

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 214–241

LEARNING MULTISCALE SPARSE REPRESENTATIONS FOR
IMAGE AND VIDEO RESTORATION∗

JULIEN MAIRAL† , GUILLERMO SAPIRO‡ , AND MICHAEL ELAD§

Abstract. This paper presents a framework for learning multiscale sparse representations of
color images and video with overcomplete dictionaries. A single-scale K-SVD algorithm was intro-
duced in [M. Aharon, M. Elad, and A. M. Bruckstein, IEEE Trans. Signal Process., 54 (2006),
pp. 4311–4322], formulating sparse dictionary learning for grayscale image representation as an op-
timization problem, efficiently solved via orthogonal matching pursuit (OMP) and singular value
decomposition (SVD). Following this work, we propose a multiscale learned representation, obtained
by using an efficient quadtree decomposition of the learned dictionary and overlapping image patches.
The proposed framework provides an alternative to predefined dictionaries such as wavelets and is
shown to lead to state-of-the-art results in a number of image and video enhancement and restora-
tion applications. This paper describes the proposed framework and accompanies it by numerous
examples demonstrating its strength.

Key words. image and video processing, sparsity, dictionary, multiscale representation, denois-
ing, inpainting, interpolation, learning

AMS subject classifications. 49M27, 62H35

DOI. 10.1137/070697653

1. Introduction. Consider a signal x ∈ R
n. We say that it admits a sparse

approximation over a dictionary D ∈ R
n×k, composed of k columns, referred to as

atoms, if one can find a linear combination of “few” atoms from D that is “close” to
the signal x. The so-called Sparseland model suggests that such dictionaries exist for
various classes of signals and that the sparsity of a signal decomposition is a powerful
model in many image and video processing applications [1, 20, 27, 36].

An important assumption, commonly and successfully used in image process-
ing, is the existence of multiscale features in images. Attempting to design the best
multiscale dictionary which fulfills a sparsity criterion has been a major challenge in
recent years. Such attempts include wavelets [28], curvelets [5, 6], contourlets [15, 16],
wedgelets [17], bandlets [24, 29], and steerable wavelets [21, 39]. These methods lead
to many effective algorithms in image processing, e.g., image denoising [35]. In this
paper, instead of designing the best predefined dictionary for image reconstruction,
we propose to learn it from examples. In section 3 we provide further insights into
the importance of the multiscale structure in such learned dictionaries.

In [1], the K-SVD algorithm is proposed for learning a single-scale dictionary for
sparse representation of grayscale image patches. By means of a sparsity prior on all
fixed-sized overlapping patches in the image, the K-SVD is used for removing white
Gaussian noise, leading to a very effective algorithm [20]. This has been extended to

∗Received by the editors July 18, 2007; accepted for publication (in revised form) December 26,
2007; published electronically April 16, 2008. This work was partially supported by NSF, ONR,
NGA, DARPA, ARO, the McKnight Foundation, and Israeli Science Foundation grant 796/05.

http://www.siam.org/journals/mms/7-1/69765.html
†INRIA, WILLOW Project Team, UMR 8548 INRIA/ENS/CNRS, Département d’Informatique,

Ecole Normale Supérieure, 45 rue d’Ulm, F-75230 Paris Cedex 05, France (julien.mairal@inria.fr).
Part of this work was performed while this author was visiting the University of Minnesota.

‡Corresponding author. Department of Electrical and Computer Engineering, University of Min-
nesota, 200 Union Street SE, Minneapolis, MN 55455 (guille@umn.edu).

§Department of Computer Science, The Technion – Israel Institute of Technology, Haifa 32000,
Israel (elad@cs.technion.ac.il).

214

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 215

color images, with state-of-the-art results in denoising, inpainting, and demosaicing
applications [27], and more recently to video denoising [36]. In this paper, we extend
the basic K-SVD work, providing a framework for learning multiscale and sparse image
representation. In addition to the presentation of the new methodology, we apply it to
various image and video processing tasks, obtaining results that outperform previous
works. Our results for denoising grayscale images outperform, for instance, works such
as [10, 19, 20, 22, 35, 38]. The proposed algorithm also competes favorably with the
most recent and state-of-the-art result in this field [12], which is based on the nonlocal
means algorithm [4]. Our framework for color image denoising also competes favorably
with the best known algorithm in this field [11], and the results for the other presented
applications such as color video denoising and inpainting of small holes in image and
video are also among the best we are aware of.

The task of learning a multiscale dictionary has been addressed in [33] in the
general context of sparsifying image content. Our approach differs from theirs in the
numerical treatment, the multiscale structure formed, and the way the dictionaries
found are deployed for denoising. These differences may explain the significantly supe-
rior performance we obtain. Other results on learning single-scale image dictionaries
include, for example, [37, 38, 43].

While sparsity and multiscale techniques have been both widely applied and stud-
ied independently in signal and image processing, this paper is the first successful
attempt to combine these two concepts in a learning fashion. Our work presents
both algorithmic considerations and accompanying simulation results in several im-
age processing tasks. Those are shown to outperform or equal the state-of-the-art
results, thereby confirming that multiscale is crucial in these fields. Furthermore, the
proposed framework is compatible with all the K-SVD prior work [20, 27, 36], which
implies that the same extension could be found beneficial to many other image and
video restoration problems.

The structure of this paper is as follows: In section 2 we briefly review relevant
background, which includes the original K-SVD denoising algorithm [1], the extensions
to color image denoising, nonhomogeneous noise, and inpainting [27], and the K-SVD
for denoising videos [36]. Section 3 is devoted to the presentation of our novel proposed
multiscale framework. This section is followed by a section that introduces further
important algorithmic improvements to the original single-scale K-SVD. Section 5
presents some applications of the multiscale K-SVD, covering grayscale and color
image denoising and image inpainting. In section 6 we further extend the framework
and show the performance for video processing. Section 7 concludes this paper with
a brief description of its contributions and some open questions for future work.

2. The single-scale K-SVD. The single-scale K-SVD has already shown very
good performance for grayscale image denoising [19, 20], color image denoising [27],
inpainting and demosaicing [27], and video denoising [36]. In this section, we briefly
review these algorithms.

2.1. Grayscale image denoising algorithm. We start by briefly reviewing the
main ideas of the K-SVD framework for sparse image representation and denoising.
The reader is referred to [19, 20] for additional details.

Let x0 be a clean image and y = x0+w its noisy version with w being an additive
zero-mean white Gaussian noise with a known standard deviation σ. The K-SVD
bases its denoising approach on a local and shift-invariant sparsity prior, imposed
on small overlapping patches in the image. This way, the dictionary learning task
bypasses the prohibitive computation and memory requirements involved in a global

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

216 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

handling of complete images (e.g., 512 × 512 pixels). The parameter n, denoting the
size of such patches, is fixed a priori (e.g., n = 64 for an 8×8 patch), and the algorithm
aims at finding a sparse approximation of every

√
n×

√
n overlapping patch extracted

from y (e.g., (512 − 8 + 1)2 = 255,025 different patches for a 512 × 512 image). This
representation is done using an adapted dictionary D, learned for this set of patches.
The patches’ approximations are averaged to obtain the reconstructed image. This
algorithm (shown in Figure 1) can be described as the minimization of an energy:

(2.1)
{
{α̂ij}ij , D̂, x̂

}
= arg min

D,{αij}ij ,x

λ‖x − y‖2
2 +

∑
ij

μij‖αij‖0 +
∑
ij

‖Dαij − Rijx‖2
2.

