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Abstract. A full-rank matrix A ∈ Rn×m with n < m generates an underdetermined system of linear
equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution,
i.e., the one with the fewest nonzero entries. Can it ever be unique? If so, when? As opti-
mization of sparsity is combinatorial in nature, are there efficient methods for finding the
sparsest solution? These questions have been answered positively and constructively in
recent years, exposing a wide variety of surprising phenomena, in particular the existence
of easily verifiable conditions under which optimally sparse solutions can be found by con-
crete, effective computational methods. Such theoretical results inspire a bold perspective
on some important practical problems in signal and image processing. Several well-known
signal and image processing problems can be cast as demanding solutions of undetermined
systems of equations. Such problems have previously seemed, to many, intractable, but
there is considerable evidence that these problems often have sparse solutions. Hence, ad-
vances in finding sparse solutions to underdetermined systems have energized research on
such signal and image processing problems—to striking effect. In this paper we review the
theoretical results on sparse solutions of linear systems, empirical results on sparse mod-
eling of signals and images, and recent applications in inverse problems and compression
in image processing. This work lies at the intersection of signal processing and applied
mathematics, and arose initially from the wavelets and harmonic analysis research commu-
nities. The aim of this paper is to introduce a few key notions and applications connected
to sparsity, targeting newcomers interested in either the mathematical aspects of this area
or its applications.
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1. Introduction. A central achievement of classical linear algebra was a thorough
examination of the problem of solving systems of linear equations. The results—
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definite, timeless, and profound—give the subject a completely settled appearance.
Surprisingly, within this well-understood arena there is an elementary problem which
only recently has been explored in depth; we will see that this problem has surprising
answers and inspires numerous practical developments.

1.1. Sparse Solutions of Linear Systems of Equations?. Consider a full-rank
matrix A ∈ R

n×m with n < m, and define the underdetermined linear system of
equations Ax = b. This system has infinitely many solutions; if one desires to
narrow the choice to one well-defined solution, additional criteria are needed. Here
is a familiar way to do this. Introduce a function J(x) to evaluate the desirability
of a would-be solution x, with smaller values being preferred. Define the general
optimization problem (PJ),

(PJ) : min
x

J(x) subject to b = Ax.(1)

Selecting a strictly convex function J(·) guarantees a unique solution. Most readers
are familiar with this approach from the case where J(x) is the squared Euclidean
norm ‖x‖2

2. The problem (P2) (say), which results from that choice, has in fact a
unique solution x̂—the so-called minimum-norm solution; this is given explicitly by

x̂2 = A+b = AT (AAT )−1b.

The squared �2 norm is of course a measure of energy; in this paper, we consider
instead measures of sparsity. A very simple and intuitive measure of sparsity of a
vector x simply involves the number of nonzero entries in x; the vector is sparse
if there are few nonzeros among the possible entries in x. It will be convenient to
introduce the �0 “norm”

‖x‖0 = #{i : xi �= 0}.

Thus if ‖x‖0 � m, x is sparse.
Consider the problem (P0) obtained from the general prescription (PJ) with the

choice J(x) = J0(x) ≡ ‖x‖0; explicitly,

(P0) : min
x

‖x‖0 subject to b = Ax.(2)

Sparsity optimization (2) looks superficially like the minimum �2-norm problem
(P2), but the notational similarity masks some startling differences. The solution
to (P2) is always unique and is readily available through now-standard tools from
computational linear algebra. (P0) has probably been considered to be a possible
goal from time to time for many years, but initially it seems to pose many conceptual
challenges that have inhibited its widespread study and application. These are rooted
in the discrete and discontinuous nature of the �0 norm; the standard convex analysis
ideas which underpin the analysis of (P2) do not apply. Many of the most basic
questions about (P0) seem immune to immediate insight:

• Can uniqueness of a solution be claimed? Under what conditions?
• If a candidate solution is available, can we perform a simple test to verify

that the solution is actually the global minimizer of (P0)?
Perhaps, in some instances, with very special matrices A and left-hand sides b, ways
to answer such questions are apparent, but for general classes of problem instances
(A,b), such insights initially seem unlikely.
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Beyond conceptual issues of uniqueness and verification of solutions, one is easily
overwhelmed by the apparent difficulty of solving (P0). This is a classical problem
of combinatorial search; one sweeps exhaustively through all possible sparse subsets,
generating corresponding subsystems b = ASxS , where AS denotes the matrix with
|S| columns chosen from those columns of A with indices in S, and checking whether
b = ASxS can be solved. The complexity of exhaustive search is exponential in
m and, indeed, it has been proven that (P0) is, in general, NP-hard [125]. Thus, a
mandatory and crucial set of questions arises: Can (P0) be efficiently solved by some
other means? Can approximate solutions be accepted? How accurate can those be?
What kind of approximations will work?

In fact, why should anyone believe that any progress of any kind is possible here?
Here is a hint. Let ‖x‖1 denote the �1 norm

∑
i |xi|, and consider the problem (P1)

obtained by setting J(x) = J1(x) = ‖x‖1. This problem is somehow intermediate
between (P2) and (P0). It is a convex optimization problem, and among convex
problems it is in some sense the one closest to (P0). We will see below [49, 93, 46]
that for matrices A with incoherent columns, whenever (P0) has a sufficiently sparse
solution, that solution is unique and is equal to the solution of (P1). Since (P1) is
convex, the solution can thus be obtained by standard optimization tools—in fact,
linear programming. Even more surprisingly, for the same class A, some very simple
greedy algorithms (GAs) can also find the sparsest solution to (P0) [156].

Today many pure and applied mathematicians are pursuing results concerning
sparse solutions to underdetermined systems of linear equations. The results achieved
so far range from identifying conditions under which (P0) has a unique solution, to
conditions under which (P0) has the same solution as (P1), to conditions under which
the solution can be found by some “pursuit” algorithm. Extensions range even more
widely, from less restrictive notions of sparsity to the impact of noise, the behavior of
approximate solutions, and the properties of problem instances defined by ensembles
of random matrices. We hope to introduce the reader to some of this work below and
provide some appropriate pointers to the growing literature.

1.2. The Signal Processing Perspective. We now know that finding sparse so-
lutions to underdetermined linear systems is a better-behaved and much more prac-
tically relevant notion than we might have supposed just a few years ago.

In parallel with this development, another insight has been developing in signal
and image processing, where it has been found that many media types (still imagery,
video, acoustic) can be sparsely represented using transform-domain methods, and in
fact many important tasks dealing with such media can be fruitfully viewed as finding
sparse solutions to underdetermined systems of linear equations.

Many readers will be familiar with the media encoding standard JPEG and its
successor, JPEG-2000 [153]. Both standards are based on the notion of transform
encoding. The data vector representing the raw pixel samples are transformed—
i.e., represented in a new coordinate system—and the resulting coordinates are then
processed to produce the encoded bitstream. JPEG relies on the discrete cosine
transform (DCT)—a variant of the Fourier transform—while JPEG-2000 relies on the
discrete wavelet transform (DWT) [116]. These transforms can be viewed analytically
as rotations of coordinate axes from the standard Euclidean basis to a new basis. Why
does it make sense to change coordinates in this way? Sparsity provides the answer.

The DCT of media content often has the property that the first several transform
coefficients are quite large and later ones are very small. Treating the later coefficients
as zeros and approximating the early ones by quantized representations yields an
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approximate coefficient sequence that can be efficiently stored in a few bits. The
approximate coefficient sequence can be inverse transformed to yield an approximate
representation of the original media content. The DWT of media content has a slightly
different property: there are often a relatively few large coefficients (although they
are not necessarily the “first” ones). Approximating the DWT by setting to zero
the small coefficients and quantizing the large ones yields a sequence to be efficiently
stored and later inverse transformed to provide an approximate representation of the
original media content. The success of the DWT in image coding is thus directly
tied to its ability to sparsify image content. For many types of image content, JPEG-
2000 outperforms JPEG: fewer bits are needed for a given accuracy or approximation.
One underlying reason is that the DWT of such media is more sparse than the DCT
representation.1

In short, sparsity of representation is key to widely used techniques of transform-
based image compression. Transform sparsity is also a driving factor for other impor-
tant signal and image processing problems, including image denoising [50, 51, 27, 43,
53, 52, 144, 124, 96] and image deblurring [76, 75, 74, 41]. Repeatedly, it has been
shown that a better representation technique—one that leads to more sparsity—can
be the basis for a practically better solution to such problems. For example, it has
been found that for certain media types (e.g., musical signals with strong harmonic
content), sinusoids are best for compression, noise removal, and deblurring, while for
other media types (e.g., images with strong edges), wavelets are a better choice than
sinusoids.

Realistic media may be a superposition of several such types, conceptually re-
quiring both sinusoids and wavelets. Following this idea leads to the notion of joining
together sinusoids and wavelets in a combined representation. Mathematically this
now lands us in a situation similar to that described in the previous section. The basis
of sinusoids alone makes an n × n matrix, and the basis of wavelets makes an n × n
matrix; the concatenation makes an n × 2n matrix. The problem of finding a sparse
representation of a signal vector b using such a system is exactly the same as that of
the previous section. We have a system of n equations in m = 2n unknowns, which
we know is underdetermined; we look to sparsity as a principle to find the desired
solution.

We can make this connection formal as follows. Let b denote the vector of sig-
nal/image values to be represented, and let A be the matrix whose columns are the
elements of the different bases to be used in the representation. The problem (P0)
offers literally the sparsest representation of the signal content.

1.3. Measuring Sparsity. The �0 norm, while providing a very simple and easily
grasped notion of sparsity, is not the only notion of sparsity available to us, nor is
it really the right notion for empirical work. A vector of real data would rarely be
representable by a vector of coefficients containing many strict zeros. A weaker notion
of sparsity can be built on the notion of approximately representing a vector using a
small number of nonzeros; this can be quantified by the weak �p norms, which mea-
sure the tradeoff between the number of nonzeros and the �2 error of reconstruction.
Denoting by N(ε,x) the number of entries in x exceeding ε, these measures of sparsity
are defined by

‖x‖w	p = sup
ε>0

N(ε,x) · εp.

1A second important reason for the superiority of JPEG-2000 is its improved bit-plane-based
quantization strategy.
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Here 0 < p ≤ 1 is the interesting range of p, giving a very powerful sparsity constraint.
The weak �p norm is a popular measure of sparsity in the mathematical analysis
community; models of cartoon images have sparse representations as measured in
weak �p [26, 13].

Almost equivalent are the usual �p norms, defined by

‖x‖p =

(∑
i

|xi|p
)1/p

.

These will seem more familiar objects than the weak �p norms, in the range 1 ≤ p ≤ ∞;
however, for measuring sparsity, 0 < p < 1 is of most interest.

It would seem very natural, based on our discussion of media sparsity, to attempt
to solve a problem of the form

(Pp) : min ‖x‖p subject to Ax = b,(3)

for example, with p = 1/2 or p = 2/3. Unfortunately, each choice 0 < p < 1 leads to
a nonconvex optimization problem which is very difficult to solve in general.

At this point, our discussion of the �0 norm in section 1.1 can be brought to bear.
The �0 norm is naturally related to the �p norms with 0 < p < 1; all are measures of
sparsity and, in fact, the �0 norm is the limit as p → 0 of the �p norms in the following
sense:

‖x‖0 = lim
p→0

‖x‖pp = lim
p→0

m∑
k=1

|xk|p.(4)

Figure 1 presents the behavior of the scalar weight function |x|p—the core of the norm
computation—for various values of p, showing that as p goes to zero, this measure
becomes a count of the nonzeros in x.
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Fig. 1 The behavior of |x|p for various values of p. As p tends to zero, |x|p approaches the indicator
function, which is 0 for x = 0 and 1 elsewhere.

Note that among the �p norms, the choice p = 1 gives a convex functional, while
every choice 0 < p < 1 yields a concave functional. We have already mentioned
that solving (P0) can sometimes be attacked by solving (P1) instead, or by using an
appropriate heuristic GA; the same lesson applies here: although we might want to
solve (Pp) we should do better by instead solving (P1) or by applying an appropriate
heuristic GA.

1.4. This Paper. The keywords “sparse,” “sparsity,” “sparse representations,”
“sparse approximations,” and “sparse decompositions” are increasingly popular; the
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Institute for Scientific Information in its June 2006 issue of Essential Science Indica-
tors formally identified a new research front involving some of the key papers we dis-
cuss here. This emerging research front, which for brevity will be referred to hereafter
as Sparse-Land, can be identified with the topic of sparse modeling, and investigates
how to fit models where only a few terms out of many will be used and how to sparsely
model important natural data types. In this paper, we hope to give a sampling of
some of the work in this new area, spanning the range from theory to applications.

2. The Sparsest Solution of Ax= b. We return to the basic problem (P0), which
is at the core of our discussion. For the underdetermined linear system of equations
Ax = b (a full-rank matrix A ∈ Rn×m with n < m), we pose the following questions:

Q1: When can uniqueness of the sparsest solution be claimed?
Q2: Can a candidate solution be tested to verify its (global) optimality?
Q3: Can the solution be reliably and efficiently found in practice?
Q4: What performance guarantees can be given for various approximate and prac-

tical solvers?
This section addresses all these questions and some of their extensions.

2.1. Uniqueness.

2.1.1. Uniqueness via the Spark. A key property that is crucial for the study of
uniqueness is the spark of the matrix A, a term coined and defined in [46]. We start
with the following definition.

Definition 1 (see [46]). The spark of a given matrix A is the smallest number
of columns from A that are linearly dependent.

Recall that the rank of a matrix is defined as the largest number of columns
from A that are linearly independent. Clearly, the resemblance between these two
definitions is noticeable. Nevertheless, the spark of a matrix is far more difficult to
obtain, compared to the rank, as it calls for a combinatorial search over all possible
subsets of columns from A.

