓ be a filter obtained from h by inserting 2ℓ−1
zeros between each sample, where h0 = h. Also, let gℓ be
a filter obtained from g in a similar manner. Both filters are
applied using cyclic convolution. Then assuming that the oper-
ators P̃ℓ are known, we can apply the RTBWT reconstruction
scheme by repeating for ℓ = L . . . 1 the following filter bank
operations, described in Figure 5,

apℓ [n] =
1

2
(aℓ+1[n] ∗ hℓ[n] + dℓ+1[n] ∗ gℓ[n]) (11)

aℓ = P̃ℓa
p
ℓ . (12)

1Pɶ2a 1h

2d 1g

0Pɶ1a h

1d g

1
pa

0
pa

0a1/ 2×1/ 2×

Fig. 5: RTBWT à trous based reconstruction scheme.

D. Frame Properties

Let Φ denote an (L + 1)N × N transform matrix, which
applies an L-level RTBWT decomposition. We recall that a
sequence {ϕn} is a frame if there exist two constants β ≥
α > 0 such that for all y

α∥y∥2 ≤
∑
n

|⟨ϕn,y⟩|2 ≤ β∥y∥2. (13)

The à trous implementation of the RTBWT will enable us
to show that the rows of Φ constitute a frame {ϕn} in RN ,
with the same frame bounds as the common redundant wavelet
transform [18].

Proposition 1: Let c = Φy = [aTL,d
T
L, . . . ,d

T
1]

T denote
an L-level RTBWT decomposition of a signal y. Then c is a
frame expansion with frame bounds α = 2 and β = 2L, and
these bounds are the tightest possible.
The proof is presented in Appendix A.

Also, let Ψ denote an N×(L+1)N matrix that applies the
L-level RTBWT reconstruction. Φ and Ψ apply the RTBWT
analysis and synthesis operations, respectively, and ΨΦ = I
where I is the identity matrix. Thus Ψ is the pseudo inverse
of Φ, and the columns of Ψ constitute a frame {ψn} which
is dual to {ϕn}, i.e. it satisfies

1

2L
∥y∥2 ≤

∑
n

|⟨ψn,y⟩|2 ≤ 1

2
∥y∥2. (14)

III. RTBWT SUBIMAGE AVERAGING FRAMES

Once the RTBWT is calculated for an image, we can
apply this transform to that image, and then process it in
the transform domain. However, we observed in [1] that
improved results are obtained when a subimage averaging
scheme is used instead. This scheme consists of applying
the RTBWT to different subimages of the treated image and
processing each subimage in the transform domain. Then the
reconstructed image is obtained by plugging each processed
subimage into its original place in the image canvas, and
averaging the different values obtained for each pixel. As
we show next, we can describe the transform coefficients of
the different subimages as a single extended representation
of the image. We construct matrices that act as analysis and
synthesis operators, which are used to obtain this extended
representation and reconstruct the image from it. We also
show that the rows and columns of the analysis and synthesis
matrices, respectively, constitute a frame and its dual.

Let Np = (N1−
√
n+1)(N2−

√
n+1) denote the number

of overlapped patches in the image Y, and let X be an n×Np

matrix, containing column stacked versions of these patches.
We extract these patches column by column, starting from
the top left-most patch. When the RTBWT was constructed

6

in the previous section, it was assumed that each patch is
associated only with its middle pixel. Therefore the transform
was designed to efficiently represent the signal composed of
the middle points in the patches, that reside in the middle row
of X. However, we can alternatively choose to associate all
the patches with a pixel located in a different position, e.g.,
the top left pixel in each patch. This means that the transform
can be used to represent any one of the signals located in the
rows of X. These signals are the column stacked versions of
all the n subimages of size (N1 −

√
n+ 1)× (N2 −

√
n+ 1)

contained in the image Y. We denote these subimages by
Ỹj , j = 1, 2, . . . , n.

Let Φ denote the RTBWT transform matrix, here it is of
size (L+1)Np×Np, applying an L-level decomposition. Also,
let the vector ỹj = Rjy of length Np be the column stacked
version of Ỹj , where the Np ×N matrix Rj extracts the jth
subimage from the image y. We first apply the RTBWT to
each of the n subimages ỹj and obtain the n vectors

cj = Φỹj = ΦRjy. (15)

We obtain the extended representation vector cSA by concate-
nating all these vectors into a single column

c =
[
cT1 , ..., c

T
n

]T
=

 ΦR1

...
ΦRn

y = ΦSAy (16)

where we defined the matrix

ΦSA =

 ΦR1

...
ΦRn

 . (17)

This matrix applies the analysis operator used to obtain the
representation cSA.