In this equation, x̂ is the estimator of x0, and the dictionary D̂ ∈ R
n×k is an estimator

of the optimal dictionary, which leads to the sparsest representation of the patches
in the recovered image. The indices [i, j] mark the location of the patch in the image
(representing its top-left corner). The vector α̂ij ∈ R

k is the sparse representation for

the [i, j]th patch in x̂ using the dictionary D̂, such that Dαij is a linear combination
of columns of D that is close to this [i, j]th patch. The notation ‖.‖0 is the �0 quasi
norm, a sparsity measure, which counts the number of nonzero elements in a vector.
The operator Rij is a binary matrix that extracts a square patch of size

√
n ×

√
n

from location [i, j] in the image, forming the output patch as a column vector. The
main steps of the algorithm are (refer to Figure 1) the following:

• Sparse Coding step: This is performed with an orthogonal matching pursuit
(OMP) [13, 14, 30], a greedy algorithm that proves to be very efficient for
diverse approximation problems [18, 41, 42]. The approximation stops when
the residual reaches a sphere of radius

√
nCσ representing the probability

distribution of the noise (C being a constant). More on this can be found
in [27].
Note that this algorithm provides only an approximated solution of (2.2), as
the nonconvexity of the functional we are considering makes this problem dif-
ficult (in fact, NP-Hard) in general. A well-known and alternative approach is
the basis pursuit [7], which suggests a convexification of the problem by using
the �1-norm instead of �0. Nevertheless, when working with small patches,
greedy algorithms prove to be far more efficient.

• Dictionary Update: This is a sequence of rank-one approximation problems
that update both the dictionary atoms and the sparse representations that
use it, one at a time.

• Reconstruction: The last step is a simple averaging between the patches’
approximations and the noisy image. The denoised image is x̂. Equation
(2.4) emerges directly from the energy minimization in (2.1).

This algorithm provided state-of-the-art results at the time of its publication. A key
issue in this work is the data to train on. One possibility is to learn a dictionary from
a large database of images (the so-called global approach), thereby exploiting intrinsic
information about natural images. The alternative, that proved to be more effective,
is to learn a dictionary from all the overlapping patches of the given noisy image (the
adaptive approach), adapting to the specific image content. As in [27], we typically
learn off-line a global dictionary and then use it as an initialization for the iterative
adaptive approach presented in Figure 1.

An extensive study presented in [19, 20] led to the following choice of parameters
in the algorithm: k = 256, n = 8 × 8, C = 1.15, λ = 30

σ , and J = 10 (number of
iterations). These were found to be good parameters for this algorithm, with a good
compromise between speed and quality.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 217

Parameters: λ (Lagrange multiplier); C (noise gain); J (number of iterations);
k (number of atoms); n (size of the patches).

Initialization: Set x̂ = y; Initialize D̂ = (d̂l ∈ R
n×1)l∈1...k.

Loop: Repeat J times
• Sparse Coding : Fix D̂ and use OMP to compute coefficients α̂ij ∈ R

k×1

for each patch by solving

(2.2) ∀ij α̂ij = arg min
α

‖α‖0 subject to ‖Rijx̂ − D̂α‖2
2 ≤ n(Cσ)2.

• Dictionary Update: Fix all α̂ij , and for each atom d̂l, l ∈ 1, 2, . . . , k in D̂,
– Select the patches ωl that use this atom, ωl := {[i, j] | α̂ij(l) �= 0}.
– For each patch [i, j] ∈ ωl, compute its residual without the contribu-

tion of the atom d̂l, i.e., elij = Rijx̂ − D̂α̂ij + d̂lα̂ij(l).

– Set El = (elij)[i,j]∈ωl
∈ R

n×|ωl| as the matrix whose columns are the

elij , and α̂l = (α̂ij(l))[i,j]∈ωl
∈ R

|ωl|.

– Update d̂l and the α̂ij(l) by minimizing

(2.3) (d̂l, α̂
l) = arg min

α,‖d‖2=1

‖El − dαT ‖2
F .

This rank-one approximation is performed by a truncated SVD of
El. Here El − dαT represents the residual error of the patches from
ωl if we replace d̂lα̂

lT by dαT in their decompositions.
Reconstruction: Perform a weighted average

(2.4) x̂ =
(
λI +

∑
ij

RT
ijRij

)−1(
λy +

∑
ij

RT
ijD̂α̂ij

)
,

which is the solution of the optimization problem of (2.1) with respect to x when
D and α are assumed fixed. Note that the inversion described above is trivial, as
the matrix involved is diagonal. Thus, this equation is in effect a simple weighted
averaging of image patches, and the division plays a role of normalization.

Fig. 1. The single-scale K-SVD-based grayscale image denoising algorithm.

2.2. Extension to color image denoising. In [27], we have shown that we
can apply the K-SVD for color images by denoising each RGB patch directly as
a long concatenated RGB vector. Like in the grayscale denoising algorithm, each
RGB channel is written as a column vector, and then the obtained RGB vectors are
concatenated. Within this framework, the algorithm is able to learn the correlation
between the RGB channels and exploit it effectively. This was shown to provide
improved results over the denoising of each color channel separately.

Nevertheless, we observed on some images a color bias, especially when we used
the global dictionaries. Our study has led us to the conclusion that this phenomenon
happened because the dictionary redundancy was too small to represent the diversity
of colors among natural images. Therefore, we introduced a different metric within the
OMP that maintains the average color of the original image.1 With this intention,

1The OMP selects in a greedy fashion the “closest” atom at each iteration, and thereby having
a metric is an intrinsic component of this algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

218 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

we introduced a new parameter γ, which de facto defines a new metric during the
OMP, taking into account the average color of the patches. Additional details and
numerous examples are given in [27], showing that the proposed framework leads to
state-of-the-art results, which are further improved with the multiscale approach and
additional algorithmic improvements to be exposed here.

2.3. Handling nonhomogeneous noise and applications. Handling nonho-
mogenous noise is very important, as nonuniform noise across color channels is very
common in digital cameras. In [27], we have presented a variation of the K-SVD,
which permits us to address this issue. Within the limits of this model, we were able
to fill in relatively small holes in images, and we presented state-of-the-art results
for image demosaicing, outperforming every specialized interpolation-based method,
such as [8, 23, 25, 32].

Consider the case where w is a white Gaussian noise with a different standard
deviation σp > 0 at each location p. Assuming these standard deviations are known,
we introduce a vector β composed of weights for each location,

(2.5) βp =
minp′∈ Image σp′

σp
.