The importance of this property of matrices for the study of the uniqueness of
sparse solutions was unraveled in [84]. Interestingly, this property previously ap-
peared in the literature of psychometrics (termed Kruskal rank), used in the context
of studying uniqueness of tensor decomposition [102, 110]. The spark is also related to
established notions in matroid theory; formally, it is precisely the girth of the linear
matroid defined by A, i.e., the length of the shortest cycle in that matroid [162, 6, 61].
Finally, if we consider the same definition where the arithmetic underlying the matrix
product is performed not over the fields of real or complex numbers but instead over
the ring of integers mod q, the same quantity arises in coding theory, where it allows
the computation of the minimum distance of a code [131]. The resemblance between
all these concepts is striking and instructive.

The spark gives a simple criterion for uniqueness of sparse solutions. By definition,
the vectors in the null-space of the matrix Ax = 0 must satisfy ‖x‖0 ≥ spark(A),
since these vectors linearly combine columns from A to give the zero vector, and at
least spark such columns are necessary by definition. Using the spark we obtain the
following result.

Theorem 2 (uniqueness: spark [84, 46]). If a system of linear equations Ax = b
has a solution x obeying ‖x‖0 < spark(A)/2, this solution is necessarily the sparsest
possible.

Proof. Consider an alternative solution y that satisfies the same linear system
Ay = b. This implies that x− y must be in the null-space of A, i.e., A(x− y) = 0.
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By the definition of spark,

‖x‖0 + ‖y‖0 ≥ ‖x− y‖0 ≥ spark(A).(5)

The leftmost term in the above inequality simply states that the number of nonzeros
in the difference vector x − y cannot exceed the sum of the number of nonzeros
within each of the vectors x and y separately. Since we have a solution satisfying
‖x‖0 < spark(A)/2, we conclude that any alternative solution y necessarily has more
than spark(A)/2 nonzeros, as claimed.

This result is very elementary and yet quite surprising, bearing in mind that (P0)
is a highly complicated optimization task of combinatorial flavor. In general com-
binatorial optimization problems, when considering a proposed solution, one hopes
only to check local optimality—i.e., that no simple modification gives a better result.
Here, we find that simply checking the solution sparsity, and comparing that with the
spark, lets us check global optimality.

Clearly, the value of spark can be very informative, and large values of spark are
evidently very useful. How large can spark be? By definition, spark must be in the
range 1 ≤ spark(A) ≤ n + 1. For example, if A comprises random independent and
identically distributed (i.i.d.) entries (say, Gaussian), then with probability 1 we have
spark(A) = n + 1, implying that no n columns are linearly dependent. In this case,
uniqueness is ensured for every solution with n/2 or fewer nonzero entries.

2.1.2. Uniqueness via the Mutual Coherence. The spark is at least as difficult
to evaluate as solving (P0). Thus, simpler ways to guarantee uniqueness are of interest.
A very simple way exploits the mutual coherence of the matrix A, defined as follows.

Definition 3 (see [118, 49, 46]). The mutual coherence of a given matrix A
is the largest absolute normalized inner product between different columns from A.
Denoting the kth column in A by ak, the mutual coherence is given by

µ(A) = max
1≤k,j≤m, k 	=j

∣∣aTk aj∣∣
‖ak‖2 · ‖aj‖2

.(6)

The mutual coherence is a way to characterize the dependence between columns
of the matrix A. For a unitary matrix, columns are pairwise orthogonal, and so the
mutual coherence is zero. For general matrices with more columns than rows, m > n,
µ is necessarily strictly positive, and we desire the smallest possible value so as to get
as close as possible to the behavior exhibited by unitary matrices.

The work reported in [49, 93] considered structured matricesA ∈ Rn×2n = [ΦΨ],
where Φ and Ψ are unitary matrices. The mutual coherence of such dictionaries
satisfies 1/

√
n ≤ µ(A) ≤ 1, where the lower bound is achievable for certain pairs of

orthogonal bases, such as the identity and the Fourier, the identity and the Hadamard,
and so on. When considering random orthogonal matrices of size n×m, the work in
[49, 93] has shown that they tend to be incoherent, implying that µ(An,m) is typically
proportional to

√
log(nm)/n for n → ∞. In [150] it has been shown that for full-rank

matrices of size n × m the mutual coherence is bounded from below by

µ ≥
√

m − n

n(m − 1)
,

equality being obtained for a family of matrices named Grassmanian frames. Indeed,
this family of matrices has spark(A) = n + 1, the highest value possible. We also
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mention work in quantum information theory, constructing error-correcting codes us-
ing a collection of orthogonal bases with minimal coherence, obtaining similar bounds
on the mutual coherence for amalgams of orthogonal bases [11].

Mutual coherence, relatively easy to compute, allows us to lower bound the spark,
which is often hard to compute.

Lemma 4 (see [46]). For any matrix A ∈ Rn×m, the following relationship holds:

spark(A) ≥ 1 +
1

µ(A)
.(7)

Proof. First, modify the matrix A by normalizing its columns to unit �2 norm,
obtaining Ã. This operation preserves both the spark and the mutual coherence. The
entries of the resulting Gram matrix G = ÃT Ã satisfy the following properties:

{Gk,k = 1 : 1 ≤ k ≤ m} and {|Gk,j | ≤ µ : 1 ≤ k, j ≤ m, k �= j} .

Consider an arbitrary minor from G of size p × p, built by choosing a subgroup
of p columns from Ã and computing their sub-Gram matrix. From the Gershgorin
disk theorem [91], if this minor is diagonally dominant—i.e., if

∑
j 	=i |Gi,j | < |Gi,i| for

every i—then this submatrix of G is positive definite, and so those p columns from
Ã are linearly independent. The condition p < 1 + 1/µ implies positive definiteness
of every p × p minor, and so spark(A) ≥ p + 1 ≥ 1 + 1/µ.

We have the following analogue of Theorem 2.
Theorem 5 (uniqueness: mutual coherence [46]). If a system of linear equations

Ax = b has a solution x obeying ‖x‖0 < 1
2 (1 + 1/µ(A)), this solution is necessarily

the sparsest possible.
Compare Theorems 2 and 5. They are parallel in form, but with different as-

sumptions. In general, Theorem 2, which uses spark, is sharp and far more powerful
than Theorem 5, which uses the coherence and so only a lower bound on spark. The
coherence can never be smaller than 1/

√
n, and, therefore, the cardinality bound of

Theorem 5 is never larger than
√
n/2. However, the spark can easily be as large as n,

and Theorem 2 then gives a bound as large as n/2.
We have now given partial answers to the questions Q1 and Q2 posed at the start

of this section. We have seen that any sufficiently sparse solution is guaranteed to
be unique among sufficiently sparse solutions. Consequently, any sufficiently sparse
solution is necessarily the global optimizer of (P0). These results show that searching
for a sparse solution can lead to a well-posed question with interesting properties. We
now turn to discuss Q3—practical methods for obtaining solutions.

2.2. Pursuit Algorithms: Practice. A straightforward approach to solving (P0)
seems hopeless; we now discuss methods which, it seems, have no hope of working—
but which, under specific conditions, will work.

2.2.1. Greedy Algorithms. Suppose that the matrix A has spark(A) > 2 and
the optimization problem (P0) has value val(P0) = 1, so b is a scalar multiple of some
column of the matrix A. We can identify this column by applying m tests—one per
column of A. This procedure requires order O(mn) flops, which may be considered
reasonable. Now suppose that A has spark(A) > 2k0, and the optimization problem
is known to have value val(P0) = k0. Then b is a linear combination of at most k0
columns of A. Generalizing the previous solution, one might try to enumerate all(
m
k0

)
= O(mk0) subsets of k0 columns from A and then to test each one. Enumeration

takes O(mk0nk0
2) flops, which seems prohibitively slow in many settings.
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A greedy strategy abandons exhaustive search in favor of a series of locally op-
timal single-term updates. Starting from x0 = 0 it iteratively constructs a k-term
approximant xk by maintaining a set of active columns—initially empty—and, at
each stage, expanding that set by one additional column. The column chosen at each
stage maximally reduces the residual �2 error in approximating b from the currently
active columns. After constructing an approximant including the new column, the
residual �2 error is evaluated; if it now falls below a specified threshold, the algorithm
terminates.

Exhibit 1 presents a formal description of the strategy and its associated notation.
This procedure is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), but is very well known (and was used much earlier) by other
names in other fields—see below.

Task: Approximate the solution of (P0): minx ‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the error threshold ε0.

Initialization: Initialize k = 0, and set
• The initial solution x0 = 0.
• The initial residual r0 = b−Ax0 = b.
• The initial solution support S0 = Support{x0} = ∅.

Main Iteration: Increment k by 1 and perform the following steps:
• Sweep: Compute the errors ε(j) = minzj ‖ajzj − rk−1‖22 for all j using the

optimal choice z∗j = aTj rk−1/‖aj‖22.
• Update Support: Find a minimizer j0 of ε(j): ∀ j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk , the minimizer of ‖Ax−b‖22 subject

to Support{x} = Sk .
• Update Residual: Compute rk = b−Axk .
• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

Exhibit 1. OMP—a GA for approximating the solution of (P0).

If the approximation delivered has k0 nonzeros, the method requires O(k0mn)
flops in general; this can be dramatically better than the exhaustive search, which
requires O(nmk0k0

2) flops.
Thus, this single-term-at-a-time strategy can be much more efficient than exhaus-

tive search—if it works! The strategy can fail badly, i.e., there are explicit examples
(see [154, 155, 36]) where a simple k-term representation is possible, but this approach
yields an n-term (i.e., dense) representation. In general, all that can be said is that
among single-term-at-a-time strategies, the approximation error is always reduced by
as much as possible, given the starting approximation and the single-term-at-a-time
constraint. This explains why this type of algorithm has earned the name “greedy
algorithm” in approximation theory.

Many variants on this algorithm are available, offering improvements in accuracy
or in complexity or both [118, 34, 33, 23, 130, 30, 159, 82]. This family of GAs is
well known and extensively used, and, in fact, these algorithms have been reinvented
in various fields. In the setting of statistical modeling, greedy stepwise least squares
is called forward stepwise regression and has been widely used since at least the
1960s [31, 90]. When used in the signal processing setting this goes by the name of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPARSE MODELING OF SIGNALS AND IMAGES 43

matching pursuit (MP) [118, 34, 33] or OMP [23, 130]. Approximation theorists refer
to these algorithms as GAs and consider several variants of them—the pure (PGA),
the orthogonal (OGA), the relaxed (RGA), and the weak GA (WGA) [154, 155, 36,
4, 87].

2.2.2. Convex Relaxation Techniques. A second way to render (P0) more tract-
able is to regularize the (highly discontinuous) �0 norm, replacing it by a continuous
or even smooth approximation. Examples of such regularizations include replacing it
with �p norms for some p ∈ (0, 1] or even by smooth functions such as

∑
j log(1+αx2

j )
or
∑
j x

2
j/(α+x2

j ). As an example, the FOCUSS method [84, 139, 138] uses �p for some
fixed p ∈ (0, 1] and seeks a local minimum of the �p norm by iteratively reweighted
least squares [97]. This is a practical strategy, but little is known about circumstances
where it will be successful, i.e., when a numerical local minimum will actually be a
good approximation to a global minimum of (P0). Another strategy is to replace the
�0 norm by the �1 norm, which is, in a natural sense, its best convex approximant
[24, 25, 142]; many optimization tools are available “off the shelf” for solving (P1).

Turning from (P0) to its regularizations (Pp) with 0 < p ≤ 1, care must be taken
with respect to normalization of the columns in A. While the �0 norm is indifferent
to the magnitude of the nonzero entries in x, the �p norms tend to penalize higher
magnitudes and thus bias the solution toward choosing to put nonzero entries in x
in locations that multiply large norm columns in A. In order to avoid this bias, the
columns should be scaled appropriately.

Convexifying with the �1 norm, the new objective becomes

(P1) : min
x

‖Wx‖1 subject to b = Ax.(8)

The matrix W is a diagonal positive-definite matrix that introduces the above-
described precompensating weights. A natural choice for the (i, i) entry in this matrix
for this case is w(i) = ‖ai‖2. Assuming that A has no zero columns, all these norms
are strictly positive and the problem (P1) is well defined. The case where all the
columns of A are normalized (and thusW = I) was named basis pursuit (BP) in [24].
We will use this name hereafter for the more general setup in (8).

The problem (P1) can be cast as a linear programming (LP) problem and solved
using modern interior-point methods, simplex methods, or other techniques, such as
homotopy methods [24]. Such algorithms are far more sophisticated than the GAs
mentioned earlier, as they obtain the global solution of a well-defined optimization
problem. This also makes it possible to understand their working in sometimes great
detail—something which is apparently not the case for GAs.

While there are several readily available and carefully programmed solvers for
accurate solution of (P1), approximating the solution of (P0) by GAs is still considered
to be more common, perhaps because of the perception that high-accuracy solution
of (P1) is a computationally heavy task. An emerging alternative to approximately
solving (P1) has been recently introduced in several independent papers, leading to
similar algorithms that may be called iterated shrinkage methods [32, 76, 75, 5, 62,
67]. These iteratively use multiplication by A and its adjoint, and a simple 1D
operation that sets to zero small entries—a shrinkage operation. These methods can
compete with the greedy methods in simplicity and efficiency. However, this line of
work is still in its infancy, more work being required to establish the effectiveness of
such algorithms compared to the greedy ones. More on this family of techniques is
presented in section 3.2.3.
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2.3. Pursuit Algorithms: Performance. So far we have provided answers to
Q1–Q3. We now discuss Q4—performance guarantees of the above-described pursuit
algorithms.

Assume that the linear system Ax = b has a sparse solution with k0 nonzeros,
i.e., ‖x‖0 = k0. Furthermore, assume that k0 < spark(A)/2. Will MP or BP succeed
in recovering the sparsest solution? Clearly, such success cannot be expected for all
k0 and for all matrices A, since this would conflict with the known NP-hardness of
the problem in the general case. However, if the equation actually has a “sufficiently
sparse” solution, the success of these algorithms in addressing the original objective
(P0) can be guaranteed [46, 86, 79, 156, 133, 134, 135]. We present here two such
results, one that corresponds to the OMP algorithm as described in Exhibit 1, and
the other for BP (i.e., solving (P1) in place of (P0)).