The image y is reconstructed from the representation c in
the following manner. Let Ψ denote the (L+1)Np×Np matrix
that applies the L-level RTBWT reconstruction. We apply the
matrix Ψ to each of the vectors cj , plug each of the obtained
subimages into its original place in the image, and average the
different values obtained for each pixel. More formally,

y = D−1
n∑

j=1

RT
j Ψcj

= D−1
[
RT

1 Ψ, . . . ,R
T
nΨ

]
c = ΨSAc, (18)

where the matrix RT
j returns the jth subimage into its original

place in the image, and D =
∑n

j=1 R
T
j Rj is a diagonal

weight matrix. The matrix

ΨSA = D−1
[
RT

1 Ψ, . . . ,R
T
nΨ

]
(19)

applies the synthesis operator used to reconstruct y from the
representation c. As we see next, the rows of ΦSA constitute
a frame {ϕSA

n } and the columns of ΨSA constitute its dual
{ψSA

n }.
Proposition 2: The extended representation cSA is a frame

expansion with frame bounds α = 2 and β = 2Ln.
The proof is presented in Appendix B.

Here we also see that ΦSA and ΨSA apply analysis and
synthesis operations, and ΨSAΦSA = I. Therefore, ΨSA

is the pseudo-inverse of ΦSA, and the columns of ΨSA

constitute a frame {ψSA
n } which is dual to {ϕSA

n }, i.e. it
satisfies

1

2Ln
∥y∥2 ≤

∑
n

|⟨ψn,y⟩|2 ≤ 1

2
∥y∥2. (20)

Before concluding this section, we add a remark regarding
the frame bounds calculated above. Let us assume that the
RTBWT and corresponding frame have been calculated from
an image y0. Then the transform is adaptive to the content
in this image, since it is designed by ordering of its patches
or their descendants (i.e. filtered patches), and so does the
corresponding frame. Therefore, the frame bounds obtained
above are in fact misleading, since inequalities such as (20)
are true for a general image y, but the frame was designed
to handle the image y0. Thus, perhaps a better definition of
the frame bounds would be one that has to hold true for all
the images y in a small sphere ∥y − y0∥2 ≤ ϵ, for which
the transform (and the resulting frame) retain its topology. In
such a case, it is quite likely that the actual frame obtained
is nearly tight. We leave this matter open at this stage, as our
next part of the paper does not rely directly on these frame
properties.

IV. IMAGE RECONSTRUCTION USING RTBWT SA
FRAMES

A. Image Reconstruction Scheme

Let Y be an image of size N1 × N2 where N1N2 = N ,
and let Z be its corrupted version. Also, let z and y be the
column stacked versions of Z and Y, respectively. Then we
assume that the corrupted image is obtained via

z = Hy + v, (21)

where the N × N matrix H denotes a linear operator that
corrupts the data, and v denotes an additive white Gaussian
noise independent of y with zero mean and variance σ2. This
setting can be used to describe several of the classic image
inverse problems such as image denoising, deblurring, and
inpainting. Our goal is to reconstruct y from z by optimizing
an objective function that uses the analysis and synthesis
operators1 ΦSA and ΨSA as sparsity promoting regularizers.

A common approach for image reconstruction is to solve
an inverse problem which uses either an analysis-based or
synthesis-based image priors [19]. Here we take a different
approach, follow the footsteps of [11], and consider the
following combination of an analysis and a synthesis problems

{ŷ, ĉ} = argmin
y,c

∥z−Hy∥22 + η∥y −Ψc∥22

+ λ∥c∥0 + µ∥c−Φy∥22. (22)

Indeed, it can be seen that the problem (22) reduces to a
synthesis problem when η → ∞ and µ = 0, and to an analysis
when η = 0 and µ→ ∞. The authors of [11] brilliantly handle

1As of this point in the paper, we will simplify our notations and use Φ
and Ψ, referring to the full adaptive frames ΦSA and ΨSA.

7

the problem (22) as a generalized Nash equilibrium (GNE)
process, and split it into two subproblems, a denoising task:

ĉ = argmin
c

λ

µ
∥c∥0 + ∥c−Φy∥22, (23)

and an inversion task:

ŷ = argmin
y

∥z−Hy∥22 + η∥y −Ψc∥22 (24)

which are solved sequentially. We note that Φ and Ψ are
calculated in the beginning of this iterative process, and one
approach is to keep them fixed throughout the iterative process.
Alternatively, one might update these operators based on the
updated image. Unless said otherwise, our scheme takes the
first path of fixing these frames during the iterations.

The solution of the inversion stage is simply

ŷ =
[
HTH+ ηI

]−1 ×
[
HT z+ ηΨc

]
. (25)

The solution of the denoising problem is also quite simple,
given by

ĉ = Shard {Φy} (26)

where the operator Shard applies hard thresholding with the
threshold

√
λ/µ. We choose to replace Shard with an operator

Sτ that sets to zero coefficients in c in such a manner that
the coefficient vectors cj (see Equation (15)) share a common
support. This way, the set of thresholded subimage coefficients
form a joint sparsity pattern in the transform domain, and our
experiments show that when such patterns are used, the quality
of the reconstructed images improves. Let cj [k] be the kth
sample in the coefficient vector cj . Then the operator Sτ goes
over the indices k = 1 . . . , (L+1)Np, and for each index sets
the coefficients {c1[k], . . . , cn[k]} to zero if√√√√ 1

n

n∑
j=1

c2j [k] < τσ (27)

where τ is a design parameter. This corresponds to a simple
modification in the original inverse problem formulation in
Equation (22), replacing the term ∥c∥0 by a mixed norm
applied on the different pieces of this representation, namely,
∥c∥2,0.