This leads us to define a weighted K-SVD algorithm based on a different metric for
each patch. We denote by ⊗ an elementwise multiplication between two vectors, used
to apply the above vector β as a “mask.” We aim at solving the following problem,
which replaces (2.1):

{
α̂ij , D̂, x̂

}
= arg min

D,αij ,x
λ‖β ⊗ (x − y)‖2

2 +
∑
ij

μij‖αij‖0(2.6)

+
∑
ij

‖(Rijβ) ⊗ (Dαij − Rijx)‖2
2.

There are two main modifications in the minimization of this energy. First, the Sparse
Coding step takes the matrix β into account by using a different metric within the
OMP. Second, the Dictionary Update variation is more delicate, and (2.3) is replaced
by

(2.7) (d̂l, α̂
l) = arg min

α,‖d‖2=1

‖βl ⊗ (El − dαT)‖2
F ,

where βl is the matrix whose size is the same as El and where each column corre-
sponding to an index [i, j] is Rijβ. This problem is known as a weighted rank-one
approximation matrix (see [40]).

Inpainting (see, e.g., [2, 9]) consists of filling in holes in images. Within the limits
of our model, it becomes possible to address a particular case of inpainting. By con-
sidering small random holes as areas with infinite power noise, one can design a mask
β with zero values for the missing pixels and apply it as a nonhomogeneous denoising
problem. This approach proves to be very efficient. This inpainting case could also
be considered as a specific case of interpolation. The mathematical formulation from
(2.6) remains the same, but some values from the matrix β are just zeros. Details
about this method are provided in [27], together with a discussion on how to handle
the demosaicing problem that has a fixed and periodic pattern of missing values.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 219

2.4. Video denoising algorithm. The video extension of the K-SVD has been
developed and described in [36]. This work exploits the temporal correlation in video
signals to increase the denoising performance of the algorithm, providing state-of-
the-art results for removing white Gaussian noise. As explained in [36], applying the
previously described K-SVD on the whole video volume as one signal is problematic
due to the rapid changes in the video content, implying that one dictionary cannot fit
well to the whole data. At the other extreme, an alternative method that applies the
single-image K-SVD denoising algorithm to the image sequence one frame at a time
is also expected to perform poorly, since we do not exploit the temporal correlation.
Therefore, a different approach is proposed in [36], based on the following concepts:

• Three-dimensional (3D) atoms: Each frame should be denoised separately,
but patches are constructed from more than one frame, grasping both spatial
and temporal behaviors.

• Dictionary propagation: The initial dictionary for each frame is the one
trained for the previous one. Fewer training iterations are thus required.

• Extended temporal set of patches: Patches in neighboring frames are also used
for dictionary training and image cleaning for each frame.

Translating these three concepts into a mathematical formulation leads to the follow-
ing modified version of (2.1):

∀t ∈ 1 . . . T,
{
α̂ijτ , D̂t, x̂t

}
= arg min

Dt,αijτ ,xt

λ‖xt − yt‖2
2

(2.8)

+
∑
ij

t+Δt∑
τ=t−Δt

μijτ‖αijτ‖0 + ‖Dtαijτ − Rijτx‖2
2.

In this formulation, x is a video composed of T frames, and yt denotes the tth frame
of a noisy video y. x̂t denotes the estimated clean tth frame. For each frame, the
learning process is performed on an extended temporal set of patches [t−Δt; t+Δt],
as explained before, with Δt typically equal to 1 or 2. Then, 3D patches are used,
which are constructed with patches at the same spatial location from more than one
frame, that are concatenated one after another into a column vector. In [36], patches
of size n = 8×8×5 were built with five adjacent frames. To that effect, Rijτ is again
a binary matrix that extracts the 3D patch with the spatial location [i, j] and with a
temporal location centered at the time τ . Then, D̂t ∈ R

n×k is the adapted dictionary
for the time t, and αijτ is the representation of the 3D patch Rijτx.

2.5. Brief summary. Having concluded the brief background presentation, we
proceed to present a multiscale framework that permits us to improve all of the above-
mentioned algorithms. We should note that the approach we are about to present is
one among several possibilities for introducing multiscale analysis into the dictionary
learning and sparse image/video representation framework. This means that further
work could (and should) be done to explore alternative possibilities, in spite of the
fact that the approach here presented already leads to state-of-the-art results.

3. Learned multiscale sparse representation. Since it is well accepted that
image information spreads across multiple scales, designing a K-SVD type of algorithm
that is able to adapt and simultaneously capture information at multiple scales is the
main goal of this paper. This section discusses the main principles of our proposed
approach.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

220 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

The original, single-scale, K-SVD has proven to work very well with small image
patches (n = 8× 8). Nevertheless, there is a strong incentive for multiscale extension
of this method for various reasons. Intuitively speaking at first, in the single-scale
denoising algorithm, every pixel filtered is influenced by a limited and quite small
group of its local neighbors. The size of the relevant neighborhood is dictated by the
patch size—17 × 17 pixels, with 8 pixels in each direction, in the case of [19, 20]. A
multiscale treatment can help the pixels see “beyond the horizon” and thus get better
treatment. As a simple example, if a pixel belongs to a wide segment of constant
gray value, averaging all the pixels in this segment removes noise very effectively.
When working with a limited neighborhood, as in the single-scale method, some of
this power is lost. The introduction of multiscale dictionaries leads to an effective
growth of the neighborhoods and thus the expected gain.

Put more generally, as some image structures are bigger than 8 pixels, we should
expect a better performance from such a method that handles larger patches. In-
deed, we have observed that different images may prefer different patch sizes (both
globally and locally) for optimal performance, and thus having a simultaneous multi-
scale dictionary avoids this difficult task of selecting a patch size in advance. As we
demonstrate in this paper, learning multiscale dictionaries leads to better restoration
results, due to these reasons.

One simple and naive strategy to introduce multiscale analysis consists of us-
ing large patches with a high redundancy factor (k

n) and hoping for the appear-
ance of intrinsic multiple scales among the learned dictionary’s atoms. However,
we have observed no significant differences between the results with the parameters
{n = 8× 8, k = 256} compared to {n = 16× 16, k = 1024}. Sometimes we have even
observed oversmoothing artifacts when using the bigger patches. One explanation for
the “failure” of this direct approach is that the K-SVD may be trapped in a local
minimum, learning only the scale that corresponds to the size of the patches, avoid-
ing the true multiscale result. In that respect, the use of small patches for learning
fine details is unavoidable. By explicitly imposing such multiscale structure, we may
help in this regard. This leads us naturally to the proposed framework. We note
again that although we present a multiscale extension of the K-SVD for image and
video enhancement, learning multiscale dictionaries is important, per se, also for other
applications such as classification.

