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Noise Removal 

Our story begins with signal/image denoising …

Remove 
Additive 
Noise

100 years of activity – numerous algorithms.

Considered Directions include: PDE, statistical estimators, 
adaptive filters, inverse problems & regularization, example-
based restoration, sparse representations, …
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Shrinkage For Denoising 

Shrinkage is a simple yet effective sparsity-based 
denoising algorithm [Donoho & Johnstone, 1993].

Justification 1: minimax near-optimal over the 
Besov (smoothness) signal space (complicated!!!!).

Apply 
Wavelet 

Transform

Apply Inv. 
Wavelet 

Transform

LUT

Justification 2: Bayesian (MAP) optimal [Simoncelli & Adelson 1996, Moulin & Liu 1999].

In both justifications, an additive Gaussian white noise and a unitary
transform are crucial assumptions for the optimality claims.
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Redundant Transforms? 

Apply its 
(pseudo) 
Inverse 

Transform

LUT

This scheme is still applicable, and it works fine (tested with curvelet,  
contourlet, undecimated wavelet, and more). 

However, it is no longer the optimal solution for the MAP criterion.

TODAY’S FOCUS: 

IS SHRINKAGE STILL RELEVANT WHEN HANDLING  
REDUNDANT (OR NON-UNITARY) TRANSFORMS?                    

HOW? WHY?

Number of coefficients 
is (much!) greater than 

the number of input 
samples (pixels)

Apply 
Redundant 
Transform

WE SHOW THAT THE ABOVE SHRINKAGE METHOD IS THE 
FIRST ITERATION IN A VERY EFFECTIVE AND SIMPLE 

ALGORITHM THAT MINIMIZES THE BASIS PURSUIT, AND 
AS SUCH, IT IS A NEW PURSUIT TECHNIQUE.
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions

Thomas Bayes
1702 - 1761
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The MAP Approach 

( ) ( )xPryx
2
1

xf
2
2

⋅λ+−=

Log-Likelihood 
term

Prior or 
regularization

Given 
measurements

Unknown to be 
recovered

Minimize the following function with respect to x:
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Image Prior?  

During the past several decades we have made all sort of 
guesses about the prior Pr(x):   

• Mumford & Shah formulation,

• Compression algorithms as priors, 

• …

( ) 2
2xxPr λ=

Energy

( ) 2
2xxPr Lλ=

Smoothness

( ) 2xxPr WLλ=

Adapt+ 
Smooth

( ) { }xxPr Lλρ=

Robust 
Statistics

( )
1

xxPr ∇λ=

Total-
Variation

( ) 1xxPr Wλ=

Wavelet 
Sparsity

( ) 1xxPr Tλ=

Sparse & 
RedundantToday’s Focus
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We got a separable set of 1D optimization problems

(Unitary) Wavelet Sparsity 

( ) 1
2
2

xyx
2
1

xf W⋅λ+−=

( )
1

2

2
H x̂yx̂

2
1

x̂f ⋅λ+−= W

( )
1

2
2

x̂ŷx̂
2
1

xf ⋅λ+−=

( ) ( ) 1

2

2
H x̂ŷx̂

2
1

x̂f ⋅λ+−= W

( )∑ ⎥⎦
⎤

⎢⎣
⎡ λ+−=

k
k

2
kk x̂ŷx̂

2
1

L2 is 
unitarily 
invariant

xx̂ W=
Define

x̂x HW=
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Why Shrinkage? 

( ) ( ) zaz
2
1

zf 2 λ+−=Want to minimize this 1-D 
function with respect to z

A LUT can be built for any other robust 
function (replacing the |z|), including non-
convex ones (e.g., L0 norm)!!

⎪
⎩

⎪
⎨

⎧

λ−≤λ+
λ<
λ≥λ−

=
aa
a0
aa

zopt

LUT

a

zopt
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions

nk×ℜ∈T

k

n
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An Overcomplete Transform

( ) 1
2
2

xyx
2
1

xf T⋅λ+−=

T x= = =α

Redundant transforms are important because they can   
(i) Lead to a shift-invariance property,

(ii) Represent images better (because of orientation/scale analysis),

(iii) Enable deeper sparsity (when used in conjunction with the BP).
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( ) ( )xfminArgf
~

minArg
x

≠α⋅
α

DHowever

Analysis versus Synthesis

( ) 1
2
2

xyx
2
1

xf T⋅λ+−=
xT=α

Define

α= +Tx( ) 1

2

2
y

2
1

f
~

α⋅λ+−α=α +T

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D Basis Pursuit 

Analysis 
Prior:

Synthesis 
Prior:

( ) ( )xfminArgf
~

minArg
x

=α⋅
α=α +TT

D
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Basis Pursuit As Objective 

Our Objective:

Dα-y=           -
Getting a sparse solution implies that y 
is composed of few atoms from D

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D
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Set j=1

Sequential Coordinate Descent

Fix all entries of α apart 
from the j-th one

Optimize with 
respect to αj

j=j+1 mod k

The unknown, α, has k entries.

How about optimizing w.r.t. 
each of them sequentially?

The objective per each becomes 

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D

Our objective

( ) zy~dz
2
1

zf
~ 2

2j λ+−=
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We Get Sequential Shrinkage

{ }
⎪
⎩

⎪
⎨

⎧

λ−≤λ+
λ<
λ≥λ−

=λ=
aa
a0
aa

,azopt Sand the solution was

( ) ( ) zaz
2
1

zf 2 λ+−=We had this 1-D    
function to minimize 

BEFORE:

NOW: ( ) zy~dz
2
1

zf
~ 2

2j λ+−=Our 1-D objective is

{ }λ=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
λ

= ⋅ ,y~d
d

,z H
j2

2jd

1
2

2j
2
2jd

y~H
jd

opt SSand the solution now is
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Sequential? 