The obtained image reconstruction scheme is described in
Algorithm 4. It can be seen that this algorithm is similar to the
IDD-BM3D algorithm proposed in [11], to which we will later
compare our image deblurring results. We next demonstrate
the use of the scheme in Algorithm 4 for image denoising and
deblurring. In all the experiments described next we choose
the distance function w to be the Euclidean distance, and use
a 9-level RTBWT decomposition with the Symmlet 8 wavelet
filter.

B. Image Denoising

In the case of image denoising z = y + v and therefore
H = I. We perform denoising using a simplified version of
the scheme in Algorithm 4, which uses the initial estimate
yinit = z, and applies only one iteration. Also, we notice

Task: recover the image y from the corrupted image z.
Parameters: We are given the corrupted image z, an
initial estimate yinit, the matrix H, the iteration number
G, the threshold τ , and the design parameter η.
Initialization: Set y0 = yinit and use it to calculate Φ
and Ψ.
Main Iteration: For t = 1, . . . , G perform:

• Denoising: ct = Sτ{Φyt−1}
• Inversion: yt =

[
HTH+ ηI

]−1 [
HT z+ ηΨct

]
Output: The estimate ŷ = yG.

Algorithm 4: Image reconstruction scheme.

that since H = I, the solution to the inversion problem (24)
becomes:

ŷ =
1

1 + η
z+

η

1 + η
Ψc. (28)

which is a weighted average between a denoised image and
the original noisy image. We further simplify our scheme and
cancel the addition of the noisy data to the clean image by
setting η → ∞. All these simplifications were done since we
found experimentally that the resulting simplified algorithm
is already producing near state-of-the-art results. Thus, the
obtained denoising scheme consists of calculating c = ΦSAz,
applying to it the thresholding operator Sτ , and reconstructing
the image using ΨSA, i.e.

ŷ = ΨSτ{c} = ΨSτ{Φz}. (29)

We explore two different methods to further improve the
results obtained with the denoising algorithm described above.
Both these methods apply the above scheme, and then use the
patches from the “cleaned” result ŷ1 to construct a “better
version” of the RTBWT, and use this transform to calculate
new analysis and synthesis operators Φ1 and Ψ1. The first
method obtains the denoised image ŷ2 by applying Equation
(29) again with these modified operators, i.e.

ŷ2 = Ψ1Sτ{Φ1z}. (30)

The second method applies a different scheme in its second
stage. Let Cdiag be a diagonal matrix that contains the vector
Φ1ŷ1 in its main diagonal. Then we replace the ℓ0-norm term
∥c∥0 in the denoising problem (23) with a different sparsity
promoting term cTC−1

diagc, and obtain the new problem

ĉ = argmin
c

λ

µ
cTC−1

diagc+ ∥c−Φy∥22. (31)

The solution to this problem is

ĉ =

[
Cdiag +

λ

µ
I

]−1

CdiagΦ
1y = Wy, (32)

where we have defined the diagonal matrix

W =

[
Cdiag +

λ

µ
I

]−1

Cdiag. (33)

Thus, the second method obtains the denoised image ŷ2
w by

calculating in its second stage the coefficient vector c = Φ1z,

8

TABLE I: Parameters Used in the Denoising Experiments.
σ Stage L

√
n B τ

5
1 9 7 21 1.5
2 9 4 211 1.45

Wiener 9 5 191 1.05

10
1 9 9 21 1.5
2 9 6 181 1.45

Wiener 9 5 191 1.05

15
1 9 10 21 1.5
2 9 7 211 1.45

Wiener 9 5 191 1.05

20
1 9 11 21 1.5
2 9 9 211 1.45

Wiener 9 5 191 1.05

25
1 9 12 21 1.5
2 9 10 211 1.45

Wiener 9 6 191 1.05

50
1 9 14 21 1.5
2 9 13 211 1.45

Wiener 9 7 191 1.05

75
1 9 16 21 1.5
2 9 14 211 1.45

Wiener 9 7 191 1.05

100
1 9 16 21 1.5
2 9 16 211 1.45

Wiener 9 9 191 1.05

multiplying it with the matrix W, and reconstructing the image
using Ψ1, i.e.

ŷ2
w = Ψ1WΦ1z. (34)

We note that by choosing λ/µ = (τσ)
2, where τ is a design

parameter, multiplication by the matrix W is equivalent to
applying some sort of a Wiener filter to the noisy image,
similarly to what is done in the second stage of the algorithms
in [9] and [20].