3.1. The basic model. In our proposed multiscale framework, we focus on the
use of different sizes of atoms simultaneously. Considering the design of a patch-based
representation and a denoising framework, we put forward a simple quadtree model
of large patches, as shown on Figure 2. This is a classical data structure, also used,
for example, in wedgelets [17]. A fixed number of scales, N , is chosen such that it
corresponds to N different sizes of atoms. A large “root” patch of size n pixels is
divided along the tree to subpatches of sizes ns = n

4s , where s = 0 . . . N − 1 is the
depth in the tree. Then, one different dictionary Ds ∈ R

ns×ks composed of ks atoms
of size ns is learned and used per scale s.

The overall idea of the multiscale algorithm we propose stays as close as possible to
the original K-SVD algorithm, as depicted in Figure 1, with an attempt to exploit the
several existing scales jointly and wisely. More specifically, we aim at solving the same
energy minimization problem of (2.1), with a multiscale structure embedded within
the overall dictionary D ∈ R

n×k. This overall dictionary is a joint one, composed
of all the atoms of all the dictionaries Ds located at every possible position in the
quadtree.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 221

Fig. 2. Quadtree model selected for the proposed multiscale framework.

= α0 + α1 + α2 + α3 + α4 + α5 +

α6 + α7 + α8 + α9 + α10 + . . .

Fig. 3. Possible decomposition of a 20 × 20 patch with a 3-scale dictionary.

For the scale s, there exist 4s such positions. This makes a total of k =
∑N−1

s=0 4sks
atoms in D. This is illustrated in Figure 3, where an example of a possible multiscale
decomposition is presented. One can see in this figure how the dictionary D has been
built: The atoms of D0 of size n (for instance the ones associated with α0 and α1

on this picture) are atoms of D. Then, the atoms of D1 of size n
4 are embedded into

bigger atoms of size n with zero padding at four possible positions (see the atoms
associated with α2, α3, α4, α5 in the figure). Then, the same idea applies to D2 and
so on.

Addressing the minimization problem of (2.1) with a multiscale dictionary D
implies the need to consider equally the atoms from the different scales. Therefore,
we choose to normalize all the atoms of the dictionaries to unit norm. This policy is
important during the Sparse Coding step and proves to provide better results than
choosing a different norm per scale.

The original K-SVD exploits the overlapping/shift-invariant treatment of the
patches’ representation, which has been found to be critical for denoising [19, 20,
27, 38]. Exploiting this treatment at each scale of our multiscale model is therefore
important. Due to the quadtree, however, each subpatch inside one “root” patch
is restricted to 4s different shifts at the scale s. Nevertheless, as every pixel in the
original image is considered as the center of a root patch, shift invariance is employed
in this scheme as well.

Integrating the multiscale structure requires the following key modifications to
the basic algorithm:

• Sparse Coding : This remains unchanged if we introduce some simple nota-
tion. In (2.2), assume that Rij remains the matrix that extracts the patch of

size n0 = n with coordinates [i, j]. The multiscale dictionary D̂ is the joint
one, composed of all the atoms of all the dictionaries D̂s = (d̂sl ∈ R

ns)l∈1...ks

located at every possible position in the quadtree structure. For the scale s,
we denote their index as p among the 4s possible shifts. The OMP is im-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

222 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

plemented efficiently using the modified Gram–Schmidt algorithm [3]. Dur-
ing each selection procedure of the OMP, a scale s, a position p, and an
atom d̂sl are chosen. For each “root” patch, this step can be achieved in
O((

∑N−1
s=0 ks)n‖α̂‖0) operations.

• Dictionary Update: This step is slightly changed, as we update each atom
d̂sl (1 ≤ l ≤ ks) in each scale (from s = 0 to s = N − 1):

– Select the set of subpatches from the scale s that use the lth atom,

ωsl := {[i, j, s, p] | α̂ij(s, l, p) �= 0},

where [i, j, s, p] denotes the subpatch at the scale s and position p from
the patch [i, j], and α̂ij(s, l, p) is the coefficient corresponding to this

subpatch and the atom d̂sl.
– For each subpatch [i, j, s, p] ∈ ωsl, compute

elijsp = Tsp(Rijx̂ − D̂α̂ij) + d̂slα̂ij(s, l, p),

where Tsp ∈ {0, 1}ns×n0 is a binary matrix which extracts the subpatch
[i, j, s, p] from a patch [i, j].

– Set Esl ∈ R
ns×|ωsl| as the matrix whose columns are the elijsp and

α̂sl ∈ R
|ωsl| as the vector whose elements are the α̂ij(s, l, p).

– Update d̂sl ∈ R
ns and the α̂ij(s, l, p) using a SVD as before:

(3.1) (d̂sl, α̂
sl) = arg min

α,‖d‖2=1

‖Esl − dαT ‖2
F .

• Reconstruction: This remains the same as in (2.4), while using the new nota-
tion just introduced. This is again the solution of the optimization problem
from (2.1) with respect to x when the multiscale dictionary D and the coeffi-
cients α are fixed. Note that each patch is reconstructed from multiple scales,
and since a pixel belongs to multiple (overlapping) patches, it is reconstructed
with multiple scales and at multiple positions.

The computational time of the Sparse Coding stage is paramount compared to the
Dictionary Update and the Reconstruction stages. The total complexity is therefore
O(kanLJM), where L is the average sparsity factor (number of coefficients obtained

in the decomposition), M is the number of patches processed, and ka =
∑N−1

i=0 ks/4
s

is the effective overall number of atoms used, taking into account the fact that some
atoms are mostly zeros (due to their small size relative to the root patch).

3.2. Extension to various image and video enhancement tasks. We now
show how this framework is extended to different applications.

• Color image denoising : As in the single-scale algorithm, extending the color
framework to the multiscale version requires us to consider a concatenated
RGB vector. Then, the same quadtree structure and the same scheme are
applied. The only difference with respect to the grayscale algorithm is the
use of the parameter γ, which was introduced to solve the bias-color problem,
described in [27]. We recall that this mechanism enforces the average color of
the patches during the OMP, thereby creating a new metric. In the multiscale
case, we cannot enforce the average color of a patch, since it would introduce
a bias for the subpatches in the quadtree. Therefore, this should be done only
for the smallest subpatches. For instance, assume we have N = 3 scales and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 223

a patch of size n = 20× 20× 3 (3 being the number of color channels). Then,
we enforce the average color of each 5×5×3 subpatch within the dictionaries
and patches.

• Nonhomogeneous denoising and inpainting : In order to extend the nonhomo-
geneous denoising and inpainting algorithms to multiscale, one should first
notice that for a patch of index [i, j], the matrix Rijβ that we introduced
in section 2.3 can be used directly during the Sparse Coding stage, since it
operates as a single-scale one with a large dictionary. Then, the Dictionary
Update step requires a decomposition of Rijβ in a quadtree structure, pro-
viding a set of matrices TspRijβ for each scale s and position p within the
scale. Equation (3.1) has to be adapted to match (2.7):

(3.2) (d̂sl, α̂
sl) = arg min

α,‖d‖2=1

‖βsl ⊗ (Esl − dαT)‖2
F ,

where βsl is a matrix whose size is the same as Esl, and where each column
corresponding to an index [i, j] and position p within the scale s is TspRijβ.