2.3.1. The GA Solves (P0) in Sufficiently Sparse Cases.
Theorem 6 (equivalence: OGA [156, 48]). For a system of linear equations

Ax = b (A ∈ Rn×m full-rank with n < m), if a solution x exists obeying

‖x‖0 <
1
2

(
1 +

1
µ(A)

)
,(9)

an OGA run with threshold parameter ε0 = 0 is guaranteed to find it exactly.
Proof. Suppose, without loss of generality, that the sparsest solution of the linear

system is such that all its k0 nonzero entries are at the beginning of the vector, in
decreasing order of the values |xj | · ‖aj‖2. Thus,

b = Ax =
k0∑
t=1

xtat.(10)

At the first step (k = 0) of the algorithm, rk = r0 = b, and the set of computed
errors from the Sweep step are given by

ε(j) = min
zj

‖ajzj − b‖2
2 =

∥∥∥∥∥aj a
T
j b

‖aj‖2
2
− b

∥∥∥∥∥
2

2

= ‖b‖2
2 −

(aTj b)2

‖aj‖2
2

≥ 0.

Thus, for the first step to choose one of the first k0 entries in the vector (and thus do
well), we must require that for all i > k0 (columns outside the true support),

∣∣∣∣ aT1 b‖a1‖2

∣∣∣∣ >
∣∣∣∣ aTi b‖ai‖2

∣∣∣∣ .(11)

Substituting this in (10), this requirement translates into

∣∣∣∣∣
k0∑
t=1

xt
aT1 at
‖a1‖2

∣∣∣∣∣ >
∣∣∣∣∣
k0∑
t=1

xt
aTi at
‖ai‖2

∣∣∣∣∣ .(12)

In order to consider the worst-case scenario, we should construct a lower bound for
the left-hand side, an upper bound for the right-hand side, and then pose the above
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requirement again. For the left-hand side we have∣∣∣∣∣
k0∑
t=1

xt
aT1 at
‖a1‖2

∣∣∣∣∣ ≥ |x1| · ‖a1‖2 −
k0∑
t=2

|xt| ·
∣∣∣∣ aT1 at‖a1‖2

∣∣∣∣
≥ |x1| · ‖a1‖2 −

k0∑
t=2

|xt| · ‖at‖2 · µ(A)(13)

≥ |x1| · ‖a1‖2 (1 − µ(A)(k0 − 1)) .

Here we have exploited the definition of the mutual coherence µ(A) in (6) and the
descending ordering of the values |xj | · ‖aj‖2. Similarly, the right-hand-side term is
bounded by ∣∣∣∣∣

k0∑
t=1

xt
aTi at
‖ai‖2

∣∣∣∣∣ ≤
k0∑
t=1

|xt| ·
∣∣∣∣ aTi at‖ai‖2

∣∣∣∣
≤

k0∑
t=1

|xt| · ‖at‖2 · µ(A)(14)

≤ |x1| · ‖a1‖2 · µ(A)k0.

Using these two bounds plugged into the inequality in (12), we obtain∣∣∣∣∣
k0∑
t=1

xt
aT1 at
‖a1‖2

∣∣∣∣∣ ≥ |x1| · ‖a1‖2 (1 − µ(A)(k0 − 1))(15)

> |x1| · ‖a1‖2µ(A)k0 ≥
∣∣∣∣∣
k0∑
t=1

xt
aTi at
‖ai‖2

∣∣∣∣∣ ,
which leads to

1 + µ(A) > 2µ(A)k0 ⇒ k0 <
1
2

(
1 +

1
µ(A)

)
,(16)

which is exactly the condition of sparsity required in Theorem 6. This condition
guarantees the success of the first stage of the algorithm, implying that the chosen
element must be in the correct support of the sparsest decomposition. Once done,
the next step is an update of the solution and the residual r1. This residual can be
written as

r1 = b− akz∗k =
k0∑
t=1

x̃tat,(17)

where 1 ≤ k ≤ k0, and the value of z∗k is such that r1 is orthogonal to ak due to the
least-squares computation. Repeating the above process, we can assume, without loss
of generality, that the entries of x̃ have been rearranged in decreasing order of the
values |x̃j | · ‖aj‖2 by a simple permutation of the columns in A. Using the same set of
steps we obtain that condition (16) guarantees that the algorithm again finds an index
from the true support of the solution. Indeed, due to the orthogonality aTk r

k = 0 we
necessarily find that ε(k) is the highest among the computed errors, and as such will
not be chosen again.
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Repeating this reasoning, the same holds true for k0 such iterations—hence the
algorithm always selects values from the correct set of indices, and always an index
that has not been chosen yet. After k0 such iterations, the residual becomes zero and
the algorithm stops, ensuring the success of the overall algorithm in recovering the
correct solution x as the theorem claims.

2.3.2. Basis Pursuit Solves (P0) in Sufficiently Sparse Cases. We now turn to
consider BP, i.e., the replacement of (P0) by (P1) as an optimization problem.

Theorem 7 (equivalence: BP [46, 86]). For the system of linear equations Ax =
b (A ∈ Rn×m full-rank with n < m), if a solution x exists obeying

‖x‖0 <
1
2

(
1 +

1
µ(A)

)
,(18)

that solution is both the unique solution of (P1) and the unique solution of (P0).
Note that the assumptions of the theorem concerning BP are the same as those

of Theorem 6 concerning MP. This does not mean that the two algorithms are always
expected to perform similarly! Empirical evidence will be presented in section 3.3.1
showing that these two methods often behave differently.

Proof. Define the following set of alternative solutions:

C = {y | y �= x, ‖Wy‖1 ≤ ‖Wx‖1, ‖y‖0 > ‖x‖0, and A(y − x) = 0} .(19)

This set contains all the possible solutions that are different from x, have larger
support, satisfy the linear system of equations Ay = b, and are at least as good
from the weighted �1 perspective. This set being nonempty implies that there is an
alternative solution that the BP will find, rather than the desired x.

In view of Theorem 5 and the fact that ‖x‖0 < (1 + 1/µ(A))/2, x is necessarily
the unique sparsest possible solution, and hence alternative solutions (y �= x) are
necessarily “denser.” Thus, this requirement can be omitted from the definition of C.
Defining e = y − x, we can rewrite C as a shifted version around x,

Cs = {e | e �= 0, ‖W(e+ x)‖1 − ‖Wx‖1 ≤ 0, and Ae = 0} .(20)

The strategy of the proof we are about to present is to enlarge this set and show that
even this enlarged set is empty. This will prove that BP indeed succeeds in recovering
x.

We start with the requirement that ‖W(e + x)‖1 − ‖Wx‖1 ≤ 0. Assuming,
without loss of generality, that by a simple column permutation of A, the k0 nonzeros
in x are located at the beginning of the vector, this requirement can be written as

‖W(e+ x)‖1 − ‖Wx‖1 =
k0∑
j=1

w(j) · (|ej + xj | − |xj |) +
∑
j>k0

w(j) · |ej | ≤ 0.(21)

Using the inequality |a + b| − |b| ≥ −|a| and the fact that w(i) > 0, we can relax the
above condition and demand instead that

−
k0∑
j=1

w(j) · |ej | +
∑
j>k0

w(j) · |ej | ≤
k0∑
j=1

w(j) · (|ej + xj | − |xj |)(22)

+
∑
j>k0

w(j) · |ej | ≤ 0.
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This inequality can be written more compactly by adding and subtracting the term∑k0
j=1 w(j) · |ej | and denoting it as 1Tk0

· |We| to indicate that it is a sum of the first
k0 entries of the vector |We|. This leads to

‖We‖1 − 21Tk0
· |We| ≤ 0.(23)

Thus, substituting into the definition of Cs we get

Cs ⊆
{
e
∣∣ e �= 0, ‖We‖1 − 21Tk0

· |We| ≤ 0, and Ae = 0
}

= C1
s .(24)

We now turn to handling the requirement Ae = 0, replacing it with a relaxed
requirement that expands the set C1

s further. First, a multiplication by AT yields the
condition ATAe = 0, which does not yet change the set C1

s . This equation can be
rewritten as

W−1ATAW−1We = 0.(25)

The left multiplication by the inverse of W leaves the condition the same. The inner
multiplication byW and its inverse cancel out. The termW−1ATAW−1 is desirable,
since every entry in this matrix is the normalized inner product used for the definition
of the mutual coherence µ(A). Also, the main diagonal of this matrix contains ones.
Thus, (25) can be rewritten by adding and removing We, as follows:

−We = (W−1ATAW−1 − I)We.(26)

Taking an entrywise absolute value on both sides we relax the requirement on e and
obtain

|We| = |(W−1ATAW−1 − I)We| ≤ |W−1ATAW−1 − I| · |We|(27)
≤ µ(A)(1− I) · |We|.

The term 1 stands for a rank-1 matrix filled with ones. In the last step above we
used the definition of the mutual coherence and the fact that it bounds from above
all normalized inner products of the columns of A. Returning to the set C1

s , we can
write

C1
s ⊆

{
e
∣∣∣∣ e �= 0, ‖We‖1 − 21Tk0

· |We| ≤ 0, and |We| ≤ µ(A)
1 + µ(A)

1 · |We|
}

= C2
s .

(28)

Defining f =We, (28) can be written differently as

Cf =
{
f
∣∣∣∣ f �= 0, ‖f‖1 − 21Tk0

· |f | ≤ 0, and |f | ≤ µ(A)
1 + µ(A)

1 · |f |
}

.(29)

The obtained set Cf is unbounded since if f ∈ Cf , then αf ∈ Cf for all α �= 0.
Thus, in order to study its behavior, we can restrict our quest for normalized vectors,
‖f‖1 = 1. This new set, denoted as Cr, becomes

Cr =
{
f
∣∣∣∣ ‖f‖1 = 1, 1 − 21Tk0

· |f | ≤ 0, and |f | ≤ µ(A)
1 + µ(A)

1
}

.(30)

In the last condition we have used the relation 1|f | = 1 · 1T |f | and the fact that
1T |f | = ‖f‖1 = 1.
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In order for the vector f to satisfy the requirement 1− 21Tk0
· |f | ≤ 0, one needs to

concentrate its energy in its first k0 entries. However, the requirements ‖f‖1 = 1 and
|fj | ≤ µ(A)/(1+µ(A)) restrict these k0 entries to be exactly |fj | = µ(A)/(1+µ(A)),
because these are the maximal allowed values. Thus, returning to the first condition
we get the requirement

1 − 21Tk0
· |f | = 1 − 2k0

µ(A)
1 + µ(A)

≤ 0.(31)

This means that if k0 is less than (1 + 1/µ(A))/2, the set will be necessarily empty,
hence implying that BP leads to the desired solution as the theorem claims.

The above proof amounts to showing that if there are two solutions to an incoher-
ent underdetermined system, one of them being sparse, moving along the line segment
between the two solutions causes an increase in the �1 norm as we move away from
the sparse solution.

Historically, Theorem 7 was found before the OMP result in Theorem 6—it pro-
vided a kind of existence proof that something interesting could be said about solving
underdetermined systems of equations under some conditions. The fact that the same
form of assumptions leads to the same form of results for both algorithms is tantaliz-
ing: Is there some deeper meaning? Keep reading!

3. Variations on (P0). So far, we have focused narrowly on a viewpoint which
efficiently showed that there was something interesting to be said about finding sparse
solutions to underdetermined systems. We now broaden our viewpoint, expanding
the connections to a broad and rapidly growing literature. This leads us to some
interesting variations on the (P0)-based results discussed so far.

3.1. Uncertainty Principles and Sparsity. The phenomena exposed so far were
first noticed in the following concrete setting: the case where A is the concatenation
of two orthogonal matrices, namely, the identity matrix and the Fourier matrix, A =
[I F]. In that setting, the fact that the system b = Ax is underdetermined means,
concretely, that there are many ways of representing a given signal b as a superposition
of spikes (i.e., columns from the identity matrix) and sinusoids (i.e., columns from the
Fourier matrix). A sparse solution of such a system is a representation of that signal
as a superposition of a few sinusoids and a few spikes. The uniqueness of such a sparse
solution, and the ability of �1 minimization to find it, seemed surprising when first
noticed.

The first proof, while sharing some key ideas with the proofs given here, was
interpreted at the time as a kind of uncertainty principle. As the reader no doubt
knows, the classical uncertainty principle says that a signal cannot be tightly concen-
trated both in time and in frequency, and it places a lower bound on the product of
the spread in time and the spread in frequency. The uniqueness of sparse represen-
tation for such time-frequency systems A = [I F] can be interpreted as saying that a
signal cannot be sparsely represented both in time and in frequency. This viewpoint
is helpful for understanding some of the preceding abstract discussion, so we briefly
develop it here.

3.1.1. Uncertainty Principle for Sparse Representations. Suppose we have a
nonzero vector y ∈ Rn (a signal, say) and two orthobases Ψ and Φ. Then y can be
represented either as a linear combination of columns of Ψ or as a linear combination
of columns of Φ:

y = Ψα = Φβ.
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Clearly, α and β are uniquely defined. In a particularly important case, Ψ is simply
the identity matrix and Φ is the matrix of the Fourier transform. Then α is the
time-domain representation of y while β is the frequency-domain representation.

For certain pairs of bases Ψ Φ, an interesting phenomenon occurs: either α can
be sparse, or β can be sparse, but not both! In fact, we have the inequality [54, 49, 65]

(Uncertainty Principle 1) : ||α||0 + ||β||0 ≥ 2/µ(A).(32)

So if the mutual coherence of two bases is small, then α and β cannot both be very
sparse. For example, if, as above, Ψ is the identity and Φ is the Fourier matrix, then
µ([Ψ Φ]) = 1/

√
n. It follows that a signal cannot have fewer than

√
n nonzeros in

both the time and frequency domains.
Heisenberg’s classical uncertainty principle, in the discrete setting, says that if we

view α and β as probability distributions (by taking the absolute value of the entries
and normalizing), then the product of variances σ2

ασ
2
β ≥ const. In contrast, (32) gives

a lower bound on the sum of the nonzeros. The uncertainty principle interpretation
is developed at greater length in [54].