In order to assess the performance of the proposed image
denoising scheme we apply it to noisy versions of 6 images,
with 8 different noise standard deviations. The parameters
employed by the proposed denoising scheme for the different
noise levels are shown in Table I. Table II shows the PSNR
values of the results obtained with the BM3D algorithm, two
stages of the RTBWT denoising scheme, and the RTBWT
followed by Wiener filtering. The noisy and recovered images
obtained for σ = 25 with the BM3D algorithm, and our results
are shown in Figure 6. First, it can be seen that both the
second stage of the RTBWT scheme and the Wiener filter
improve the first iteration results of the RTBWT scheme in
many (70%− 85%) of the cases. The Wiener filter results are
generally better or comparable to the results of both the first
and second stages of the RTBWT scheme. Finally it can be
seen that for σ ≥ 25, the RTBWT denoising scheme followed
by Wiener filtering achieves in most of the cases either the
best results or results that are nearly as good. As the noise
decreases in strength, the performance of the RTBWT based
denoising schemes deteriorates compared to the BM3D.

C. Image Deblurring

In the case of image deblurring, H is a blur matrix, and
we perform deblurring by simply applying Algorithm 4 as is.
We demonstrate the image deblurring performance obtained
with this algorithm on the images Lena, Barbara, House,
and Cameraman, for the 6 scenarios described in Table III.

TABLE III: Blur Point Spread Functions (PSF) and Noise Variances
used in the Different Deblurring Scenarios.

Scenario PSF σ2

1 1/(1 + x2
1 + x2

2) , x1, x2 = −7, . . . , 7 2
2 1/(1 + x2

1 + x2
2) , x1, x2 = −7, . . . , 7 8

3 9× 9 uniform ≈ 0.3

4 [1 4 6 4 1]T [1 4 6 4 1] / 256 49
5 Gaussian with std = 1.6 4
6 Gaussian with std = 0.4 64

We compare the results obtained with this algorithm to the
ones obtained with the BM3DDEB [10] and the IDD-BM3D
algorithms. As the IDD-BM3D algorithm is initialized with
the BM3DDEB results, for a fair comparison we examine the
results obtained with our scheme using the same initialization.
We also examine the results obtained with our scheme by
initializing it with the blurry image, and try to improve them by
applying two more stages of our scheme, where we initialize
each stage with result of the previous ones. The parameters
employed in the different stages of the proposed deblurring
scheme, with the different initializations and for the different
scenarios, are shown in Table IV. We note that similarly to
what was done in [11], we optimized the parameters γ and
τ separately for each stage and each deblurring scenario to
provide best reconstruction quality.

Table V shows the ISNR results obtained with the different
algorithms. The blurred and recovered images obtained with
the BM3DDEB and IDD-BM3D algorithms, our proposed
scheme initialized with the BM3DDEB results, and three
stages of the proposed scheme initialized with the blurry
images, are shown in Figure 7. It can be seen that for all
the scenarios except for scenario 3, the proposed scheme ini-
tialized with BM3DDEB results achieves the best performance
for every image. Our scheme obtains inferior results when the
blurry image is used to initialize it, however its performance
improve when two more rounds are applied. In fact, in some
cases three rounds of our scheme initialized with the blurry
image obtain the best or second best results.

D. Computational Complexity

We next evaluate the computational complexity of the image
denoising and deblurring algorithms described above. We start
by calculating the complexity of a single iteration of the
denoising algorithm. First, extracting all the overlapped image
patches requires O(nN) operations. Next, we assume that for
the calculation of each one of the 2ℓ operators Ps

ℓ in the ℓth
scale of the RTBWT, each patch requires approximately B2

distance calculations. As calculating the Euclidean distance
between two patches requires O(n) operations, the number of
operations required to calculate a single reordering operator
Ps

ℓ from Ñℓ = N2−ℓ patches is approximately O(ÑℓB
2n).

Reordering these patches and applying them the two wavelet
filters requires O(nÑℓ) operations. Therefore the number of
operations required in order to calculate from an image all the

9

TABLE II: Denoising Results (PSNR in dB) of Noisy Versions of 6 Images, Obtained with the BM3D Algorithm, Two Stages of the
RTBWT Denoising Scheme, and the RTBWT Scheme Followed by Wiener Filtering. For Each Image and Noise Level the Best Result and
Results within a Distance of 0.05 dB from It, are Highlighted.