• Video denoising : Both color images and image sequences (video) are using
patches and atoms with many channels: the RGB layers for the color process-
ing, and temporal frames for the video processing (four-dimensional atoms).
Concatenating the color channels and different frames in single vectors per-
mits us to address a color video denoising problem by minimizing the same
energy as in (2.8). To do so, each RGB channel from each patch of the
considered frames is written as column a vector, and those are concatenated
together. For the multiscale extension for denoising image sequences, one can
regard the K-SVD for video as a successive K-SVD employed to multichannel
images. It consists of putting the quadtree structure on the considered chan-
nel images, and considering the learning of the dictionaries at each scale, by
proceeding exactly as for the single-image case. Here extending the grayscale
video denoising to color consists of handling concatenated RGB vectors. In-
terestingly, we found that when handling a video, we can omit the use of a
warped metric that uses the parameter γ.

• Nonhomogeneous denoising and inpainting for video: Using the same matrix
βt introduced for the weighted K-SVD algorithm for the frame at time t, the
video inpainting problem can be treated as suffering from nonhomogeneous
noise. This leads to the following energy minimization formulation:

∀t ∈ 1 . . . T,
{
α̂ijτ , D̂t, x̂t

}
= arg min

Dt,αijτ ,xt

λ‖βt ⊗ (xt − yt)‖2
2

+
∑
ij

t+Δt∑
τ=t−Δt

μijτ‖αijτ‖0 + ‖(Rijβτ) ⊗ (Dtαijτ − Rijτx)‖2
2.

Handling the inpainting problem for video via an extension of the previous
algorithm is possible since we can regard the processing per frame as sepa-
rate, although involving adjacent frames. This permits us to use the matrix
β exactly the same way as we already did for single images. This handles
inpainting of relatively small holes. For addressing the general video inpaint-
ing problem, the reader should refer to [34, 44]. Due to the multiscale nature
of the proposed scheme, somewhat larger holes can be treated successfully,
compared to the single-scale algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

224 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

4. Additional algorithmic improvements. We now introduce several impor-
tant additional refinements, which further improve the results without increasing the
computational cost.

4.1. Treatment of the DC. For the grayscale K-SVD we find it useful to force
the presence of a constant (DC) atom in each dictionary (an atom that has the same
value for every pixel) and give it a preference by multiplying this atom by a constant
η (2.5 for example) during the selection procedure of the OMP (refer to [14]). This
makes sense since a constant atom does not introduce any noise in the reconstruction.
For the color extension, we introduced one constant atom per channel, i.e., one red,
one green, and one blue atom, and for the video K-SVD algorithm, one constant atom
(or constant per channel in the color case) per frame in the 3D patches.

4.2. The stopping rule. As discussed in [27], the stopping criterion during the
OMP is based on the norm of an n-dimensional Gaussian vector which is distributed
following the generalized Rayleigh law. This means that one has to stop the approxi-
mation when the residual reaches a fuzzy sphere. According to this law, the bigger n
is, the thinner the sphere is, and the more accurate the stopping criterion

√
nC(n)σ

becomes (C is a parameter that depends on n). Thus one asset of increasing n through
our multiscale scheme is to provide an improved stopping criterion.

It is actually not necessary to perform a complete multiscale algorithm to take ad-
vantage of this property. During the Sparse Coding stage, instead of processing each
patch separately, one can choose to process some adjacent sets of nonoverlapping
patches simultaneously and consider them as a larger patch (and therefore associated
with a better stopping criterion). In practice, we choose m adjacent and nonover-
lapping patches of size n, and we first process them independently using their own
stopping criterion

√
nC(n)σ. Then, as long as the cumulative error of the m patches is

larger than the (better) stopping criterion
√
nmC(nm)σ, we refine the approximation

by progressively adding terms, one at a time, to the sparse expansion of the worse
of the m patches. Then we consider a new set of m patches and continue the sparse
approximation. This does not increase the complexity of the algorithm and provides
noticeable improvement.

4.3. Reduced training set. In Figure 1, the Sparse Coding and Dictionary
Update stages are performed over the full set of overlapping patches. Performing
these steps over a partial and random subset of these patches during all the iterations
(apart from the last one) leads to a substantial reduction in the computational time
and the memory requirements. This idea was proposed and used successfully in [36],
and we found it to be useful in our applications as well.

4.4. A block denoising variation. Analyzing the performance of the K-SVD-
based image denoising algorithm raises some interesting questions. Let us consider
an “homogeneous” image that can be represented reliably using one dictionary Dopt.
Then, the bigger the image is, the better the denoising results are, since we get more
examples to train on, and thus the K-SVD is more likely to find Dopt. When the
image has a wide variability of content, one could try to use a larger dictionary (with
more redundancy), but our extensive experiments show that this does not improve
the results significantly. This might be explained by the increased risk of getting
stuck in a local minimum in the K-SVD training, or perhaps the reason is the reduced
performance of the OMP in such cases.

Nevertheless, a way to address the above-mentioned problem is to handle different
zones of the images separately. In this paper, we choose to define a block denoising

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 225

Fig. 4. Illustration of the block denoising algorithm. Four dictionaries are shown. Those are
trained on four different blocks (out of the nine overall that we have) from a noisy barbara with
σ = 15. As can be seen, each dictionary is more adapted to the content it is serving. E.g., the top-
left dictionary does not contain textured atoms, as those are not needed in this part of the image.
On the other hand, the bottom-right dictionary is practically loaded with such textured atoms, as
those are crucial and dominant in that part of the image.

algorithm, but future work may combine our denoising algorithm with a segmentation
of the input image. More precisely, we consider blocks of the same size from one
image, with a small overlap of the same width as the patches’ size, as illustrated
in Figure 4.2 Given a judiciously adapted block size, this approach introduces two
advantages: First, the performance in terms of denoising results is better since the
dictionaries are better adapted to their own regions, as can be noticed in Figure 4.
Second, this approach has the same computational complexity with a lower memory
usage, since both are linear in the number of denoised pixels.3

A natural question raised is whether there exists a generic optimal size to choose
for these blocks. Answering this requires taking into account several considerations:

• The bigger the blocks are, the more information from the image is taken into
account each time the K-SVD is performed. On the down side, bigger blocks
imply more diversity of the image content and less flexibility of the dictionary
to handle this content well.

• The smaller a block is, the better the K-SVD can adapt the dictionary to it.
However, smaller blocks imply a risk of overfitting, where the dictionary is
learning the given examples and absorbs some of the noise in them as well.

• The bigger σ (the noise power) is, the more patches (and thus bigger blocks)
are required to make the K-SVD robust to the noise.

As expected, our experiments show that the best size for the block denoising algorithm
is linked to the amount of noise in the image. The smaller the noise variance is, the
smaller the average best size to get the best denoising performance.

2Note that since pixels are recovered as a linear combination of overlapping patches, this will
attenuate the common artifacts at the boundary of the segments.