Set j=1

Fix all entries of α apart 
from the j-th one

Optimize with 
respect to αj

j=j+1 mod k

{ }λ=α

α+α−=

⋅ ,y~d

anddyy~

H
j2

2jd

1opt
j

jj

S

D

This method requires drawing one 
column at a time from D.

In most transforms this is not 
comfortable at all !!!

This also means that MP and its 
variants are inadequate.

Not Good!!
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How About Parallel Shrinkage? 

Assume a current solution αn.

Using the previous method, we 
have k descent directions 
obtained by a simple shrinkage.

How about taking all of them at 
once, with a proper relaxation?  

Little bit of math lead to …

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D
Our objective

Update the solution by 

∑μ+α=α
=

+
k

1j
jn1n v

For j=1:k

Compute the descent 
direction per αj :  vj.
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Parallel Coordinate Descent (PCD) 

At all stages, the 
dictionary is applied as 
a whole, either directly, 

or via its adjoint

The synthesis error

Update by exact line-search

Back-projection to the signal domain

Shrinkage operation

( ){ }
kkk1k

kk
H

kk

e

1,ye

μ+α=α

α−⋅λα−+α=

+

QDQDS

Normalize by a diagonal matrix { }DDQ H1diag−=
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PCD – The First Iteration 

( ){ }
kkk1k

kk
H

kk

e

1,ye

μ+α=α

α−⋅λα−+α=

+

QDQDS { }1,ye H
k1 λ==α DS

{ }1,yx H
1 λ⋅= DSD

Assume: Zero initialization

D is a tight frame with normalized columns (Q=I)

Line search is replaced with 

00 =α

11 =μ
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Relation to Simple Shrinkage?

Apply 
Redundant 
Transform

Apply its 
(pseudo) 
Inverse 

Transform

LUT

yHD { }1,yH ⋅λ=α DS αD

The first iteration in our algorithm = the intuitive shrinkage !!!
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PCD – Convergence Analysis

This rate equals that of the Steepest-Descent algorithm, 
preconditioned by the Hessian’s diagonal.

We have proven convergence to the global minimizer of the BPDN 
objective function (with smoothing): *k α→α

Approximate asymptotic convergence rate analysis yields:

where M and m are the largest and smallest eigenvalues of                 
respectively (H is the Hessian). 

( ) ( )[ ] ( ) ( )[ ]*ff
mM
mM

*ff k

2

1k α−α⎟
⎠
⎞

⎜
⎝
⎛

+
−

≤α−α +

5.05.0 HQQ

Substantial further speed-up can be obtained using the subspace 
optimization algorithm (SESOP) [Zibulevsky and Narkis 2004].
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( ) 1
2
2

y
2
1

f
~
Minimize

α⋅λ+−α=α MD
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Iterations

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Truncated Newton

Image Denoising

• The Matrix M gives a 
variance per each 
coefficient, learned from 
the corrupted image.

• D is the contourlet
transform (recent version). 

• The length of α: ~1e+6.

• The Seq. Shrinkage 
algorithm cannot be 
simulated for this dim..
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( ) 1
2
2

y
2
1

f
~

Minimize

α⋅λ+−α=α MD

0        2         4         6         8        10       12     14        16      18 

Image Denoising

22

23

24

25

26

27

28

29

30

Denoising PSNR

Iterations

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Truncated Newton

31

32

2
2TruexˆEvaluate −αD

Even though one iteration 
of our algorithm is 

equivalent in complexity to 
that of the SD, the 

performance is much better
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Image Denoising

Original 
Image

Noisy 
Image with 
σ=20

Iterated 
Shrinkage –

First Iteration 
PSNR=28.30dB

Iterated 
Shrinkage –
second iteration 
PSNR=31.05dB
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Closely Related Work

Several recent works have devised iterative shrinkage algorithms,      
each with a different motivation:

• E-M algorithm for image deblurring -
[Figueiredo & Nowak 2003]. 

• Surrogate functionals for deblurring as above                                          
[Daubechies, Defrise, & De-Mol, 2004] and [Figueiredo & Nowak 2005].

• PCD minimization for denoising (as shown above) [Elad, 2005].

While these algorithms are similar, they are in fact different. Our recent 
work have shown that:

• PCD gives faster convergence, compared to the surrogate algorithms.

• All the above methods can be further improved by SESOP, leading to 

1
2
2

yMinimize α⋅λ+−αKW

( ) ( )[ ] ( ) ( )[ ]*ff*ff k

2
mM

1k α−α⎟
⎞

⎜
⎛≤α−α −

+ mM ⎠⎝ +
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions
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How?

Conclusion

When 
optimal?  

How to avoid 
the need to 

extract  
atoms?

What if the 
transform is 
redundant?  

Getting what?

Shrinkage is an 
appealing signal 

denoising 
technique

Option 1: apply 
sequential coordinate 
descent which leads 

to a sequential 
shrinkage algorithm

Go 
Parallel

Compute all the 
CD directions, 
and use the 

average

We obtain an easy to implement 
iterated shrinkage algorithm (PCD). This 
algorithm has been thoroughly studied 

(convergence, rate, comparisons).

For additive 
Gaussian noise 

and unitary 
transforms
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THANK YOU!!

These slides                        
and accompanying papers              

can be found in 
http://www.cs.technion.ac.il/~elad
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