Image Method σ/PSNR
5/34.16 10/28.14 15/24.61 20/22.11 25/20.18 50/14.16 75/10.63 100/8.14

Lena

BM3D 38.72 35.93 34.27 33.05 32.08 29.05 27.26 25.95
proposed (1 stage) 38.44 35.70 34.12 32.98 32.06 28.97 27.19 25.90
proposed (2 stages) 38.08 35.45 33.91 32.99 32.11 29.18 27.43 26.31

proposed (1 stage+Wiener) 38.40 35.75 34.22 33.11 32.26 29.30 27.50 26.36

Barbara

BM3D 38.31 34.98 33.11 31.78 30.72 27.23 25.12 23.62
proposed (1 stage) 37.54 34.50 32.89 31.70 30.73 27.39 25.38 23.97
proposed (2 stages) 37.62 34.55 32.91 31.71 30.76 27.65 25.73 24.44

proposed (1 stage+Wiener) 37.67 34.55 32.97 31.85 30.90 27.78 25.82 24.46

Boats

BM3D 37.28 33.92 32.14 30.88 29.91 26.78 25.12 23.97
proposed (1 stage) 36.86 33.68 31.91 30.65 29.67 26.59 24.85 23.68
proposed (2 stages) 36.86 33.64 31.92 30.67 29.71 26.80 25.13 24.03

proposed (1 stage+Wiener) 36.98 33.79 32.05 30.82 29.88 26.91 25.15 24.04

Fingerprint

BM3D 36.51 32.46 30.28 28.81 27.70 24.53 22.83 21.61
proposed (1 stage) 35.03 31.28 29.47 28.21 27.16 23.90 22.20 21.19
proposed (2 stages) 35.86 31.88 29.80 28.17 27.01 23.74 22.22 21.37

proposed (1 stage+Wiener) 35.38 31.60 29.73 28.45 27.32 24.06 22.47 21.53

House

BM3D 39.83 36.71 34.94 33.77 32.86 29.69 27.51 25.87
proposed (1 stage) 39.32 36.41 34.75 33.61 32.74 29.55 27.43 25.75
proposed (2 stages) 38.40 35.68 34.01 33.27 32.46 29.49 27.42 25.96

proposed (1 stage+Wiener) 38.42 35.86 34.25 33.08 32.37 29.56 27.37 25.98

Peppers

BM3D 38.12 34.68 32.70 31.29 30.16 26.68 24.73 23.39
proposed (1 stage) 37.65 34.27 32.36 30.99 29.90 26.48 24.50 23.08
proposed (2 stages) 37.64 34.44 32.61 31.21 30.14 26.76 24.89 23.53

proposed (1 stage+Wiener) 37.81 34.49 32.66 31.35 30.33 26.93 24.98 23.56

PSNR=32.08 dB PSNR=32.11 dB PSNR=32.26 dB

PSNR=30.72 dB PSNR=30.76 dB PSNR=30.90 dB

Fig. 6: Denoising results (PSNR) for the images Lena and Barbara (σ = 25, input PSNR=20.18 dB): First column: noisy images, Second
column - BM3D results, Third column - 2 stages results of the RTBWT denoising scheme, Fourth column - results of the RTBWT scheme
followed by Wiener filtering.

operators Ps
ℓ used in an L-level RTBWT is

O(nN) +
L−1∑
ℓ=0

2ℓ
[
O(ÑℓB

2n) +O(nÑℓ)
]
= O(LNB2n).

(35)
Now, reordering each signal asℓ and applying on it the two
wavelet filters requires O(Ñℓ) operations, therefore apply-
ing either of the analysis and synthesis operators Φ and
Ψ, corresponding to the RTBWT calculated above, requires∑L−1

ℓ=0 2ℓO(Ñℓ) = O(LN) operations.
Next, each of the following actions require O(nLN) opera-

tions: applying the operator Φ to the n subimages z̃j , applying
the threshold operator Sτ or the Wiener filter to the transform
coefficients, and applying Ψ to the result, Constructing an
estimate image by averaging the pixel values obtained with
the different subimages requires O(nN) operations, therefore
the total complexity of a single denoising iteration is

O(LNB2n) +O(nLN) +O(nN) = O(LNB2n) (36)

operations, which means that, as might be expected, the overall
complexity is dominated by the calculation of the RTBWT
permutation operators. For a typical case in our experiments,

10

TABLE V: Deblurring Results (ISNR in dB) of Blurry Versions of 4 Images, Obtained with the BM3DDEB and IDD-BM3D Algorithms,
the Proposed Scheme Initialized with the BM3DDEB Results, and 3 Stages of the Proposed Scheme Initialized with the Blurry Image (BI).
For Each Image and Scenario the Best Result and Results within a Distance of 0.05 dB from It, are Highlighted.