3We neglect the small increase in the number of pixels due to the small overlapping of the blocks.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

226 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

Table 1

Comparison of PSNR results of several denoising algorithms. Each cell is divided into four
parts. The top-left cell shows the results from the original K-SVD [20], and the top-right cell
presents the most recent state-of-the-art results [12]. The bottom-left cell is devoted to our results
for N = 1 scale and the bottom-right cell to N = 2 scales. Each time the best results are in bold.

σ house peppers cameraman lena barbara

5
39.37 39.82 37.78 38.09 37.87 38.26 38.60 38.73 38.08 38.30

39.81 39.92 38.07 38.20 38.12 38.32 38.72 38.78 38.34 38.32

10
35.98 36.68 34.28 34.68 33.73 34.07 35.47 35.90 34.42 34.96

36.38 36.75 34.58 34.62 34.01 34.17 35.75 35.84 34.90 34.86

15
34.32 34.97 32.22 32.70 31.42 31.83 33.70 34.27 32.37 33.08

34.68 35.00 32.53 32.47 31.68 31.72 34.00 34.14 32.82 32.96

20
33.20 33.79 30.82 31.33 29.91 30.42 32.38 33.01 30.83 31.77

33.51 33.75 31.15 31.08 30.32 30.37 32.68 32.88 31.37 31.53

25
32.15 32.87 29.73 30.19 28.85 29.40 31.32 32.06 29.60 30.65

32.39 32.83 30.03 30.04 29.28 39.37 31.63 31.92 30.17 30.29

50
27.95 29.45 26.13 26.35 25.73 25.86 27.79 28.86 25.47 27.14

28.24 29.40 26.34 26.64 26.06 26.17 28.15 28.80 26.08 26.78

100
23.71 25.43 21.75 22.91 21.69 22.62 24.46 25.51 21.89 23.49

23.83 24.84 21.94 22.64 22.05 22.84 24.49 25.06 22.07 22.95

σ boat couple hill Average

5
37.22 37.28 37.31 37.50 37.02 37.13 37.91 38.14

37.35 37.35 37.42 37.54 37.11 37.17 38.12 38.20

10
33.64 33.90 33.52 34.03 33.37 33.60 34.30 34.73

33.93 33.98 33.84 33.97 33.59 33.70 34.62 34.74

15
31.73 32.10 31.45 32.10 31.47 31.86 32.34 32.86

32.04 32.13 31.83 31.94 31.78 31.88 32.67 32.78

20
30.36 30.85 30.00 30.74 30.18 30.70 30.96 31.57

30.74 30.82 30.42 30.59 30.53 30.66 31.34 31.46

25
29.28 29.84 28.90 29.68 29.18 29.82 29.88 30.56

29.67 29.82 29.31 29.51 29.52 29.78 30.25 30.45

50
25.95 26.56 25.32 26.32 26.27 27.04 26.33 27.20

26.36 26.74 25.78 26.36 26.52 27.04 26.69 27.24

100
22.81 23.64 22.60 23.39 23.98 24.44 22.86 23.93

22.96 23.67 22.73 23.16 23.92 24.16 23.00 23.67

5. Image processing applications. Applying our multiscale scheme to some
image processing tasks proves to noticeably improve the results compared to the single-
scale original algorithm, leading to state-of-the-art results in several image processing
tasks. We turn to present such results below.4

5.1. Grayscale image denoising. We present denoising results obtained with
the proposed multiscale sparsity framework and the algorithmic improvements that
we have introduced. In Table 1 our results for N = 1 (single-scale) and N = 2 scales

4The initial dictionaries for all the examples presented in this paper are either a standard DCT
one or a dictionary learned from a set of natural images, which did not include the tested set.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 227

are carefully compared to the original K-SVD algorithm [20] and the recent results
reported in [12].5 The best results are shared between our algorithm and [12]. As can
be observed, the differences are insignificant. Our average performance is better for
σ ≤ 10 and for σ = 50, while the results from [12] are slightly better or similar to ours
for other noise levels. Tuning more carefully the parameters of these two algorithms is
not expected to change these near-equivalent performances by much. Our framework
is, of course, a general multiscale representation, and, as such, it is applicable to other
image processing tasks, some of them demonstrated hereafter.

The peak signal-to-noise ratio (PSNR) values in Table 1, corresponding to the
results in [12, 20] and our algorithm, are averaged over five experiments for each image
and each level of noise, to cope with the variability of the PSNR with the different
noise realizations. We also compared our results with a very recent paper [26], which is
an extension of [35] with noticeable improvements. In this work, the authors presented
some experiments over a data set that has five images in common with the one we
chose (house, peppers, lena, barbara, boat) and four standard deviations for the noise
(10, 25, 50, 100). For very high noise (σ = 100), their algorithm performs better than
ours and slightly better than [12]. Nevertheless, for other values of noise, we have an
improved average PSNR of 0.2dB over these five images.

During our experiments, the number of atoms ks for each scale was set to 256,
the parameter λ was set to 0.45n2/σ, and η, which gives a preference of the constant
atom during the OMP, was set to 2.5. The other parameters used are reported in
Table 2. The initial dictionaries are the results of an off-line training on a large generic
database of images [19, 27]. Some of these dictionaries are shown in Figure 5. The
so-called sparsity factor L for this off-line training was set to L = 6 for N = 1 and
L = 20 for N = 2, 3.

From these experiments, we draw two conclusions: First, the algorithmic im-
provements and the block denoising approach with N = 1 lead to better performance
than the original K-SVD, and this is achieved without increasing the computational
cost. Second, the 2-scale algorithm provides further noticeable improvement over the
single-scale K-SVD, which makes N = 2 a relevant choice, although it introduces a
higher computational cost. A few examples for N = 2 are presented in Figure 6.
Using N = 3 scales can provide further improvement at a higher computational cost,
as illustrated in Table 3 for σ = 10, 15 and images of size 256 × 256. A visual com-
parison between the use of different scales is shown in Figure 7. In these images, as
the denoising performance is already very good for one and two scales, the visual im-
provements are difficult to observe. Nevertheless, on the zoomed parts of the images,
one can notice that N = 3 provides a more precise brick texture on the image house
and fewer artifacts in the flat areas of the image cameraman.

Some examples of multiscale learned dictionaries are presented in Figures 5, 8, 9,
and 10. As can be observed, the very strong structure from the image barbara can be
observed through the different scales.

With N > 3, our multiscale scheme proves not to be flexible enough to be used,
since it leads to significant computational cost and optimization problems of the pa-
rameters involved. Further work is required to modify this scheme to allow such
flexibility. Using image pyramids is a topic we are currently considering.