3.1.2. From Uncertainty to Uniqueness. We now make a connection to the
uniqueness problem. Consider the problem of finding a solution to Ax = [Ψ Φ]x = b
in light of the uncertainty principle (32). Suppose there are two solutions x0 and x1
for the underlying linear system, and that one is very sparse. We will see that the
other one cannot also be very sparse. Necessarily, the difference e = x0 − x1 must
be in the null-space of A. Partition e into subvectors eψ and eφ of the first n entries
and last n entries of e, respectively. We have

ΨeΨ = −ΦeΦ = y �= 0.(33)

The vector y is nonzero because e is nonzero and both Ψ and Φ are nonsingular.
Now invoke (32):

‖e‖0 = ‖eΨ‖0 + ‖eΦ‖0 ≥ 2
µ(A)

.(34)

Since e = x0 − x1, we have

(Uncertainty Principle 2) : ‖x0‖0 + ‖x1‖0 ≥ ‖e‖0 ≥ 2
µ(A)

.(35)

In other words, any two distinct solutions of the linear system [Ψ Φ]x = b cannot
both be very sparse.

In fact, for the general matrix A we have also obtained such a rule in (5) as a
byproduct of the proof for the uniqueness result. Although this inequality is posed in
terms of the spark of A, it can also be recast in terms of the mutual coherence, due
to Lemma 4. Interestingly, the lower bound for the general case becomes 1+1/µ(A).
The general case bound is nearly a factor of 2 weaker than (35), because (35) uses
the special structure A = [Ψ Φ].

Returning to the case of a dictionary formed by concatenating two orthobases,
A = [Ψ Φ], a direct consequence of inequality (35) is a uniqueness result of the flavor
already discussed in section 2.1: if a solution has fewer than 1/µ(A) nonzeros, then
any other solution must be “denser.” Notice again that this specific case of the special
structure of A yields a stronger uniqueness result than the one in Theorem 5.
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3.1.3. Equivalence of Pursuit Algorithms. Given the uniqueness of a sufficiently
sparse solution of [Ψ Φ]x = b, it becomes natural to ask how specific algorithms
perform. A result, similar to Theorem 7, was obtained in [65, 73], showing that

‖x‖0 <

√
2 − 0.5
µ(A)

(36)

ensures that BP finds the proper (sparsest) solution. This was the first result of its
kind; only later was the more general A case addressed. This result is better than
the general result in Theorem 7 by a factor of almost 2. (A similar result holds for
GAs in the two-orthobasis case; however, we are unaware of a citable publication.)

Intermediate between the two-orthobasis case and the general dictionary case is
the case of concatenating N orthogonal bases. Surprisingly, while concatenations
of two orthobases can only have a coherence as small as 1/

√
n, we can concatenate

N = n+1 specially chosen orthobases together and still get coherence 1/
√
n. So there

are very large dictionaries with good coherence! This important result was first found
by Emmanuel Knill in the theory of quantum error-correcting codes, where the special
orthobases are called nice error bases and coherence is important for reasons unre-
lated to our interests here [11, 150]. The abovementioned uniqueness and equivalence
theorems have been generalized to concatenations of several orthobases in [86, 47].

3.2. From Exact to Approximate Solution.

3.2.1. General Motivation. The exact constraint Ax = b is often relaxed, with
approximate equality measured using the quadratic penalty function Q(x) = ‖Ax −
b‖2

2. Such relaxation allows us to (i) define a quasi-solution in case no exact solution
exists; (ii) exploit ideas from optimization theory; and (iii) measure the quality of a
candidate solution.

Following the rationale of the previous sections, one may reconsider (P0) and
tolerate a slight discrepancy between Ax and b. We define an error-tolerant version
of (P0), with error tolerance δ > 0, by

(P δ0 ) : min
x

‖x‖0 subject to ‖b−Ax‖2 ≤ δ.(37)

The �2 norm used here for evaluating the error b − Ax can be replaced by other
options, such as �1, �∞, or a weighted �2 norm.

In this problem a discrepancy of size δ is permitted between a proposed repre-
sentation Ax and a signal b. When (P0) and (P δ0 ) are applied on the same problem
instance, the error-tolerant problem must always give results at least as sparse as
those arising in (P0). Indeed, for a typical general problem instance (A,b), the so-
lution of (P0) will have n nonzeros. On the other hand, in some real-world problems
(see below), although the solution of (P0) would have n nonzeros, the solution of (P δ0 )
can be seen to have far fewer.

An alternative and more natural interpretation of the problem (P δ0 ) is one of noise
removal. Consider a sufficiently sparse vector x0 and assume that b = Ax0 +z, where
z is a nuisance vector of finite energy ‖z‖2

2 = δ2. Roughly speaking (P δ0 ) aims to find
x0, i.e., to do roughly the same thing as (P0) would do on noiseless data b = Ax0.

Several papers study this problem [163, 48, 47, 157, 80], and we briefly discuss
some of what is now known. Results are in some ways parallel to those in the noiseless
case, although the notions of uniqueness and equivalence no longer apply—they are
replaced by the notion of stability.
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3.2.2. Stability of the Sparsest Solution.
Theorem 8 (stability of (P δ0 ) [48]). Consider the instance of problem (P δ0 )

defined by the triplet (A,b, δ). Suppose that a sparse vector x0 ∈ R
m satisfies the

sparsity constraint ‖x0‖0 < (1 + 1/µ(A))/2 and gives a representation of b to within
error tolerance δ (i.e., ‖b−Ax0‖2 ≤ δ). Every solution xδ0 of (P δ0 ) must obey

‖xδ0 − x0‖2
2 ≤ 4δ2

1 − µ(A)(2‖x0‖0 − 1)
.(38)

This result parallels Theorem 5, to which it reduces for the case of δ = 0. A result
of similar flavor, proposing a simple and constructive test for near-optimality of the
solution of (P δ0 ), appears in [85].

3.2.3. Pursuit Algorithms. Since (P0) is impractical to solve in the general case,
it seems unlikely that a direct attack on (P δ0 ) is a sensible goal. The pursuit algo-
rithms discussed above can be adapted to allow error tolerances; how will they per-
form? Referring to the two options we had for devising such algorithms—the greedy
approach and the regularization of the �0 functional—variants of these methods may
be investigated. Consider, for example, the GA described in Exhibit 1—OMP. By
choosing ε0 = δ in the stopping rule, the algorithm accumulates nonzero elements in
the solution vector until the constraint ‖b−Ax‖2 ≤ δ is satisfied.

Similarly, relaxing �0 to an �1 norm, we get the following variant of (P1), known
in the literature as basis pursuit denoising (BPDN) [24]:

(P δ1 ) : min
x

‖Wx‖1 subject to ‖b−Ax‖2 ≤ δ,(39)

where W is again a diagonal positive-definite weight matrix. This can be written
as a standard problem in linear optimization under quadratic and linear inequality
constraints. Such problems are very well studied by specialists in optimization and
there are many practical methods for solving them—practically the whole of modern
convex optimization theory is applicable, particularly the recent advances in solving
large systems by interior-point and related methods [24]. We cannot begin to review
that literature here, and instead discuss a very simple approach, suitable for readers
without background in convex optimization.

For an appropriate Lagrange multiplier λ, the solution to (39) is precisely the
solution to the unconstrained optimization problem

(Qλ1 ) : min
x

λ‖Wx‖1 +
1
2
‖b−Ax‖2

2,(40)

where the Lagrange multiplier λ is a function of A, b, and δ.
General methods as discussed above are a good way to get a reliable solution to

(P δ1 ) with little programming effort—one only has to set up (P δ1 ) as a problem of the
type the optimizer can solve. However, for large-scale applications, general purpose
optimizers seem slow and can perhaps be improved by special purpose techniques.
We mention three.

Iteratively Reweighted Least Squares. A simple strategy to attack (Qλ1 ) is the
iteratively reweighted least squares (IRLS) algorithm [97, 139, 138]. Setting X =
diag(|x|), we have ‖x‖1 ≡ xTX−1x. Thus we may view the �1 norm as an (adaptively
weighted) version of the squared �2 norm. Given a current approximate solution xk−1,
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set Xk−1 = diag(|xk−1|) and attempt to solve

(Mk) : min
x

λxTWX−1
k−1x+

1
2
‖b−Ax‖2

2;(41)

this is a quadratic optimization problem, solvable using standard linear algebra. Ob-
tain an (approximate) solution xk (say); a diagonal matrix Xk is constructed with
the entries of xk on the diagonal, and a new iteration can begin. This algorithm is
formally described in Exhibit 2.

Task: Find x that approximately solves (Qλ1 ): minx λ‖Wx‖1 + 1
2 · ‖b−Ax‖22.

Initialization: Initialize k = 0, and set
• The initial approximation x0 = 1.
• The initial weight matrix X0 = I.

Main Iteration: Increment k by 1, and apply these steps:
• Regularized Least Squares: Approximately solve the linear system

(
2λWX−1

k−1 + ATA
)

x = ATb

iteratively (several conjugate gradient iterations may suffice), producing result xk .
• Weight Update: Update the diagonal weight matrix X using xk : Xk(j, j) =
|xk(j)|+ ε.

• Stopping Rule: If ‖xk − xk−1‖2 is smaller than some predetermined threshold,
stop. Otherwise, apply another iteration.

Output: The desired result is xk .

Exhibit 2. The IRLS strategy for approximately solving (Qλ1 ).

Iterative Thresholding. IRLS loses much of its appeal when facing the very
large-scale problems which are of most interest in today’s applications; see below.
An alternative family of iterative approximate solution techniques was developed in
[76, 75, 32, 62, 5, 67] and coined iterated shrinkage algorithms; these methods are very
easy to implement, and in some sense very intuitive to apply.

We first remark that if A is a square unitary matrix, the problem (Qλ1 ) has a
simple, noniterative closed-form solution, xλ1 , say; it can be found as follows. First,
apply AT to the vector b, obtaining a preliminary solution x̃, which, in favorable
cases, exhibits a few large entries rising above many small “noise” entries—like daisies
sticking up above the weeds. Second, apply soft thresholding, setting to zero the
entries below the threshold and shrinking the other entries toward zero. This is done
formally by defining the scalar function η(x;λ) = sign(x) · (|x| − λ)+, inducing the
vector function

x̂ = Shrink(x̃;λ)(42)

by elementwise application of η : x̂(j) = η(x̃(j);λ). Equation (42) is known as the
“shrinkage” operation, since it clearly tends to shrink the magnitude of the entries of
x̃, while setting the small ones to zero [50, 51, 27, 43, 53, 52, 144, 124, 96].

In the general case where A is not a unitary matrix, we can apply this idea
iteratively. A step toward such a generalization was proposed initially by Sardy, Bruce,
and Tseng—their block-coordinate relaxation (BCR) algorithm considers matrices A
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that are concatenations of unitary matrices, and iteratively updates the solution one
part at a time, using shrinkage [143]. Handling of the general case is somewhat more
involved, as can be seen in [76, 75, 32, 62, 5, 67, 59]. Exhibit 3 spells out the details.
The algorithm is particularly useful in large-scale problems, where A is defined not by
an explicitly given matrix, but instead by an operator which we know how to apply
rapidly. Note that in very large problems, OMP is not really practical, as it requires
direct manipulation of the columns of A.

Task: Find x that approximately solves (Qλ1 ): minx λ‖Wx‖1 + 1
2 · ‖b−Ax‖22.

Initialization: Initialize k = 0, and set
• The initial solution x0 = 0.
• The initial residual r0 = b−Axk = b.
• Compute W and normalize A, replacing it with AW−1.

Main Iteration: Increment k by 1, and apply these steps:
• Back-Projection: Compute e = AT rk−1 and multiply by w entrywise.
• Shrinkage: Compute es = Shrink

(
xk−1 + e

)
with threshold λ.

• Line Search: Choose µ to minimize the real-valued function J(xk−1 + µ(es −
xk−1)), where J is the objective function of (Qλ1 ).

• Update Solution: Compute xk = xk−1 + µ(es − xk−1) .
• Update Residual: Compute rk = b−Axk .
• Stopping Rule: If ‖xk − xk−1‖22 is smaller than some predetermined threshold,

stop. Otherwise, apply another iteration.

Output: The result is W−1xk .

Exhibit 3. An iterated shrinkage algorithm for solving (Qλ1 ).

Stepwise Algorithms: LARS and Homotopy. Certain heuristic methods in-
spired by true (P1) solvers are currently attracting serious interest; these are not
entirely greedy—they can be viewed as following some but not all of the principles of
a true �1 solver. These include LARS [60] and polytope faces pursuit [133, 134, 135].
In practice these can work extremely well [160], for example, from the viewpoint of
phase transition, as discussed in section 3.3.3.

It is actually possible to solve (P δ1 ) by an algorithm very reminiscent of OMP.
Suppose the matrix A has normalized columns ‖ai‖2 = 1, i = 1, . . . ,m. Starting from
x0 = 0 and support set S0 = ∅, proceed stepwise. At the kth step, find an index i
of a current zero, xk−1(i) = 0, for which the corresponding column of A makes the
highest correlation with the current residual among all such columns:

max
i 	∈Sk−1

|〈y −Axk−1,ai〉|.

Label that entry ik and form the new support set Sk = Sk−1 ∪ {ik}. Now obtain xk

with nonzeros at positions in Sk. So far this sounds the same as OMP. However, we
do not solve for xk by least squares. Instead, choose the nonzeros in xk so that the
residual y −Axk is equicorrelated with every column ai, i ∈ Sk:

|〈y −Axk,ai〉| = const ∀i ∈ Sk.