Image Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Lena

BM3DDEB 7.96 6.55 7.99 4.80 4.34 6.42
IDD-BM3D 7.97 6.61 8.91 4.97 4.85 6.34

proposed (BM3DDEB init.) 8.56 6.92 8.86 5.52 4.95 6.91
proposed (BI 1 iter.) 7.36 5.99 8.43 4.66 4.56 5.58
proposed (BI 2 iter.) 7.43 6.25 8.69 4.76 4.83 5.89
proposed (BI 3 iter.) 7.75 6.34 8.98 4.88 4.91 5.89

Barbara

BM3DDEB 7.88 4.13 5.91 2.05 1.29 5.85
IDD-BM3D 7.64 3.96 6.05 1.88 1.16 5.45

proposed (BM3DDEB init.) 8.06 4.57 6.01 2.20 1.41 6.06
proposed (BI 1 iter.) 4.98 2.54 4.52 1.48 0.97 4.59
proposed (BI 2 iter.) 5.98 2.68 4.76 1.48 0.99 4.88
proposed (BI 3 iter.) 6.31 2.76 4.99 1.49 1.00 4.88

House

BM3DDEB 9.34 8.22 10.94 5.20 4.59 7.34
IDD-BM3D 9.95 8.55 12.89 5.79 5.74 7.13

proposed (BM3DDEB init.) 10.44 8.79 13.11 6.38 5.95 7.56
proposed (BI 1 iter.) 9.09 7.58 12.03 5.27 5.30 6.16
proposed (BI 2 iter.) 9.10 7.81 12.69 5.29 5.58 6.52
proposed (BI 3 iter.) 9.58 8.01 13.16 5.58 5.74 6.56

Cameraman

BM3DDEB 8.20 6.46 8.37 3.35 3.72 4.70
IDD-BM3D 8.85 7.12 10.45 3.98 4.31 4.89

proposed (BM3DDEB init.) 9.24 7.38 10.21 4.34 4.68 5.26
proposed (BI 1 iter.) 7.92 6.18 8.19 3.46 3.97 3.92
proposed (BI 2 iter.) 8.27 6.65 9.57 3.80 4.39 4.27
proposed (BI 3 iter.) 8.29 6.69 9.81 3.94 4.58 4.26

ISNR=6.55 dB ISNR=6.61 dB ISNR=6.92 dB ISNR=6.34 dB

ISNR=6.46 dB ISNR=7.12 dB ISNR=7.38 dB ISNR=6.69 dB

Fig. 7: Deblurring results (ISNR) for the images Lena and Cameraman (Scenario 2): First column: blurry images, Second column: BM3DDEB
results, Third column: IDD-BM3D results, Fourth column: results of the proposed scheme initialized with the BM3DDEB results, Fifth
column: results of the three rounds of the proposed scheme initialized with the blurry images.

N = 5122, L = 9, n = 121 and B = 21, the above amounts
to 1.26 · 1011 operations.

We proceed to calculate the complexity of the proposed im-
age deblurring algorithm. As we saw above, the calculation of
all the RTBWT operators requires O(LNB2n) operations, and
each denoising step requires O(nLN) + O(nN) = O(nLN)
operations. The deblurring step is performed in the Fourier
domain and therefore requires O(N logN) operations. Thus,
the overall complexity of the algorithm is

O(LNB2n) +G[O(nLN) +O(N logN)]

= O(LNB2n+GnLN +GN logN) (37)

and since the parameter we use satisfy n(L+1) > logN and
B2 > G, the complexity of the algorithm is again dominated
by the calculation of the RTBWT permutation operators. For
a typical case in our experiments, N = 5122, L = 9, n =
9, B = 51 and G = 50, the above amounts to 5.64 · 1010
operations.

In order to better illustrate these numbers, we also provide
run-times: applying two iterations of our denoising scheme
to a 512 × 512 image with noise level σ = 25 using a
non optimized and non parallel matlab implementation, on an
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, takes about
45 minutes. However, applying a single iteration followed

11

TABLE IV: Parameters Used in the Deblurring Experiments for
the Proposed Scheme Initialized with the BM3DDEB Results
(BM3DDEB init.) and for 3 Stages of the Proposed Scheme
Initialized with the Blurry Image (BI).

Scenario Stage L
√
n B η τ G

1

1 (BM3DDEB init.) 9 3 51 0.07 20 50
1 (BI) 9 6 31 0.03 60 30
2(BI) 9 4 41 0.03 50 30
3 (BI) 9 4 41 0.06 30 30

2

1 (BM3DDEB init.) 9 3 51 0.08 30 50
1 (BI) 9 6 31 0.07 60 30
2 (BI) 9 4 41 0.1 50 30
3 (BI) 9 4 41 0.16 30 30

3

1 (BM3DDEB init.) 9 3 51 0.01 20 50
1 (BI) 9 6 31 0.005 50 30
2 (BI) 9 4 41 0.005 60 30
3 (BI) 9 4 41 0.015 30 30

4

1 (BM3DDEB init.) 9 3 51 0.9 20 50
1 (BI) 9 6 31 0.5 50 30
2 (BI) 9 4 41 0.8 40 30
3 (BI) 9 4 41 1.9 20 30

5

1 (BM3DDEB init.) 9 3 51 0.05 20 50
1 (BI) 9 6 31 0.03 60 30
2 (BI) 9 4 41 0.07 40 30
3 (BI) 9 4 41 0.14 20 30

6

1 (BM3DDEB init.) 9 3 51 3.7 20 50
1 (BI) 9 6 31 3.2 50 30
2 (BI) 9 4 41 3.9 30 30
3 (BI) 9 4 41 3.8 30 30

by Wiener filtering takes only about 20 minutes. Applying
a single round of our deblurring scheme, initialized with the
BM3DDEB result, to a 512× 512 image corrupted according
to scenario 1 takes about 4 minutes. We should note that while
in our experiments we employed exact exhaustive search,
approximate nearest neighbor algorithms may be used to
alleviate the computational burden.