We implemented a parallel version of the algorithm in C++ using OpenMP for

5The results in [12] are the best known denoising results at the time of writing this paper. These
go beyond the performance reported in [19, 20, 22, 35], which until recently were the leading ones,
each for a short period of time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

228 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

Table 2

Parameters used for the grayscale denoising experiments presented in Figure 6 and Table 1:
(i) N is the number of scales; n is the size of the patches; (ii) J is the number of learning iterations;
(iii) μ is the fraction of patches used during the training; (iv) m is the number of adjacent and
nonoverlapping patches processed at the same time (see section 4); (v) C is the parameter from
(2.2); (vi) the block denoising algorithm has been applied to

√
Sb ×

√
Sb blocks when

√
Sb was

smaller than the size of the input image.

N N = 1

σ 5 10 15 20 25 50 100
√
n 8 8 8 8 8 8 8

J 30 30 30 30 30 15 15

μ 0.5 0.5 0.5 0.5 0.5 1.0 1.0

m 1 1 64 64 64 64 64

C 1.128 1.128 1.041 1.023 1.023 1.018 1.018
√
Sb 150 150 200 200 200 512 768

N N = 2

σ 5 10 15 20 25 50 100
√
n 10 12 16 16 16 20 20

J 30 30 30 30 30 15 15

μ 0.5 0.5 0.5 0.5 0.5 1.0 1.0

m 4 4 16 16 16 64 64

C 1.069 1.042 1.026 1.026 1.020 1.010 1.008
√
Sb 150 200 200 250 400 512 768

(a) s = 0 (b) s = 1 (c) s = 2

Fig. 5. A learned 3-scale global dictionary, which has been trained over a large database of
natural images.

parallelism and the Intel Math Kernel Library for the matrix computation. On a
recent quad-core Intel Xeon 2.33 GHz, J = 30 iterations for one 200 × 200 block
of the image lena with σ = 15 took approximately 8 seconds for N = 1 scale and
58 seconds for N = 2 scales, using the parameters from the above experiments.6

6The code will be made publicly available upon publication.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 229

(a) Original image boat (b) Noisy, σ = 50 (c) Result, PSNR=26.74dB

(d) Original image hill (e) Noisy, σ = 10 (f) Result, PSNR=33.68dB

(g) Original image lena (h) Noisy, σ = 10 (i) Result, PSNR=35.85dB

Fig. 6. Examples of denoising results for N = 2 scales.

Table 3

PSNR improvements obtained using N = 3 scales for σ = 10 and σ = 15 compared to the case
of N = 2 scales. For N = 3, a dictionary with ks = 256 for all s = 0, 1, 2, m = 4, and C = 1.018
were used.

σ n house peppers cameraman Average

10 20 × 20 +0.10dB +0.03dB +0.00dB +0.04dB

15 20 × 20 −0.07dB +0.18dB +0.28dB +0.13dB

15 24 × 24 +0.02dB +0.13dB +0.15dB +0.10dB

5.2. Color image denoising. In [27], we presented state-of-the-art results for
color image denoising using the previously described modified version of the K-SVD.
These results have recently been slightly surpassed [11]. Here we apply our multiscale

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

230 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

(a) Original
image house

(b) Noisy, σ = 10 (c) N = 1
PSNR=36.36dB

(d) N = 2
PSNR=36.74dB

(e) N = 3
PSNR=36.85dB

(f) Zoom on (a) (g) Zoom on (b) (h) Zoom on (c) (i) Zoom on (d) (j) Zoom on (e)

(k) Original
image cameraman

(l) Noisy, σ = 15 (m) N = 1
PSNR=31.71dB

(n) N = 2
PSNR=31.73dB

(o) N = 3
PSNR=32.01dB

(p) Zoom on (k) (q) Zoom on (l) (r) Zoom on (m) (s) Zoom on (n) (t) Zoom on (o)

Fig. 7. A comparison between N = 1, 2, 3 scales.

framework and our algorithmic improvements to the color denoising K-SVD to show
that it can compete and again provide state-of-the-art results. Like in [27], we use a
data set composed of natural images from the Berkeley Segmentation Database [31];
see Figure 11.

Numerical results are presented in Table 4 and some visual results in Figure 12.
All the numbers presented here are averaged over five experiments for each image
and each level of noise. The parameters used during the experiments are reported
in Table 5, where we can observe that our experiments indicate that for N = 2 the
parameter γ proves to be useful only for high noise levels (σ ≥ 25).

As can be seen, our model with N = 1 is already close to [11] (−0.03dB on average)
and even slightly better for σ ≤ 5 (+0.05dB). With N = 2 scales, we have an average
improvement of +0.06dB over the single-scale algorithm and +0.04dB over [11]. One
can also note that our color denoising algorithm is a lot more efficient than handling

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 231

(a) s = 0 (b) s = 1 (c) s = 2

Fig. 8. A learned 3-scale dictionary, which has been trained over a noisy version of the image
barbara, with σ = 15. This image is presented in Figure 4. The initial dictionary is a global one,
presented in Figure 5.

each RGB channel separately, providing a very important average improvement of
2.65dB on our data set. For illustrative purposes, some color multiscale dictionaries
are presented in Figure 13. Very interestingly, the color information seems to be
present mainly at the coarse scale.

5.3. Image inpainting. Filling in small holes in images was presented in [27]
using the K-SVD algorithm. Here we show that using more than one scale can lead
to visually impressive results. For illustrative purposes, we show an example obtained
with N = 2 scales in Figure 14, compared with N = 1. This result is quite impressive,
bearing in mind that it is able to retrieve the brick texture of the wall, something that
our visual system is not able to do. In this example, the multiscale version provides
an improvement of 2.24dB over the single-scale algorithm. Within our inpainting
framework, the OMP process should stop only when it perfectly reconstructs the
input data. Nevertheless, it proved to be more efficient in our experiments to set a
maximum number of atoms in the decomposition of the patches, which we denote as
the sparsity factor L.

6. Video processing applications. We demonstrate the proposed framework
on several video processing applications—color video denoising and video inpainting.

6.1. Color video denoising. Figure 15 presents a result obtained on a sequence
of five images taken from a classical video sequence, with added white Gaussian noise
of standard deviation σ = 25. On the third column, we present the results obtained
by denoising each frame separately using the multiscale K-SVD algorithm for color
images using the same parameters as in subsection 5.2. In the last column, we present
the output of our multiscale K-SVD algorithm for denoising color videos that takes
into account the temporal correlation as well. As can be seen, the multiscale tempo-
ral algorithm provides both PSNR and visual improvements. The raw performance
difference in terms of PSNR between this two methods is +1.14dB. Looking carefully
at the images, we see fewer artifacts and sharper details in the last column.