OMP would instead demand that the residual be uncorrelated. This is the LARS
algorithm of Efron et al. [60].
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Yaakov Tsaig has demonstrated an analogue of Theorems 6 and 7 for LARS:
under incoherence and sufficient sparsity, LARS takes ‖x0‖0 steps and stops, having
produced the unique sparsest solution [160]. So LARS is in some sense equally as
good as OMP and BP in this setting. In fact, more is true. Now modify the LARS
algorithm so that at each stage either a new term can enter or an old term can leave
the support, seeking to maintain that for each i ∈ Sk,

|〈y −Axk,ai〉| = const > max
j 	∈Sk

|〈y −Axk,aj〉|.

With this variation, we have the LARS-LASSO algorithm, also known as the homo-
topy algorithm of Osborne, Presnell, and Turlach [129]. This new algorithm solves
(P1): continuing it until the residual is zero gives the solution to the �1 minimiza-
tion problem. Tsaig has also shown that under incoherence and sufficient sparsity,
LARS-LASSO/homotopy takes ‖x0‖0 steps and stops, having produced the unique
sparsest solution [160]. The results at each step are the same as LARS. In short, a
small modification of OMP produces a stepwise algorithm that exactly solves (P1).
This helps explain the similarity of the coherence-based results for the two methods.

A great deal of algorithmic progress was made while this paper was in review and
revision. We mention only two examples. Candès and Romberg [14] have developed
a fast approximate �1 solver using projections onto convex sets. Stephen Boyd and
coworkers [100] have found a way to speed up standard interior-point methods so that,
when the solution is sparse, they run quickly.

3.2.4. Performanceof PursuitAlgorithms. Can pursuit methods approximately
solve (P δ0 )? We quote two theorems from [48]; the first corresponds to BPDN, and
the second to OMP. In the first, stability of the solution is guaranteed when a suffi-
ciently sparse solution exists. While similar in flavor to the stability of (P δ0 ) claimed
in Theorem 8, it is weaker in two ways—the sparsity requirement is more strict, and
the tolerated error level is larger.

Theorem 9 (stability of BPDN [48]). Consider the instance of problem (P δ1 )
defined by the triplet (A,b, δ). Suppose that a vector x0 ∈ Rm satisfies the sparsity
constraint ‖x0‖0 < (1 + 1/µ(A))/4 and gives a representation of b to within error
tolerance δ; ‖b−Ax0‖2 ≤ δ. The solution xδ1 of (P δ1 ) must obey

‖xδ1 − x0‖2
2 ≤ 4δ2

1 − µ(A)(4‖x0‖0 − 1)
.(43)

In addition to stability, results on successful recovery of the support would also
be of interest. The work reported in [48, 80, 157] offers such results, but requires more
strict (and thus less realistic) conditions. Similarly, considering the above as a signal
denoising procedure, there is interest in the expected performance. The work reported
in [77, 78] uses an information theoretic point of view to provide such analysis for the
extreme (very weak and very strong) noise cases.

Turning to OMP, the following theorem taken from [48] establishes both stability
and correct recovery of the support. Notice, however, that for these to hold true, the
magnitude of the smallest nonzero entry in the “ideal” solution x0 must be sufficiently
large compared to the “noise level” (δ). Results of the same flavor are derived in
[82, 159, 157].

Theorem 10 (performance of OMP [48, 159, 157]). Consider the OMP algorithm
applied to the problem instance (P δ1 ) with the triplet (A,b, δ). Suppose that a vector
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x0 ∈ Rm satisfies the sparsity constraint

‖x0‖0 <
1
2

(
1 +

1
µ(A)

)
− δ

µ(A) · xmin
,(44)

where xmin is the smallest nonzero entry (in absolute value) in x0. Assume further
that x0 gives a representation of b to within error tolerance δ (i.e., ‖b−Ax0‖2 ≤ δ).
The result produced by OMP must obey

‖xOMP − x0‖2
2 ≤ δ2

1 − µ(A)(‖x0‖0 − 1)
.(45)

Furthermore, OMP is guaranteed to recover a solution with the correct support.
There are various ways in which these results are far weaker than one would like.

However, they show that adopting sparsity as a goal can lead to sensible results, stable
under additive noise.

3.3. Beyond Coherence Arguments. The analysis presented so far—largely
based on coherence arguments—presents a simple but limited portrait of the abil-
ity of concrete algorithms to find sparse solutions and near-solutions. We now briefly
point to the interesting and challenging research territory that lies beyond coherence.
We start with some simple simulations.

3.3.1. Empirical Evidence. Consider a random matrix A of size 100× 200, with
entries independently drawn at random from a Gaussian distribution of zero mean and
unit variance, N (0, 1). The spark of this matrix is 101 with probability 1, implying
that every solution for the system Ax = b with less than 51 entries is necessarily the
sparsest one possible, and, as such, it is the solution of (P0). By randomly generating
such sufficiently sparse vectors x (choosing the nonzero locations uniformly over the
support in random and their values from N (0, 1)), we generate vectors b. This way,
we know the sparsest solution to Ax = b, and we shall be able to compare this to
algorithmic results.

The graph presented in Figure 2 shows the success rate for both OMP and the
BP in recovering the true (sparsest) solution. For each cardinality, 100 repetitions
were conducted and their results averaged. The value of the mutual coherence of A
in this experiment is µ(A) = 0.424, so that only for cardinalities lower than (1 +
1/µ(A))/2 = 1.65 are pursuit methods guaranteed to succeed. As we can see, both
pursuit algorithms succeed in the recovery of the sparsest solution for 1 ≤ ‖x‖0 ≤ 26,
far beyond the coverage of Theorems 6 and 7. We can also see that the GA (OMP)
is performing somewhat better than the BP.

The graph presented in Figure 3 is similar, showing the success rate for OMP
and BP for the approximated case (solution of (P δ0 )). We generate a random vector
x0 with a prespecified cardinality of nonzeros. It is normalized so ‖Ax0‖2 = 1.
We compute b = Ax0 + z, where z is a random vector with predetermined norm
‖z‖2 = δ = 0.1. Thus, the original vector x0 is a feasible solution for (P δ0 ) and close
to the optimal due to its sparsity. Given an approximate solution x (by IRLS, with
a line search determining λ so that the desired misfit Q(x) is obtained), the stability
of the process is tested by ‖x− x0‖2 ≤ δ. As can be seen, both methods do very well
for 1 ≤ ‖x0‖0 ≤ 15, while the stability results set much lower expectation bounds for
stability to hold.

3.3.2. Formal Machinery: Suites and Ensembles. Such simulations show that
coherence does not tell the whole story. When working with matrices having spe-
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Fig. 2 Probability of success of pursuit algorithms in the recovery of the sparsest solution of the
linear system Ax = b. The results are shown as a function of the cardinality of the desired
solution.
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Fig. 3 Probability of success of pursuit algorithms in the stable recovery of the sparsest solution of
the linear system Ax = b in the presence of noise.

cific properties, or with problems exhibiting structured sparsity, we might find that
coherence gives very weak guarantees compared to what actually happens.

Following [161], we introduce a notion to bring information about properties of
the matrix A and the sparsest solution x0 formally into the picture. A problem suite
S = S(A,X ) is defined by an ensemble of matrices A of a given shape and a collection
of solution vectors X obeying some sparsity condition. Here are some examples of
matrix ensembles which can be used to form problem suites:

• The incoherent ensemble AIE(µ;n,m), consisting of all n×m matrices with
normalized columns and µ(A) ≤ µ.

• The Gaussian ensemble AGE(n,m), consisting of all n×m with entries drawn
from a Gaussian i.i.d. N(0, 1/n) distribution.

• The partial Fourier ensemble, consisting of all n × m matrices with n rows
drawn at random without replacement from the m × m Fourier matrix.

• The time-frequency dictionary—a singleton ensemble AT F , consisting of just
A = [I F], where F is the n × n Fourier matrix.
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Here are some collections of solution vectors which can be used to form problem suites:
• The k-sparse collection L0(k), consisting of all vectors x ∈ Rm with at most

k nonzero entries.
• The Bernoulli–Gaussian ensemble BG(k), consisting of random vectors in Rm

with sites of nonzeros chosen at random by tossing a coin with probability
ε = k/m, and with the nonzero sites having values chosen from a standard
Gaussian distribution.

So far we have mostly discussed the incoherent problem suite S(AIE(µ;n,m),
L0(k)) consisting of the incoherent matrix ensemble and the k-sparse collection. How-
ever, in the previous subsection we were implicitly considering the Gaussian problem
suite S(AGE(n,m), BG(k)). These two suites are only two among many, but they
do represent extremes of a kind. For the incoherent suite it is natural to study the
worst-case behavior of algorithms, while for the Gaussian suite it is natural to study
the typical behavior. The last subsection’s simulations show that the worst-case be-
havior over the incoherent suite can be very different from the typical behavior over
the Gaussian suite.

In fact, this distinction between worst-case and typical behavior has been known
for some time. In [54], it was shown empirically that for the time-frequency dictio-
nary and the typical k-sparse sequence, something dramatically stronger than the
uncertainty principle was true; while the uncertainty principle guarantees that the
number of nonzeros in the combined time-frequency analysis must exceed

√
n; in fact,

the typical number is closer to n. Also, in [49] simulations very much like those re-
ported above in section 3.3.1 were presented to show that the equivalence between
�1 and �0 representations is typical at surprisingly weak levels of sparsity; in fact, for
the time-frequency dictionary, while the coherence theory would be able to guarantee
equivalence only when there are fewer than

√
n nonzeros in the solution, equivalence

was found to be typical when there are fewer than about n/4 nonzeros.

3.3.3. Phase Transitions in Typical Behavior. Simulation studies of typical-case
behavior of algorithms exhibit surprising regularities. Consider the problem suite
S(AGE(n,m), L0(k)) and define variables δ = n/m and ρ = k/n. In the interesting
case m > n, δ ∈ (0, 1), while k < n, so that ρ ∈ (0, 1) as well. The simulations in
section 3.3.1 explored the case δ = .5 and 0 < ρ < .7; Figure 2 revealed a relatively
rapid drop in the probability of successful recovery by BP and OMP as ρ increased
from .3 to .6.

Such phenomena have been observed for a variety of sparsity-seeking algorithms.
A typical example is given in Figure 4. Panel (a), taken from [57], depicts the unit
square of interesting δ − ρ behavior; the shaded attribute displays simulation results
for the probability that the solutions to �1 and �0 are equivalent. Just as in Figure 2,
there is a relatively rapid transition from probability near one to probability near zero
as ρ increases. Panel (b) is taken from [161] and depicts the behavior of an iterative
thresholding algorithm StOMP (stagewise OMP). The shaded attribute displays the
fraction of truly nonzero coefficients recovered by StOMP; again there is a rapid
transition from nearly 100% success to nearly 0% success.

As the problem size increases, the transition from typicality of success to typicality
of failure becomes increasingly sharp—in the large-n limit, perfectly sharp. A rigorous
result from [44, 56, 57] explains the meaning of the curve in panel (a).

Theorem 11. Fix a (δ, ρ) pair. At problem size n, set mn = �n/δ and kn =
�nρ . Draw a problem instance y = Ax at random with A an n × mn matrix from
the Gaussian ensemble and x a vector from the k-sparse collection L0(kn).
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(a) (b)

Fig. 4 (a) Phase transition behavior of �1 minimization. Shaded attribute: fraction of cases in which
�1 minimization successfully finds the sparsest solution (in the range 0-black to 1-white). The
curve displays the function ρW defined in Theorem 12. The curve closely follows the rapid
change in the shaded attribute. (b) Phase transition behavior of StOMP. Shaded attribute:
fraction of cases in which StOMP successfully finds the sparsest solution. The red curve
displays the function ρStOMP defined in [59]. The curve closely follows the rapid change in
the shaded attribute. Both panels use the coordinates δ = n/m (ratio of number of equations
to number of unknowns) and ρ = k/n (ratio of number of nonzeros to number of equations).
The experiments explore a grid of ρ − δ values at problem size m = 1600. The underlying
matrix ensemble is Gaussian.

There is a function ρW (δ) > 0 with the following property: As n increases, the
probability that, for such a random problem instance, the two problems (P1) and (P0)
have the same solution tends to zero if ρ > ρW (δ) and tends to 1 if ρ < ρW (δ).

In other words, for large n, there are really two “phases” in the (δ, ρ) “phase
plane,” a success phase and a failure phase. The curve ρ(δ) has an interesting form
for small δ > 0:

Theorem 12 (see [57]).

ρW (δ) =
1

2 log 1/δ
(1 + o(1)), δ → 0.

Informally, in the setting of Gaussian random matrices and m ! n, we have a
threshold

n

2 log(m/n)
.

If k is a bit larger than this threshold, we are in the failure phase, while if k is a bit
smaller, we are in the success phase. In other words, if the number n of Gaussian
“measurements” of a k-sparse vector exceeds 2 log(m/n)k, the vector is highly likely
to be recovered by �1 minimization. The techniques underlying the proofs combine
exact identities from convex integral geometry with asymptotic analysis.

The curve in panel (b), concerning the iterative thresholding scheme StOMP, has
a similar large-n interpretation; there is a rigorous result establishing the existence
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of a curve ρSTOMP (δ) separating the phases and a rigorous result showing how to
compute that curve [59].

As an empirical matter, the existence of phase transitions is well established for
several algorithms, particularly including OMP. In fact, as Figure 2 showed, OMP
can exhibit phase transition performance competitive to BP. However, to the best of
our knowledge, there is at the moment no theoretical calculation giving a curve ρOMP
which matches the empirically observed behavior. Part of the problem may be that
unlike the case with BP, the phase transition for OMP is sensitive to the distribution
of the nonzero elements in the sparsest solution. The empirical phase transition is dif-
ferent (lower) for OMP when the coefficients are random signs ±1 than when they are
random Gaussian! In particular, the apparent advantage of OMP over BP seen in Fig-
ure 2 disappears if we replace Gaussian-distributed nonzeros in x by random ±1 terms.