V. CONCLUSIONS

We have revisited the redundant tree-based wavelet trans-
form proposed in [1], described it in greater details and
analyzed its properties. We have introduced an alternative
implementation for this transform which is based on the à trous
algorithm, and used it to show that the RTBWT is a frame. We
have also shown that the image representation obtained with
the RTBWT combined with the subimage averaging scheme
also constitutes a frame, and calculated the synthesis and
analysis operators associated with it. We have proposed image
denoising and deblurring algorithms which make use of these
operators as sparsity promoting regularizers, and demonstrated
state-of-the-art results.

There are several research directions to extend this work
that we are currently considering. The first is to explore the
use of a weighted average in the subimage averaging scheme.
Intuitively it seems that the RTBWT would better represent
subimages which reside closer to the center of the image,
and therefore their pixels should receive higher weights when
the final estimate is calculated. A different direction is to
replace the thresholding operator Sτ used in the proposed
image processing schemes with an operator that takes into
consideration the change in the noise levels in the different
wavelet scales. Finally, the operators ΦSA and ΨSA may be

used to solve different image processing problems such as
image inpainting, superresolution, tomographic reconstruction,
and more.

APPENDIX

A. Proof of Proposition 1

Our proof is similar in spirit to the one given in [18] for
the common redundant wavelet transform. By the definition
of a frame, it is sufficient to show that the frame bounds exist
in order to show that the RTBWT is a frame. We notice that
∥c∥2 =

∑
n |⟨ϕn,y⟩|2, and we next show that the coefficient

vector c satisfies

2∥y∥2 ≤ ∥c∥2 ≤ 2L∥y∥2. (A.1)

We first recall that the orthogonal wavelet filters satisfy [16]

h̄[n] = h[−n] and ḡ[n] = g[−n] (A.2)∑
n

h[n] =
√
2 and

∑
n

g[n] = 0 (A.3)

and that the filters h and g are power complementary, i.e. their
Fourier transforms satisfy

|ĥ(2ℓω)|2 + |ĝ(2ℓω)|2 = 2. (A.4)

We apply the Fourier transform to (9) and (10), and using
(A.2) we obtain that

âℓ+1(ω) = âpℓ (ω)ĥ
∗(2ℓω) (A.5)

d̂ℓ+1(ω) = âpℓ (ω)ĝ
∗(2ℓω). (A.6)

Next we use (A.4) and the fact that ∥apℓ∥2 = ∥aℓ∥2 and obtain
that

∥dℓ+1∥2 + ∥aℓ+1∥2

=
1

2π

∫ π

−π

|apℓ (ω)|
2
(
|ĥ(2ℓω)|2 + |ĝ(2ℓω)|2

)
dω

= 2∥aℓ∥2. (A.7)

We notice that

∥c∥2 = ∥aL∥2 + ∥dL∥2 +
L−1∑
ℓ=1

∥dℓ∥2

= 2∥aL−1∥2 + ∥dL−1∥2 +
L−2∑
ℓ=1

∥dℓ∥2 (A.8)

where we used (A.7) in the transition from the second to the
third line. Finally from (A.7) and (A.8) and the fact that a0 =
y we get that

∥c∥2 ≤ 2∥aL−1∥2 + 2∥dL−1∥2 +
L−2∑
ℓ=1

∥dℓ∥2 (A.9)

≤ 22∥aL−2∥2 + 22∥dL−2∥2 +
L−3∑
ℓ=1

∥dℓ∥2 ≤ . . . ≤ 2L∥y∥2

(A.10)

12

and that

∥c∥2 ≥ ∥aL−1∥2 + ∥dL−1∥2 +
L−2∑
ℓ=1

∥dℓ∥2 (A.11)

≥ ∥aL−2∥2 + ∥dL−2∥2 +
L−3∑
ℓ=1

∥dℓ∥2 ≥ . . . ≥ 2∥y∥2.

(A.12)

We now show that the bounds α = 2 and β = 2L are the
tightest possible frame bounds since we can find vectors that
meet them. We first show that the vector yN , which satisfies
yN [k] = 1√

N
, k = 1 . . . , N meets the upper bound. Since

a0 = yN is a constant signal, we get that a1,p0 = a0 = yN .
Using (A.2) and (A.3) we get that

h̄j [n] ∗ yN [n] =
1√
N

∑
n

h̄[n] =
1√
N

∑
n

h[n]

=
√
2yN [n] (A.13)

and

ḡj [n] ∗ yN [n] =
1√
N

∑
n

ḡ[n] =
1√
N

∑
n

g[n] = 0. (A.14)

From (A.13) and (A.14) we get that a1 =
√
2a0 =

√
2yN and

d1 = 0, where 0 denotes a vector of all zeros. Using similar
calculations it can be shown that aℓ =

(√
2
)ℓ

yN and dℓ = 0,
therefore ∥c∥2 = 2L∥yN∥2. Now, let ỹN [k] = 1√

N
(−1)k ,

k = 1 . . . , N . Then using a similar procedure it can be shown
that the vector P̃0ỹN meets the lower bound.

B. Proof of Proposition 2

We show that the representation cSA is a frame by noticing
that ∥cSA∥2 =

∑
n |⟨ϕSA

n ,y⟩|2, and showing that

2∥y∥2 ≤ ∥cSA∥2 ≤ 2Ln∥y∥2. (A.15)

We first use (16) and see that

∥cSA∥2 = yT
(
ΦSA

)T
ΦSAy =

n∑
j=1

yTRT
j Φ

TΦRjy

=

n∑
j=1

∥ΦRjy∥2 (A.16)

From Proposition 1 we have that

2∥Rjy∥2 ≤ ∥ΦRjy∥2 ≤ 2L∥Rjy∥2. (A.17)

We notice that
n∑

j=1

∥Rjy∥2 = yT

 n∑
j=1

RT
j Rj

y = yTDy (A.18)

and therefore

2yTDy ≤ ∥cSA∥2 ≤ 2LyTDy. (A.19)

As the minimum value of the diagonal matrix D equals 1, and
the maximum value equals n, we obtain that

2∥y∥2 ≤ ∥cSA∥2 ≤ 2Ln∥y∥2. (A.20)

REFERENCES

[1] I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs
and High Dimensional Data Clouds,” IEEE Signal Processing Letters,
vol. 19, no. 5, pp. 291–294, 2012.

[2] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling and Simulation, vol. 4,
no. 2, pp. 490–530, 2006.

[3] I. Ram, M. Elad, and I. Cohen, “Image processing using smooth ordering
of its patches,” IEEE Trans. Image Processing, vol. 22, no. 7, pp. 2764
– 2774, 2013.

[4] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (mca),” Applied and Computational Harmonic Analysis, vol. 19,
no. 3, pp. 340–358, 2005.

[5] G. Plonka, “The Easy Path Wavelet Transform: A New Adaptive Wavelet
Transform for Sparse Representation of Two-Dimensional Data,” Mul-
tiscale Modeling & Simulation, vol. 7, p. 1474, 2009.

[6] M. Elad and M. Aharon, “Image denoising via sparse and redundant rep-
resentations over learned dictionaries,” IEEE Trans. Image Processing,
vol. 15, no. 12, pp. 3736–3745, 2006.

[7] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Computer Vision, 2009 IEEE
12th International Conference on. IEEE, 2009, pp. 2272–2279.

[8] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with
piecewise linear estimators: from gaussian mixture models to structured
sparsity,” Image Processing, IEEE Transactions on, no. 99, pp. 1–1,
2010.

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[10] ——, “Image restoration by sparse 3d transform-domain collaborative
filtering,” in SPIE Electronic Imaging, vol. 6812, 2008.

[11] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and
variational image deblurring,” IEEE Trans. Image Processing, vol. 21,
no. 4, pp. 1715–1728, 2012.

[12] I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet
Transform ,” IEEE Trans. Signal Processing, vol. 59, no. 9, pp. 4199–
4209, 2011.

[13] M. Shensa, “The discrete wavelet transform: Wedding the a trous and
mallat algorithms,” IEEE Trans. Signal Processing, vol. 40, no. 10, pp.
2464–2482, 1992.

[14] G. Beylkin, “On the representation of operators in bases of compactly
supported wavelets,” SIAM J. Numer. Anal., vol. 29, no. 6, pp. 1716–
1740, 1992.

[15] T. H. Cormen, Introduction to algorithms. The MIT press, 2001.
[16] S. Mallat, A Wavelet Tour of Signal Processing, The Sparse Way.

Academic Press, 2009.
[17] M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian,

“A real-time algorithm for signal analysis with the help of the wavelet
transform,” in Wavelets. Time-Frequency Methods and Phase Space,
vol. 1. Springer-Verlag, 1989, pp. 286–297.

[18] J. Fowler, “The redundant discrete wavelet transform and additive noise,”
IEEE Signal Processing Letters, vol. 12, no. 9, pp. 629–632, 2005.

[19] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inverse problems, vol. 23, no. 3, p. 947, 2007.

[20] S. Ghael, A. Sayeed, and R. Baraniuk, “Improved wavelet denoising via
empirical wiener filtering,” in Proc. SPIE, vol. 3169, 1997, pp. 389–399.