In these experiments, we used patches and atoms of size n = 10× 10× 3× 3 with
N = 2 scales. This means that we used three successive frames to build each patch

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

232 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

(a) N = 1, s = 0

(b) N = 2, s = 0 (c) N = 2, s = 1

(d) N = 3, s = 0 (e) N = 3, s = 1 (f) N = 3, s = 2

Fig. 9. Multiscale dictionaries that have been trained over a noisy version of the image boat,
with σ = 15, N = 1, N = 2, and N = 3.

and dictionaries with three temporal channels. The initial dictionary is a global one,
trained on a large database of videos, with a sparsity factor L = 20. The parameters
γ and η are not used (γ = 0.0 and η = 1.0), but it proved to be important to introduce
some constant red, green, and blue atoms for each temporal channel. The parameters
m and C are set, respectively, to 1 and 1.04. J = 30 iterations are used during the
denoising for the first algorithm (that skips proper treatment of the temporal domain).
As we propagate the dictionary, the number of iterations J during the denoising of
the next frames is set to 10. 15 frames of the test video were processed, but only 5
are shown in Figure 15.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 233

(a) s = 0 (b) s = 1

Fig. 10. A learned 2-scale dictionary, which has been trained on a large set of clean patches
from a database of natural images. Compare with Figure 5.

Fig. 11. Data used for evaluating the color denoising experiments. (This is a color figure.)

6.2. Video inpainting. Figure 16 presents results obtained with the multiscale
K-SVD for video inpainting and compares these to the results obtained when applying
the single-image K-SVD algorithm. As can be observed, taking into account the
temporal behavior permits us to achieve better results in terms of PSNR and visual
quality. The parameters used when we applied the K-SVD for images on each frame
separately were the same as in the experiments in Figure 14, with J = 60. For the
multiscale K-SVD for the video inpainting algorithm, we used patches and atoms of
size n = 10 × 10 × 5 with N = 2 scales (with five temporal channels). The initial
dictionary is a global one, trained on a large database of videos, with a sparsity factor
L = 20. The parameter η is set to 2.0. J = 30 iterations are used during the processing
of the first multiframe and then only 10. We present 5 out of the 15 processed frames.

7. Conclusion and future directions. In this paper we presented a K-SVD
based algorithm that is able to learn multiscale sparse image representations. Using
a shift-invariant sparsity prior on natural images, the proposed framework achieves
state-of-the-art image restoration results. We have shown that this framework can be
adapted to video processing, exploiting temporal information. We have observed that
our multiscale framework provides noticeable improvements over the original single-
scale approach, especially for highly damaged images (high level of noise or missing
data). All of the experiments reported in this paper can be reproduced with a C++
software, which will be freely available on the authors’ webpage. Our current efforts
are devoted in part to the design of faster algorithms, which can be used with any
number of scales. One direction we are pursuing is to combine the K-SVD with image

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

234 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

Table 4

PSNR results for our color image denoising experiments. Each cell is composed of four parts:
The top-left cell is devoted to [11], the top-right cell to our 2-scale gray image denoising method
applied to each RGB channel independently, the bottom-left cell to the color denoising algorithm
with N = 1 scale, and the bottom-right cell to our algorithm with N = 2 scales. Each time the best
results are in bold.

σ castle mushroom train

5
40.84 38.27 40.20 37.65 39.91 36.52

40.77 40.79 40.26 40.26 40.04 40.03

10
36.61 34.25 35.94 33.46 34.85 31.37

36.51 36.65 35.88 35.92 34.90 34.93

15
34.39 31.95 33.61 31.21 31.95 28.53

34.22 34.37 33.51 33.58 31.98 32.04

20
32.84 30.52 31.99 29.74 29.97 26.79

32.63 32.77 31.86 31.97 29.97 30.01

25
31.68 29.47 30.84 28.69 28.45 26.55

31.45 31.59 30.67 30.75 28.50 28.53

σ horses kangaroo Average

5
40.46 37.17 39.13 35.73 40.11 37.07

40.44 40.45 39.26 39.25 40.15 40.16

10
35.78 32.70 34.29 31.20 35.49 32.60

35.67 35.75 34.31 34.34 35.45 35.52

15
33.18 30.48 31.63 29.05 32.95 30.24

33.11 33.19 31.71 31.75 32.91 32.99

20
31.44 29.13 29.85 27.77 31.22 28.79

31.35 31.47 29.99 30.07 31.16 31.26

25
30.19 28.21 28.65 26.90 29.96 27.96

30.19 30.28 28.82 28.87 29.93 30.00

pyramids. Results along this direction will hopefully be reported soon.
At the more general level, we should ask ourselves how far we are from the per-

formance limits for some image and video enhancement problems, such as image
denoising and demosaicing. Understanding these limits is critical for evaluating the
importance of future efforts in these challenging problems, and this stands today as
a major challenge.

Acknowledgments. We would like to thank the authors of [11, 12] for providing
very efficient and intuitive implementations of the BM3D and CBM3D algorithms.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 235

(a) Original (b) σ = 10 (c) Denoised

(d) Original (e) σ = 25 (f) Denoised

(g) Original (h) σ = 25

(i) Denoised

Fig. 12. Results for color image denoising with two scales. For the castle image, the resulting
PSNR is 36.65dB, for the mushroom 30.78dB, and for the horses 30.25dB. (This is a color figure.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

236 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

Table 5

Parameters used for the color denoising algorithm: (i) N is the number of scales; n is the size
of the patches; (ii) J is the number of learning iterations; (iii) μ is the fraction of patches used
during the training; (iv) η gives a preference to the constant atom during the OMP; (v) γ enforces
the average color of the patches (see [27]); (vi) m is the number of patches processed at the same
time (see section 4); (vii) C is the parameter from (2.2); (viii) the block denoising algorithm has
been applied to

√
Sb ×

√
Sb blocks when

√
Sb was smaller than the size of the input image.

N N = 1 N = 2

σ 5 10 15 20 25 5 10 15 20 25√
n
3

6 6 7 7 8 10 10 12 14 14

J 30 30 30 30 30 30 30 30 30 30

μ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

η 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.5

γ 0.0 1.25 3.0 5.25 5.25 0.0 0.0 0.0 0.0 1.25

m 64 64 64 64 64 4 16 64 64 64

C 1.016 1.016 1.014 1.014 1.012 1.019 1.01 1.004 1.003 1.003
√
Sb 300 300 300 300 300 300 300 300 300 300

(a) s = 0 (b) s = 1

(c) s = 0 (d) s = 1

Fig. 13. Two learned 2-scale color dictionaries. The top one has been trained over a noisy
version of the image castle, with σ = 10, and the initial dictionary was a global one. The bottom
dictionary has been trained on a large set of clean patches from a database of natural images. Since
the atoms can have negative values, the vectors are presented scaled and shifted to the [0, 255] range
per channel. (This is a color figure.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 237

(a) Original (b) Damaged

(c) Restored, N = 1 (d) Restored, N = 2

Fig. 14. Inpainting using N = 2 and n = 16×16 (bottom-right image), or N = 1 and n = 8×8
(bottom-left). J = 100 iterations were performed, producing an adaptive dictionary. During the
learning, 50% of the patches were used. A sparsity factor L = 10 has been used during the learning
process and L = 25 for the final reconstruction. The damaged image was created by removing 75% of
the data from the original image. The initial PSNR is 6.13dB. The resulting PSNR for N = 2 is
33.97dB and 31.75dB for N = 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

238 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

(a) Original (b) Damaged (c) Image Denoising (d) