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General

• Sparsity and over-completeness have important roles in 
analyzing and representing signals.

• The main directions of our research efforts in recent 
years: Analysis of the (basis/matching) pursuit 
algorithms, properties of sparse representations 
(uniqueness), and deployment to applications. 

• Today we discuss the image decomposition application 
(image=cartoon+texture). We present

Theoretical analysis serving this application, 

Practical considerations, and 

Application – filling holes in images (inpainting)
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Atom (De-) Composition

• Given a signal s , we are often interested in its 
representation (transform) as a linear combination of 
‘atoms’ from a given dictionary:

Nℜ∈

• If the dictionary is over-
complete (L>N), there are 
numerous ways to obtain 
the ‘atom-decomposition’.

• Among those possibilities, 
we consider the sparsest.
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• Greedy stepwise regression - Matching Pursuit (MP) 
algorithm or ortho.version of it (OMP) [Zhang & Mallat. 93’] .

αΦ=α
α

s.t.sMin:P
00

• Searching for the sparsest representation, we 
have the following optimization task:

• Hard to solve – complexity grows exponentially with L.

Atom Decomposition?

αΦ=α
α

s.t.sMin:P
11

• Replace the l0 norm by an l1: Basis Pursuit (BP)
[Chen, Donoho, Saunders. 95’]
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Questions about Decomposition

•Interesting observation: In many cases the 
pursuit algorithms successfully find the sparsest 
representation.

•Why BP/MP/OMP should work well? Are there 
Conditions to this success? 

•Could there be several different sparse 
representations? What about uniqueness?

•How all this leads to image separation? Inpainting?
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm
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Decomposition – Definition

{ } N
jjY ℜ∈

Family of Texture images

{ } N
kkX ℜ∈

Family of Cartoon images

λ

μ
jk YXs

thatsuch
,,j,ks

μ+λ=

μλ∃∀

Our 
Assumption

Our Inverse
Problem

Given s, find its 
building parts    

and the    
mixture weights  

jk Y,X,,μλ
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Use of Sparsity

N

L

Φx = kX

kα

Nk

X.t.sArgMin
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⎨
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α

Φx is chosen such that the 
representation of            
are sparse: 

{ } N
kkX ℜ∈

Nj

Y.t.sArgMin

0j

k
xj0j
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⎭
⎬
⎫

⎩
⎨
⎧

βΦ=β=β
β

=Φx jY

j
βΦx is chosen such that the 

representation of            
are non-sparse: 

{ } N
jjY ℜ∈

We similarly construct Φy to sparsify Y’s while being 
inefficient in representing the X’s.  
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Choice of Dictionaries

• Training, e.g. 

j

j0j
k

k0k

j 0j

k
0k

x

Y.t.sArgMin&X.t.sArgMin

toSubjectArgMin

⎭
⎬
⎫

⎩
⎨
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βΦ=β=β
⎭
⎬
⎫

⎩
⎨
⎧ αΦ=α=α

β

α
=Φ

βα

Φ ∑

∑

• Educated guess: texture could be represented by local 
overlapped DCT, and cartoon could be built by 
Curvelets/Ridgelets/Wavelets (depending on the content).

• Note that if we desire to enable partial support and/or 
different scale, the dictionaries must have multiscale and 
locality properties in them.
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Decomposition via Sparsity

[ ]
⎥
⎦

⎤
⎢
⎣

⎡
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αΦΦ

=β+α=⎥
⎦

⎤
⎢
⎣
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β
α
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yx

00,
s.t.sArgMinˆ

ˆ

Φy

β

Φx

α

= s+

Why should this work? 
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Uniqueness via ‘Spark’

( ) 0s
2121
=γ−γΦ⇒γΦ=γΦ=

• Given a unit norm signal s, assume we hold two 
different representations for it using Φ

= 0

v

Φ
Definition: Given a matrix 
Φ, define σ=Spark{Φ} as 
the smallest number of 
columns from Φ that are 
linearly dependent.
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0201
γ+γ≤σ

Any two different representations of the                     
same signal using an arbitrary dictionary                     

cannot be jointly sparse [Donoho & E, 03`].

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

02
γ>

σTheorem 1

Uniqueness Rule
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Uniqueness Rule - Implications

[ ]
⎥
⎦
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⎡
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αΦΦ
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yx

,

s.t.s

ArgMinˆ
ˆ

00 Φy

β

Φx

α

= s+

• If                                    , it is necessarily the sparsest 
one possible, and it will be found. 

[ ]( )yx00
5.0ˆˆ ΦΦσ<β+α

• For dictionaries effective in describing the ‘cartoon’ and 
‘texture’ contents, we could say that the decomposition 
that leads to separation is the sparsest one possible.
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Lower bound on the “Spark”

.
M
1

1 +≥σ

• We can show (based on Gerśgorin disk theorem) that 
a lower-bound on the spark is obtained by

• Define the Mutual Coherence as 

{ } 1MaxM0
j

H

k
jk

Lj,k1
≤φφ=<

≠
≤≤

• Since the Gerśgorin theorem is non-tight, this lower 
bound on the Spark is too pessimistic.
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Equivalence – The Result 

Theorem 2

Given a signal s with a representation           ,

Assuming that                        , P1 (BP) is 

Guaranteed to find the sparsest solution. 

γΦ=s

( )M115.0
0

+<γ

We also have the following result [Donoho & E 02’,Gribonval & Nielsen 03`] :

•BP is expected to succeed if sparse solution exists. 

•A similar result exists for the greedy algorithms [Tropp 03’]. 

•In practice, the MP & BP succeed far above the bound. 
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Noise Considerations

2

2yx11,
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11,
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ˆ

Forcing exact representation is 
sensitive to additive noise and 

model mismatch

Recent results [Tropp 04’, Donoho et.al. 04’] show that the noisy case 
generally meets similar rules of uniqueness and equivalence
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Artifacts Removal

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=⎥
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βα

We want to add external forces to 
help the separation succeed, even 
if the dictionaries are not perfect

{ }αΦμ+βΦ−αΦ−λ+β+α=⎥
⎦

⎤
⎢
⎣

⎡
β
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βα
x

2

2yx11,
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Complexity

{ }αΦμ+βΦ−αΦ−λ+β+α=⎥
⎦

⎤
⎢
⎣

⎡
β
α

βα
x

2

2yx11,
TVsArgMinˆ

ˆ

Instead of 2N unknowns (the two separated images), 
we have 2L»2N ones.

βΦ=αΦ= yyxx s,s

Define two image unknowns to be

and obtain …



Sparse representations for 
Image Decomposition

21

0rwhere
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2

2yx11,
TVsArgMinˆ

ˆ

Justifications

Heuristics:(1) Bounding function; (2) Relation to BCR; (3) Relation to MAP.

Theoretic: See recent results by D.L. Donoho. 

Simplification

{ }xyxyyyxxx
r,r,s,sy

x sTVsssrsrsArgMin
ŝ
ŝ

yxyx

μ+−−λ++Φ++Φ=⎥
⎦

⎤
⎢
⎣

⎡ ++ 2

211
{ }xyxyyxx

s,sy

x sTVsssssArgMin
ŝ
ŝ

yx

μ+−−λ+Φ+Φ=⎥
⎦

⎤
⎢
⎣

⎡ ++ 2

211
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Algorithm

{ }x

2

2yx1yy1xx
s,sy

x sTVsssssArgMin
ŝ
ŝ

yx

μ+−−λ+Φ+Φ=⎥
⎦

⎤
⎢
⎣

⎡ ++

An algorithm was developed to solve the above problem:

• It iterates between an update of sx to update of sy. 

• Every update (for either sx or sy) is done by a forward and backward 
fast transforms – this is the dominant computational part of the 
algorithm. 

• The update is performed using diminishing soft-thresholding (similar 
to BCR but sub-optimal due to the non unitary dictionaries).

• The TV part is taken-care-of by simple gradient descent.

• Convergence is obtained after 10-15 iterations. 
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Results 1 – Synthetic Case
Original image 
composed as a 
combination of 

texture and 
cartoon

The separated 
texture (spanned 

by Global DCT 
functions)

The very low 
freq. content –
removed prior to 
the use of the 
separation

The separated 
cartoon (spanned 
by 5 layer 
Curvelets
functions+LPF)
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Results 2 – Synthetic + Noise
Original image 
composed as a 
combination of 

texture, cartoon, 
and additive 

noise (Gaussian,   
) 

The separated 
texture (spanned 

by Global DCT 
functions)

The separated 
cartoon 
(spanned by 5 
layer Curvelets
functions+LPF)

The residual, 
being the 
identified noise

10=σ
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Results 3 – Edge Detection

Edge detection on the        
original image

Edge detection on the        
cartoon part of the image
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Original ‘Barbara’ image Separated texture using 
local overlapped DCT 

(32×32 blocks) 

Separated Cartoon using 
Curvelets (5 resolution 

layers)

Results 4 – Good old ‘Barbara’
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Results 4 – Zoom in
Zoom in on the 
result shown in 

the previous 
slide  (the 

texture part) 

Zoom in on the 
results shown in 

the previous 
slide (the 

cartoon part)

The same part 
taken from 
Vese’s et. al.

The same part 
taken from 
Vese’s et. al. 
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Results 5 – Gemini
The original 

image - Galaxy 
SBS 0335-052 as 
photographed by 

Gemini

The texture part 
spanned by 
global DCT

The residual 
being additive 
noise

The Cartoon part 
spanned by 
wavelets 
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Application - Inpainting

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=⎥

⎦

⎤
⎢
⎣

⎡
β
α

βα

For 
separation

What if some values in s are unknown 
(with known locations!!!) ?

( ) 2

2yx11,
sWArgMinˆ

ˆ
βΦαΦλβα

β
α

βα
−−++=⎥

⎦

⎤
⎢
⎣

⎡

The image                 will be the inpainted outcome. 
Interesting comparison to [Bertalmio et.al. ’02]

βΦαΦ yx +
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Results 6 - Inpainting

Source

Cartoon 
Part

Texture 
Part

Outcome
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Results 7 - Inpainting

Source

Cartoon 
Part

Texture 
Part

Outcome
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Results 8 - Inpainting

OutcomeSource
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Results 9 - Inpainting



Sparse representations for 
Image Decomposition

34

Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm
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Summary

Over-complete and 
Sparsity are powerful 

in representations    
of signals

Decompose an image 
to Cartoon+TextureApplication?

We show theoretical 
results explaining how 

could this lead to 
successful separation. 

Also, we show that 
pursuit algorithms are 
expected to succeed

Theoretical 
Justification?

Practical 
issues? 

We present ways to robustify
the process, and apply it to 

image inpainting

Choice of dictionaries, 
performance beyond the bounds, 

Other applications? More ...

Where next?
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These slides 
and the following related papers

can be found in:  
http://www.cs.technion.ac.il/~elad

• M. Elad, "Why Simple Shrinkage is Still Relevant for Redundant Representations?", 
Submitted to the IEEE Trans. On Information Theory on December 2005. 

• M. Elad, J-L. Starck, P. Querre, and D.L. Donoho, “Simultaneous Cartoon and Texture 
Image Inpainting Using Morphological Component Analysis (MCA)”, Journal on Applied and 
Computational Harmonic Analysis, Vol. 19, pp. 340-358, November 2005. 

• D.L. Donoho, M. Elad, and V. Temlyakov, "Stable Recovery of Sparse Overcomplete
Representations in the Presence of Noise", the IEEE Trans. On Information Theory, Vol. 
52, pp. 6-18, January 2006.

• J.L. Starck, M. Elad, and D.L. Donoho, "Image decomposition via the combination of 
sparse representations and a variational approach", the IEEE Trans. On Image Processing, 
Vol. 14, No. 10, pp. 1570-1582, October 2005. 

• J.-L. Starck, M. Elad, and D.L. Donoho, "Redundant Multiscale Transforms and their 
Application for Morphological Component Analysis", the Journal of Advances in Imaging 
and Electron Physics, Vol. 132, pp. 287-348, 2004. 

• D. L. Donoho and M. Elad, “Maximal sparsity Representation via l1 Minimization”, the Proc. 
Nat. Aca. Sci., Vol. 100, pp. 2197-2202, March 2003.
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+ΦxIf       is the local DCT,  
then requiring sparsity
parallels the requirement 
for oscilatory behavior

+ΦxIf       is one resolution 
layer of the non-decimated 
Haar – we get TV

Appendix A – Relation to Vese’s
2

2yx1yy1xxs,s
sssssMin

yx

−−λ+Φ+Φ ++

2

2yx*BVyBVxs,s
sssssMin

yx

−−λ++

Vese & Osher’s Formulation