Over the last two years a wide range of rigorous mathematical analysis has been
published to address the large-n setting we have just discussed. It covers several
sparsity-seeking algorithms and a variety of assumptions about the matrix ensemble
and the sparse solution. It is difficult here to summarize all this work in a short space;
we limit ourselves to a few examples.

• Candès, Romberg, and Tao had a great impact in 2004 when announcing
that they could prove typicality of equivalence of (P1) and (P0), where the
sparsity control parameter k could be as large as n/ log(n)6 and the matrix
was drawn from the partial Fourier ensemble [15]. Here the 1/ log(n)6 factor
is unnecessarily small. Donoho effectively showed that for matrices from
the Gaussian ensemble and n/m ∼ δ, equivalence could hold with sparsity
control parameter k ≈ r(δ)n for an unspecified function r > 0. Candès
and Tao considered random Gaussian matrices and were able to show that
k ≤ r(m/n)n was sufficient for equivalence for a certain explicit function
r [18]. These qualitative results opened the way to asking for the precise
quantitative behavior, i.e., for ρW above.

• Tropp, Gilbert, and coworkers [158] studied running OMP over the problem
suite consisting of the Gaussian matrix ensemble and k-sparse coefficients
solution; they showed that the sparsest solution is found with high probability
provided k ≤ c ·n/ log(n). Since the empirical evidence suggests that the true
state of affairs is a phase transition at k ≈ ρOMP (m/n)n for some function
ρOMP , this important result is still somewhat weaker than what we expect
to be the case.

In general, many researchers making progress in asymptotic studies exploit ideas from
geometric functional analysis and techniques from random matrix theory. Useful re-
sults from that literature include Szarek’s bound on the singular values of a random
Gaussian matrix [151, 152], which allows one to easily control the maximal and min-
imal singular values across all n × k submatrices; this principle has been used in
[44, 18] in studying the equivalence of (P1) and (P0) and in [158] in studying OMP.
Other fundamental ideas include Kashin’s results on n-widths of the octahedron [98],
Milman’s quotient of a subspace theorem, and Szarek’s volume bounds [132], all re-
flecting the miraculous properties of �1 norms when restricted to random subspaces,
which lie at the heart of the (P0)–(P1) equivalence. Rudelson and Vershynin [140]
have made very effective use of such geometric functional analysis tools in giving the
shortest and simplest proofs that k ≤ r(m/n)n is sufficient for �1–�0 equivalence. It
seems that these tools do not allow us to precisely pin down the location of the actual
phase transitions. However, they are very flexible and widely applicable. Mendelson,
Pajor, and Tomczak-Jagerman [119, 120] have been able to use geometric functional
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analysis techniques to establish (P0)–(P1) equivalence for matrices with random ±1
entries. Such tools have also been used [45, 17] to get rigorous results on stability of
solutions (P ε1 ), showing stability is obtained for k ≤ r(m/n)n.

At this point, the literature is growing so rapidly that it is difficult to do any
justice at all to this field, its achievements, and its results. We will mention one
particularly elegant result of Candès and Tao [18], which develops a tool going beyond
coherence, now outranking coherence as the focus of attention in current research on
sparse representation.

Definition 13. An n × m matrix A is said to have the restricted isometry
property RIP (δ; k) if each submatrix AI formed by combining at most k columns of
A has its nonzero singular values bounded above by 1 + δ and below by 1 − δ.

Candès and Tao have shown that A ∈ RIP (.41; 2k) implies that (P1) and (P0)
have identical solutions on all k-sparse vectors and, moreover, that (P ε1 ) stably ap-
proximates the sparsest near-solution of y = Ax + z—with a reasonable stability
coefficient.

The restricted isometry property is useful because it can be established using
probabilistic methods. Thus, with high probability, a matrix A with Gaussian i.i.d.
entries has this property for k < c(1 + log(m/n))n for some small positive constant
c > 0. This can be shown, e.g., using Szarek’s results on singular values of Gaussian
matrices as in [44]. (Analysis of other matrices—for example, with ±1 entries—
can be more challenging.) The restricted isometry property approach thus gives the
qualitative bound k < r(m/n)n, which, as for other geometric functional analysis
techniques, is qualitatively correct and very useful, but apparently smaller than the
actual behavior of the phase transitions.

3.4. The Sparsest Solution of Ax= b: A Summary. This section, like the pre-
vious ones, discusses a wealth of recent results on the study of the underdetermined
linear system Ax = b and the quest for its sparsest solution. Questions such as
solvability of such problems, uniqueness of the sparsest solutions, extensions to ap-
proximate solutions, and so on, have been addressed over the past few years. Much
work remains to be done, and we list several open questions and research directions.

• If A has some special structure, this structure can be exploited in order
to obtain stronger uniqueness and equivalence claims. Such is indeed the
case with concatenations of unitary matrices. Further work is required for
other structured matrices, such as those whose columns are redundant wavelet
bases, Gabor bases, and others. Of particular interest is the exploitation of
the multiscale structure underlying these dictionaries. This was explicitly
done in [49], but it seems that much more should be possible.

• As mentioned above, and quite surprisingly, a study of the performance of
the GAs for the concatenation of two (or more) unitary matrices is missing.
While this case has been studied thoroughly for BP, we have not seen a similar
analysis for OMP or other greedy techniques.

• There is a need for fast algorithms for BP (both in the accurate and the
approximate versions) that compete favorably with greedy methods. Perhaps
a more ambitious goal would be an attempt to unify those methods and show
a common ground for all of them. In this respect, the recent progress made
on iterated shrinkage methods is one such promising research direction. The
recent progress reported in section 3.2.3 (iterated shrinkage, LARS/LASSO,
fast general solvers) indicates a great deal of ongoing work, so we can expect
further progress in the near future.
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• Still considering average performance, most existing results are of limited
scope due to their asymptotic nature, or rather limiting assumptions (such
as the structured matrix A in [16] or its random content in [44]). Derivation
of stronger results that refer to specific matrices and bypass the use of the
mutual coherence should be attempted. Indeed, the mutual coherence is a
definition that stems from a worst-case point of view, and as such should be
avoided.

• The uniqueness and equivalence claims we have shown so far are general
and hold true uniformly for all b. Can signal-dependent or representation-
dependent theorems be derived, yielding stronger guarantees for uniqueness
and equivalence?

• The mutual coherence suggests a way for bounding the spark by testing pairs
of atoms fromA. Similar and better treatment may be possible by considering
the behavior of triplets or k-sets of atoms for k = 4, 5, . . . .

We now turn to practical applications.

4. Sparsity-Seeking Methods in Signal Processing. We now see that the prob-
lem of finding sparse representations of signal vectors can be given a meaningful
definition and, contrary to expectation, can also be computationally tractable. These
suggest that sparsity-driven signal processing is a valid research agenda and a poten-
tially useful practical tool. We now develop this idea in more detail.

4.1. Priors and Transforms for Signals. Consider a family of signals y ∈ Rn. To
make our discussion more concrete, we assume, here and below, that each such signal
is a

√
n×

√
n pixel image patch, representing natural and typical image content. Our

discussion applies, with obvious changes, to other signal types: sound signals, seismic
data, medical signals, financial information, and so on.

While image patches are scattered about in Rn, they do not populate it uniformly.
For example, we know that spatially smooth patches are frequently seen in images,
whereas highly nonsmooth image content is rare. Talk of “typical behavior” would
suggest the Bayesian approach to signal processing. In that approach, the researcher
would model the probability density function (PDF) of images using a specific prior
distribution p(y) and then derive Bayesian algorithms under that specific assumption.

For example, consider the denoising problem, where we observe a noisy version
ỹ = y+ z of a true underlying image y. The Bayesian might assume that y has PDF
p(y) and that the noise z is independent of y, with probability model q(z). Then the
most likely reconstruction (maximum a posteriori) would solve

max
y

p(y)q(ỹ − y).(46)

This approach has been tried successfully in many concrete problems, with a wide
range of interesting results.2

Finding prior distributions for signals has been a very active topic of research
in the signal and image processing communities. A familiar starting point takes a

2We have no quarrel with orthodox Bayesian approaches. However, we do insist on making a
distinction between the practical approach of using Bayes to quickly derive candidate algorithms,
and the orthodox approach of believing that the assumptions are strictly true and the correctness of
the assumptions is the unique reason that such algorithms can work. The results discussed earlier
in this paper contradict orthodoxy: they provide a different explanation as to why some important
Bayesian algorithms are successful in certain situations where sparsity is present. Bayesians can be
right for the wrong reasons!
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Gaussian prior on the signal, for example, p(y) ∝ exp(−λ‖Ly‖2
2), where L is the

discrete Laplacian. Such Gaussian priors are frequently used and, of course, are
intimately connected to beautiful classical topics such as Wiener filtering [95].

Gaussian processes have many beautiful analytic properties; however, they fail to
match empirical facts. Edges are fundamental components of image content, and yet
stationary Gaussian processes fail to exhibit them properly. It has been repeatedly
found that using non-Gaussian priors often gives much better results in the Bayesian
framework; an example is obtained by replacing the �2 norm by the �1 norm in the
exponent of the prior density p(y), and the second-order Laplacian operator by a
pair of first-order difference operators (horizontal Dh and vertical Dv), one in each
direction:

p(y) ∝ exp (−λ(‖Dhy‖1 + ‖Dvy‖1)) .(47)

Another approach uses signal transforms. Let Ψ be the matrix associated with a
discrete orthogonal wavelet transform, i.e., a matrix whose columns are the orthogonal
basis functions in a specific wavelet transform (say, Daubechies nearly symmetric, with
8 vanishing moments) [116]. Consider a prior

p(y) ∝ exp(−λ‖ΨTy‖1).(48)

Bayesian methods with such priors often outperform traditional Gaussian priors in
image denoising [96].

The specific non-Gaussian priors we just mentioned give rise to interesting signal
processing algorithms under the MAP framework. Writing the problem in terms of
MAP estimation (as in (46)) gives for the prior in (47),

min
y

1
2
‖ỹ − y‖2

2 + λ‖Dhy‖1 + λ‖Dvy‖1,(49)

while for the prior in (48),

min
y

1
2
‖ỹ − y‖2

2 + λ‖ΨTy‖1.(50)

We now step out of the Bayesian framework and interpret these optimization cri-
teria as algorithm generators. We recognize that the first generates a variant of
total-variation denoising [141, 41], while the second generates an instance of wavelet
denoising—both very successful algorithms with hundreds of application papers in
print.

The frequent success of these algorithms causes difficulties for Bayesian interpre-
tation. The corresponding prior distributions are demonstrably not in agreement with
image statistics in those cases where these algorithms are most successful. What is
true is that in those cases where such algorithms are dramatically most successful,
there is an underlying transform sparsity of the image content: in the case of total
variation this means that the spatial gradients are nearly zero in most pixels, while in
the case of wavelet denoising this means that most wavelet coefficients are nearly zero.
In each successful case, the algorithm involves a transform which takes the signal and
renders it sparse.

An orthodox Bayesian would in such cases seek a better prior. Careful empirical
modeling of wavelet coefficients of images with edges has shown that, in many cases,
the prior model p(y) ∝ exp(−λ‖Ty‖1) can indeed be improved [35, 144, 10]. The
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general form p(y) ∝ exp(−λ‖Ty‖rr) with 0 < r < 1 has been studied, and values of
r significantly smaller than 1 have been found to give a better fit to image libraries
than r = 1. Surprisingly, however, the actual algorithm that results from this “better”
model is not qualitatively different than �1 minimization. Furthermore, the perfor-
mance of the two algorithms, when the underlying noiseless object truly has sparse
wavelet coefficients, is comparable.

Such observations suggest that a driving factor in content modeling is sparsity. If
a given transform T maps the content into a sparse vector, that matters a great deal.
The precise amplitude distribution of the nonzeros in such a transform domain may
be a detail which matters very little in comparison.

4.2. Combined Representation. Continuing this line of thinking, we ask, if
sparsity is so important and fundamental, what is the best way to achieve it? Tra-
ditional transform techniques do achieve some success in sparsifying image content,
but they may not be the best one can do. Traditional transform techniques apply a
linear transform T to the signal content and place a prior on the resulting transformed
content.

Signal content is often a mixture of several different types of phenomena: har-
monics and transients in acoustic data, and edges and textures in image data. Each
component of such a mixture may be modeled in its own adapted fashion. A harmonic
subsignal can be modeled by a superposition of sinusoids, while a transient might be
modeled by a superposition of spikes.

Considerations of sparsity play out differently in this setting. If we restrict our-
selves to using a single representation, say, sinusoids, we do not expect such a mixture
of sinusoids and transients to be sparsely representable from sinusoids alone. In fact,
the uncertainty principle given earlier expressly prevents this! To achieve sparsity we
must combine several representations. Suppose we have two bases with corresponding
matrices Ψ and Φ that have as columns the elements of each basis. Then we model
the signal of interest as a superposition of elements from each basis:

y = Ψu+Φv.(51)

Here the vectors u and v give coefficients allowing us to represent y.
This leads us to an important distinction. In harmonic analysis, the operation of

transforming from a signal domain into a transform domain is called analysis. The
operation of returning from a transform domain to a signal domain is called synthesis.
We are trying to synthesize a signal from a combined transform domain; the synthesis
coefficients provide a combined representation of the signal. In this setting, sparsity
means that the combined coefficient vector (u,v) is sparse.

This viewpoint is forced on us by the uncertainty principle, which says both that
sparse analysis coefficients cannot be expected in general and that sufficiently sparse
synthesis coefficients can be uniquely recovered in some settings.

4.3. A Generative Model. Here is a simple way to sparsely synthesize signals.
Start from an n × m matrix A whose columns are the elementary “atoms” of our
model, and generate at random a vector x having m entries, only k0 of which are
nonzero. Choose the positions of the nonzeros uniformly at random, with the val-
ues of the nonzeros chosen from a Laplace distribution having PDF p(x|x �= 0) =
exp(−α|x|)/(2α). For example, let A = [I F] be the combined time-frequency dictio-
nary, so that m = 2n, and let k0 = n/10, so that only a small fraction of the entries
in x are nonzero. In this way, we generate a random sparse combination of spikes and
sinusoids.
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As another example, letA be the concatenation [F, W] of the Fourier matrix and
the matrix of an orthonormal wavelet transform (say, the Daubechies D4 wavelets).
We get a random combination of harmonic signals and transients.

This overall approach provides us with a flexible class of probabilistic models.
By varying the dictionary A, the sparsity control parameter k0, and the amplitude
parameter α, we get different signal types with markedly different characteristics.

Of course, “real signals” are expected to deviate from this model. For instance,
they are expected to contain at least some noise. Our model can incorporate this
effect by adding a noise vector z, uniformly distributed on the sphere of radius ε. The
final generated noisy signal is y = Ax + z. Call this class of models M(A, k0, α, ε);
informally, these are Sparse-Land signals. Many natural variations are possible:

• One might instead have a random number of nonzeros, and so, for example,
sample k0 from a geometric or a Poisson distribution. In cases where n is
large, this variation would make little difference.

• One might instead use Gaussian white noise of power σ2. In cases where n is
large, this is almost the same thing, provided we calibrate parameters using
ε2 = nσ2.

• One might be concerned about the specific choice of the Laplace density for
the nonzeros. As we argued earlier, for the specific phenomena we are con-
cerned with, getting this distribution right doesn’t much matter, as surprising
as that may seem.

• One might allow the sparsity parameter to be position dependent, for exam-
ple, to control the sparsity in blocks. Thus, with the wavelet transform, it
makes sense to allow coarse scales to be rather dense, while fine scales get
increasingly sparse as the spatial scale shrinks.

While these possibilities are important for empirical work, in this exposition we work
with the simpler model not having these features.

5. Processing of Sparsely Generated Signals. How do we practice signal pro-
cessing in Sparse-Land? Suppose we have a signal y which has been generated from
the model M(A, k0, α, ε) and the parameters of the model are known. There are
numerous signal processing tasks that could be of interest to us; let’s discuss them
and see how sparsity-seeking representations might enter in.

5.1. Possible Core Applications.
• Analysis. Given y, can we determine the underlying vector x0 which gener-

ated it? This process may be called atomic decomposition, as it leads us to
infer the individual atoms that actually generated y. Clearly, the true un-
derlying representation obeys ‖Ax0 − y‖2 ≤ ε, but there will be many other
vectors x generating similarly good approximations to y. Suppose we can
actually solve (P ε0 ):

(P ε0 ) : min
x

‖x‖0 subject to ‖y −Ax‖2 ≤ ε.

Under our assumptions, the solution xε0 of this problem, though not neces-
sarily the underlying x0, will also be sparse and have k0 or fewer nonzeros.
Our earlier results show that if k0 is small enough, then the solution of (P ε0 )
is at most O(ε) away from x0.

• Compression. Nominally y requires a description by n numbers. However,
if we can solve (P δ0 ) where δ ≥ ε, then the resulting solution xδ0 affords an
approximation ŷ = Axδ0 to y using at most k0 scalars, with an approximation
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error at most δ. By increasing δ we obtain stronger compression with larger
approximation error, and in this way we obtain a rate-distortion curve for a
compression mechanism.

• Denoising. Suppose that we observe not y, but instead a noisy version
ỹ = y + v, where the noise is known to obey ‖v‖2 ≤ δ. If we can solve
(P δ+ε0 ), then the resulting solution xδ+ε0 will have at most k0 nonzeros; our
earlier results show that if k0 is small enough, then xε+δ0 is at most O(ε + δ)
away from x0.

• Inverse Problems. Even more generally, suppose that we observe not y, but
a noisy indirect measurement of it, ỹ = Hy + v. Here the linear operator
H generates blurring, masking, or some other kind of degradation, and v is
noise as before. If we could solve

min
x

‖x‖0 subject to ‖ỹ −HAx‖2 ≤ δ + ε,

then we would expect to identify directly the sparse components of the un-
derlying signal and obtain an approximation Axδ+ε0 .

• Compressed Sensing. For signals which are sparsely generated, one can ob-
tain good reconstructions from reduced numbers of measurements—thereby
compressing the sensing process rather than the traditionally sensed data. In
fact, let P be a random j0×n matrix with Gaussian i.i.d. entries, and suppose
that it is possible to directly measure c = Py, which has j0 entries, rather
than y, which has n. Attempt recovery by solving

min
x

‖x‖0 subject to ‖c−PAx‖2 ≤ ε

to obtain the sparse representation and then synthesizing an approximate
reconstruction using Axε0 [18, 15, 17, 58, 42].

• Morphological ComponentAnalysis (MCA). Suppose that the observed sig-
nal is a superposition of two different subsignals y1, y2 (i.e., y = y1 + y2),
where y1 is sparsely generated using model M1 and y2 is sparsely generated
using model M2. Can we separate the two sources? Such source separation
problems are fundamental in the processing of acoustic signals, for example,
in the separation of speech from impulsive noise by independent component
analysis (ICA) algorithms [94, 164, 109]. Turning to the signal model pre-
sented here, if we could solve

min
x1,x2

‖x1‖0 + ‖x2‖0 subject to ‖y −A1x1 −A2x2‖2
2 ≤ ε2

1 + ε2
2,

the resulting solution (xε1,x
ε
2) would generate a plausible solution ŷ1 = Axε1,

ŷ2 = Axε2 to the separation problem. In fact, there have been several suc-
cessful trials of this idea, first in acoustic and later in image processing
[122, 148, 147, 7, 8]. An appealing image processing application that re-
lies on MCA is inpainting, where missing pixels in an image are filled in,
based on a sparse representation of the existing pixels [68]. MCA is necessary
because the piecewise smooth (cartoon) and texture contents of the image
must be separated as part of this recovery process. See [68] for more details.

A wide range of other applications including encryption, watermarking, scrambling,
target detection, and more, can also be envisioned. All these applications call for the
solution of (P δ0 ), or variants. We have intentionally described all these proposed ap-
plications in the conditional mood, since in general (P δ0 ) is not known to be tractable
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or even well defined. However, our earlier discussion of (P δ0 ) shows that the problem,
under the right conditions, is sensible and can be approximately solved by practical
algorithms.

A word of caution is required: In any serious application we should check whether
the dictionary A and the sparsity level k0 are suitable for application of existing re-
sults, or whether new results are perhaps needed, and, similarly, whether the algo-
rithms we have discussed work well, or whether new algorithms need to be designed.
Again, in general, (P δ0 ) is not a well-defined problem, so suitability for a given appli-
cation must always be verified.

Since at this stage the reader may be skeptical that applications inspired by
solving (P0) and (P δ0 ) can really work, we present in Figures 5 and 6 two worked out
large-scale applications.

Figure 5 presents compressed sensing of dynamic MRI—real-time acquisition of
heart motion—by Michael Lustig and coworkers at the Stanford MRI lab [112, 111].
They obtain a successful reconstruction of moving imagery of the beating heart from
raw pseudorandom samples of the k-t space, with a factor of 7 undersampling, i.e.,
they solve a system of equations which has seven times more unknowns than equa-
tions. Sparsity of the desired solution in the wavelet-Fourier domain is exploited by
�1 minimization.

Fig. 5 Compressed sensing in dynamic acquisition of heart motion. A dynamic image is created in
a setting where the classical sampling theorem allows reconstruction at rates no higher than
3.6 frames per second. Attempts to reconstruct at faster frame rates using classical linear
tools (based on �2 minimization) fail badly, exhibiting temporal blurring and artifacts (see
panel P2). By instead using �1 penalized reconstruction on the sparse transform coefficients,
the dynamic sequence can be reconstructed at the much higher rate of 25 frames per second
with significantly reduced image artifacts (see panel P1). The top images show the heart at
two time frames, and the bottom ones present the time series of a cross section of the heart.
More information can be found in [112, 111].

Figure 6 presents an image separation result obtained by Jean-Luc Starck and
coworkers [148, 147], where the image Barbara is decomposed into piecewise smooth
(cartoon) and texture, using MCA as described above. They used a dictionary com-
bining two representations: curvelets [146, 12, 13] for representing the cartoon part,
and local overlapped DCT for the texture. The second row in this figure, taken from
[68], presents inpainting results, where missing values (the text) are recovered, based
on the above separation. We see again a successful application driven by the goal of
approximately solving (P δ0 ).
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Original image Cartoon part Texture part

Image with missing data Inpainting result

Fig. 6 Top row: MCA for image separation to texture and cartoon [148, 147]. Bottom row: Image
inpainting—filling in missing pixels (the text) in the image [68].

5.2. The Quest for a Dictionary. A fundamental ingredient in the definition of
Sparse-Land’s signals and the deployment to applications is the dictionary A. How
can we wisely choose A to perform well on the signals we have in mind? One line of
work considered choosing preconstructed dictionaries, such as undecimated wavelets
[149], steerable wavelets [145, 37, 136], contourlets [38, 39, 40, 70, 71], curvelets [146,
12], and others [22, 123]. These are generally suitable for stylized “cartoon-like”
image content, assumed to be piecewise smooth and with smooth boundaries. Some
of these papers provide detailed theoretical analysis establishing the sparsity of the
representation coefficients for such content.

Alternatively, one can use a tunable selection, in which a basis or frame is gener-
ated under the control of particular parameter (discrete or continuous): wavelet pack-
ets (parameter is time-frequency subdivision) [28, 29, 121] or bandelettes (parameter
is spatial partition) [105, 117]. A third option is to build a training database of signal
instances similar to those anticipated in the application, and build an empirically-
learned dictionary, in which the generating atoms come from the underlying empirical
data rather than from some theoretical model; such a dictionary can then be used in
the application as a fixed and redundant dictionary. We now explore this third option
in detail.

Assume that a training database {yi}Mi=1 is given, thought to have been generated
by some fixed but unknown model M{A,k0,α,ε}. Can this training database allow us
to identify the generating model, specifically the dictionary A? This rather difficult
problem was studied initially by Olshausen and Field [128, 126, 127], who were moti-
vated by an analogy between the atoms of a dictionary and the population of simple
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cells in the visual cortex. They thought that learning a dictionary empirically might
model evolutionary processes that led to the existing collection of simple cells, and
they indeed were able to find a rough empirical match between the properties of a
learned dictionary and some known properties of the population of simple cells.

Later work extended their methodology and algorithm in various forms [107,
108, 69, 101, 106, 3, 2]. Here we describe a related training mechanism based on
[69, 101, 3, 2].

Assume that ε—the model deviation—is known, and that our aim is the estima-
tion of A. Consider the following optimization problem:

min
A,{xi}Mi=1

M∑
i=1

‖xi‖0 subject to ‖yi −Axi‖2 ≤ ε, 1 ≤ i ≤ M.(52)

If we could solve this, then we would obtain the dictionary A that gives us a sparse
approximation to all M elements of our training set. The roles of the penalty and the
constraints in (52) might also be reversed if we choose to constrain the sparsity and
obtain the best fit for that sparsity, and if we assume that k0 is known:

min
A,{xi}Mi=1

M∑
i=1

‖yi −Axi‖2
2 subject to ‖xi‖0 ≤ k0, 1 ≤ i ≤ M.(53)

Are these two problems properly posed? Do they have meaningful solutions? There
are some obvious indeterminacies (scaling and permutation of the columns). If we
fix a scale and ordering, it is still unclear whether there is a meaningful answer in
general.

Is there a uniqueness property underlying this problem, implying that only one
dictionary exists, such that it explains sparsely the set of training vectors? Surpris-
ingly, at least for the case ε = 0, there can be an answer to this problem, as shown in
[2]. Suppose there exists a dictionaryA0 with spark(A0) > 2 and a sufficiently diverse
database of examples, all of which are representable using at most k0 < spark(A0)/2
atoms. Then any other dictionary A that permits an equally sparse representation of
all the elements of the training database is derivable from A0 simply by rescaling or
permutation of the columns of A0.

Some readers may prefer to think in terms of matrix factorizations. Concatenate
all the database vectors columnwise, forming an n × M matrix Y, and, similarly, all
the corresponding sparse representations into a matrix X of size m × M ; thus the
dictionary satisfies Y = AX. The problem of discovering an underlying dictionary is
thus the same as the problem of discovering a factorization of the matrix Y as AX,
where A and X have the indicated shapes and X has sparse columns. The matrix
factorization viewpoint connects this problem with related problems of nonnegative
matrix factorization [104, 55] and sparse nonnegative matrix factorization [92, 1].

Clearly, there is no general practical algorithm for solving problem (52) or (53),
for the same reasons that there is no general practical algorithm for solving (P0), only
more so! However, just as with (P0), the lack of general guarantees is no reason not
to try heuristic methods and see how they do in specific cases.

We can view the problem posed in (53) as a nested minimization problem: an inner
minimization of the number of nonzeros in the representation vectors xi, for a given
fixed A and an outer minimization over A. A strategy of alternating minimization
thus seems to us very natural; at the kth step, we use the dictionary A(k−1) from the
(k − 1)th step and solve M instances of (P ε0 ), one for each database entry yi, each
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using the dictionary A(k−1). This gives us the matrix X(k), and we then solve for
A(k) by least squares, so that

A(k) = arg min
A

‖Y −AX(k)‖2
F = YXT(k)

(
X(k)XT(k)

)−1
.(54)

We may also rescale the columns of the dictionary obtained. We increment k and
unless we have satisfied a convergence criterion, we repeat the above loop. Such a
block-coordinate descent algorithm was proposed in [69, 101] and termed the method
of directions (MOD).

An improved update rule for the dictionary can be proposed, where the atoms
(i.e., columns) in A are handled sequentially. This leads to the K-SVD algorithm, as
developed and demonstrated in [3, 2]. Keeping all the columns fixed apart from the
j0th one, aj0 , this column can be updated along with the coefficients that multiply it
in X. The term to be minimized—see (54)—can be rewritten as3

‖Y −AX‖2
2 =

∥∥∥∥∥∥Y −
m∑
j=1

ajxTj

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥

Y −

∑
j 	=j0

ajxTj


− aj0xTj0

∥∥∥∥∥∥
2

2

.(55)

In this description, xTj stands for the jth row from X. In the above expression we
target the update of both aj0 and xTj0 , referring to the term

Ej0 = Y −
∑
j 	=j0

ajxTj(56)

as a known precomputed error matrix.
The optimal aj0 and xTj0 minimizing (55) are furnished by an SVD (rank-1 ap-

proximation [83]), but this typically yields a dense vector xTj0 . In order to minimize
this term while fixing the cardinalities of all representations, a subset of the columns
of Ej0 should be taken—those that correspond to the signals from the example set
that are using the j0th atom, namely, those columns where xTj0 are nonzero. For this
submatrix a rank-1 approximation via SVD [83] can be applied, updating both the
atom aj0 and the coefficients that deploy it in the sparse representations. This dual
update leads to a substantial speedup in the convergence of the training algorithm.

Interestingly, if the above process is considered for the case where k0 = 1, con-
straining the representation coefficients to be binary (1 or 0), the above-posed problem
reduces to a clustering task. Furthermore, in such a case the above training algorithms
simplify to the well-known K-means algorithm [81]. While each iteration of K-means
computes means over K different subsets, the K-SVD algorithm performs the SVD
over each of K different submatrices, hence the name K-SVD (K is assumed to be
the number of columns in A in [3, 2]). Exhibit 4 describes the MOD and the K-SVD
algorithms in detail.

6. Applications in Image Processing. The sparse representation viewpoint dis-
cussed so far is merely that—a viewpoint. The theoretical results we have given merely
tell us that sparse modeling is, in favorable cases, a mathematically well-founded en-
terprise with practically useful computational tools. The only way to tell whether
sparse modeling works in the real world is to apply it and see how it performs!

3To simplify notation, we now omit the iteration number k.
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Task: Train a dictionary A to sparsely represent the data {yi}Mi=1 by approximating the solution
to the problem posed in (53).

Initialization: Initialize k = 0, and
• Initialize Dictionary: Build A(0) ∈ Rn×m, either by using random entries or

using m randomly chosen examples.
• Normalization: Normalize the columns of A(0).

Main Iteration: Increment k by 1, and apply
• Sparse Coding Stage: Use a pursuit algorithm to approximate the solution of

x̂i = arg min
x
‖yi −A(k−1)x‖22 subject to ‖x‖0 ≤ k0,

obtaining sparse representations x̂i for 1 ≤ i ≤M . These form the matrix X(k).
• Dictionary Update Stage: Use one of the following options:

– MOD: Update the dictionary by the formula

A(k) = arg min
A
‖Y −AX(k)‖2F = YXT

(k)

(
X(k)X

T
(k)

)−1
.

– K-SVD: Use the following procedure to update the columns of the dictionary
and obtain A(k): Repeat for j0 = 1, 2, . . . ,m,
∗ Define the group of examples that use the atom aj0 ,

Ωj0 = {i| 1 ≤ i ≤M, X(k)[j0, i] �= 0}.

∗ Compute the residual matrix

Ej0 = Y −
∑
j �=j0

ajxTj ,

where xj are the jth rows in the matrix X(k).
∗ Restrict Ej0 by choosing only the columns corresponding to Ωj0 , and

obtain ER
j0 .

∗ Apply SVD decomposition ER
j0 = U∆VT . Update the dictionary atom

aj0 = u1 and the representations by xj0R = ∆[1, 1] · v1.
• Stopping Rule: If ‖Y−A(k)X(k)‖2F is smaller than a preselected threshold, stop.

Otherwise, apply another iteration.

Output: The desired result is A(k).

Exhibit 4. The MOD [69, 101] and K-SVD [3, 2] dictionary-learning algorithms.

In this section, we review selected results applying this viewpoint in image com-
pression and image denoising. Due to space imitations, we are unable to discuss
many other interesting examples, including problems in array processing [114, 115],
inpainting in images [68, 88, 89, 72], image decomposition to cartoon and texture
[122, 148, 147], and others [99, 7, 113, 137]. Also, the applications presented here rely
on an adapted dictionary using the K-SVD algorithm, but successful applications can
be demonstrated using other dictionaries, such as curvelets, contourlets, and others;
see [146, 148, 68, 66, 67] for some examples.

6.1. Compression of Facial Images.

6.1.1. The Application. Image compression is fundamental to today’s use of
digital imagery; we exploit it on a daily basis, in our digital cameras, satellite TVs
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and Internet downloads. Sparse representation already lies behind many successful
applications of image compression; the JPEG and JPEG-2000 compression standards
exploit the fact that natural images have sparse representations in the Fourier and
wavelet domains, respectively. (Of course, sparsity alone is not enough to develop an
effective content transmission system; in particular, efficient coding of sparse vectors
is needed in order to obtain bit streams.)

Because images are becoming so commonplace, we now often hear of highly tar-
geted applications for imaging—biometric identification, fingerprint searching, cardiac
imaging, and so on. Each such specialized application raises the issue of application-
specific compression. Rather than use a generic representation, such as the Fourier
or wavelet transform, one employs a dictionary which is specific to the image content
encountered in a given application.

In this section we address the compression of facial images, considering the ap-
plication of passport photograph storage in a digital ID system.

6.1.2. Methodology and Algorithms. We gather a passport photo database of
2600 facial images of size 180×220 pixels to train and test the compression algorithms
to be described shortly. We consider two types of compression algorithms: fixed
transform-based algorithms based on DCT (JPEG) and DWT (JPEG-2000),4 and
two content-adaptive algorithms based on learned dictionaries—principal component
analysis (PCA) and K-SVD.

Both adapted methods use dictionaries that are learned based on disjoint image
patches of size 15 × 15 pixels that are extracted from 2500 training images in the
database. Thus, every location in the image obtains a different dictionary based on
its content, as manifested in these 2500 examples.

The PCA technique models each patch as a realization of a multivariate Gaussian
distribution, and the learned dictionary is simply the set of usual principal axes based
on an empirical covariance matrix. The K-SVD technique instead models each patch
as approximately a sparse linear combination of 512 atoms which have been learned
from the image database. PCA is of course classical and relatively inexpensive to
compute, while the K-SVD technique is more time consuming. K-SVD training using
MATLAB requires ≈ 10 hours. After the training, the compression/decompression
of a facial image takes less than one second, using the stored dictionaries both at
the encoder and at the decoder. More details on these and other experiments can be
found in [9], and here we concentrate on showing the main results.

6.1.3. Experiments and Results. Each method was evaluated at two different
compression ratios, corresponding to 550 and 880 bytes, respectively. The rendering
of transform coefficients into byte streams was done very crudely, leaving open the
possibility of further improvements. It is standard to evaluate performance using the
peak signal-to-noise ratio (PSNR), defined by

PSNR = 20 log


 255√∑

i,j∈Ω (y(i, j) − ŷ(i, j))2


 ,

where y(i, j) are the original image pixels and ŷ(i, j) are the compressed-decompressed
ones.

4We used implementations of these methods available in IrfanView using default parameters.
The file sizes include the headers, which in principle could be omitted to obtain better compression.
More on this option and its impact can be found in [9].
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Original JPEG (24.19dB) JPEG-2000 (25.31dB) PCA (27.61dB) K-SVD (31.77dB)

Original JPEG (24.84dB) JPEG-2000 (26.29dB) PCA (28.67dB) K-SVD (33.37dB)

Original JPEG (24.47dB) JPEG-2000 (26.18dB) PCA (27.93dB) K-SVD (32.10dB)

Fig. 7 Face image compression with 550 bytes per image: Comparison of results from JPEG, JPEG-
2000, PCA, and sparse coding with K-SVD dictionary training. The values below each result
show the PSNR.

Figures 7 and 8 show results at 550 bytes and 820 bytes per image, respectively,
testing three images from the test set (as opposed to the training set, used for learning
the dictionaries). As can be seen, the K-SVD method is far better than the others,
both in the image quality and in the PSNR. The block artifacts seen in the results are
due to the block-based coding employed, and further improvement can be introduced
by a selective smoothing of the block edges.

6.2. Denoising of Images.

6.2.1. The Application. Images often contain noise, which may arise due to sen-
sor imperfection, poor illumination, or communication errors. Removing such noise
is of great benefit in many applications, and a wide variety of techniques have been
proposed, based on ideas as disparate as partial differential equations, local polyno-
mial or spline fitting, filtering, hidden Markov models, and shrinkage of transform
coefficients. An extensive comparison of the leading methods is given in [136].

Sparse representation can also be applicable for image denoising; in recent years,
many researchers have developed and applied novel transforms which represent im-
ages more sparsely than traditional transforms from harmonic analysis, and one pri-
mary application area has been image denoising. The transforms—steerable wavelets,
curvelets, and related direction-sensitive transforms—have the ability to more sparsely
represent edges than do Fourier and wavelet methods. By shrinkage of transform co-
efficients followed by reconstruction, some reduction in image noise is observed, while
edges are approximately preserved [103, 19, 20, 21, 146, 136, 70, 71, 88, 89].
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Original JPEG (26.59dB) JPEG-2000 (27.81dB) PCA (29.27dB) K-SVD (33.26dB)

Original JPEG (27.47dB) JPEG-2000 (29.16dB) PCA (30.195dB) K-SVD (34.5dB)

Original JPEG (27.39dB) JPEG-2000 (29.36dB) PCA (29.46dB) K-SVD (33.23dB)

Fig. 8 Face image compression with 820 bytes per image: Comparison of results from JPEG, JPEG-
2000, PCA, and sparse coding with K-SVD dictionary training. The values below each result
show the PSNR.

6.2.2. Methodology and Algorithms. The denoising methods described in [63,
64] take a different approach: by training a dictionary on the image content directly.
One option is to use a standard library of clean images, e.g., the Corel library of
60,000 images, and develop a standard dictionary adapted to general images. A more
ambitious goal is to develop a dictionary adapted to the problem at hand, learning the
dictionary from the noisy image itself! Presumably this yields sparser representations
and a more effective denoising strategy. In fact, papers [63, 64] apply the K-SVD
algorithm as shown in Exhibit 4 to image patches carved out of the noisy image.

Because of the curse of dimensionality, learning structure from data rapidly be-
comes intractable as the dimension of the feature vector increases. Therefore, the
K-SVD algorithm must be used with relatively small image patches—in the cited pa-
pers, 8 × 8 patches were used. The cited papers apply sparse representation to each
such patch extracted from the image and, for each pixel, average the results from all
patches containing that pixel.

6.2.3. Experiments and Results. The results reported in [63, 64] and reproduced
below are the best we have seen. Figure 9 shows the two dictionaries obtained—the
global one that is based on a group of 15 natural scene images, and the one adapted
to the image Barbara. Both dictionaries have 256 atoms. The denoising results are
demonstrated in Figure 10 for both methods. Results are reported again using the
PSNR between the original image (prior to the additive noise) and the denoising
result.
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Fig. 9 Candidate dictionaries; The globally trained K-SVD dictionary for general images and the
K-SVD dictionary trained on the noisy Barbara image directly.

Original Image Noisy Image (22.1307 dB, σ=20)

Denoised Image Using
Global Trained Dictionary (28.8528 dB)

Denoised Image Using
Adaptive Dictionary (30.8295 dB)

Fig. 10 Denoising comparisons: Additive noise standard deviation σ = 20; i.e., unprocessed
PSNR = 22.13dB. The results using the globally trained and the adapted K-SVD dic-
tionaries with patches of 8× 8 show an improvement of 6.7 and 8.7dB, respectively.
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7. Concluding Remarks.

7.1. Summary. The fields of signal and image processing offer an unusually fer-
tile playground for applied mathematicians, where the distance between an abstract
mathematical idea and an application or even a product may be small. In this pa-
per we have discussed the concept of sparse representations for signals and images.
Although sparse representation is a poorly defined problem and a computationally im-
practical goal in general, we have pointed to mathematical results showing that under
certain conditions one can obtain results of a positive nature, guaranteeing unique-
ness, stability, or computational practicality. Inspired by such positive results we have
explored the potential applications of sparse representation in real signal processing
settings and shown that in certain denoising and compression tasks content-adapted
sparse representation provides state-of-the-art solutions.

7.2. Open Questions. We list here several future research directions.
• Why do sparsity and redundancy as presented here form a good model for

images? A theoretical/empirical claim that goes beyond the expected “try
and see” would be very desirable.

• More work is required to carefully map the connections between the signal
model studied in this paper and others (Markov random field (MRF), PCA,
example-based regularization, and so on).

• A general purpose compression algorithm that leans on sparsity and redun-
dancy? Watermarking? Encryption? Classification? All these and many
more applications should be addressed to show the strength of the sparsity
and redundancy concepts in representation.

• The presented model is not perfect, and this undermines its ability to further
improve the performance of some applications. Model extensions to better
match true data are desired. For example, defining the statistical dependen-
cies within the representation coefficients is necessary.

• How can we synthesize signals based on the presented sparsity-redundancy
model? The direct approach of randomly generating a sparse vector x with
i.i.d. entries does not lead to natural images, even if the dictionary is of good
quality. What modifications of this model are necessary to enable synthesis?

• Training the dictionary is limited to small signal dimensions. How can this
limitation be circumvented? A multiscale concept seems to be natural in this
context.

• Uniqueness or stability of the learned dictionaries has not been established.
Empirically, the training also generates a denoising effect, but careful docu-
mentation of this effect and theoretical understanding are needed.

• How can the redundancy of the dictionary be chosen wisely? Is there a critical
value above and below which performance deteriorates? Current applications
tend to address this question empirically, and better understanding of the
role of redundancy is required.

• In the dictionary training algorithms, can any algorithm be guaranteed to
work under appropriate conditions, say, involving coherence? For example,
if the desired dictionary is of known and small mutual coherence, and if the
process is initialized by an arbitrary matrix with sufficiently small mutual
coherence, is there a guaranteed path toward the desired dictionary?
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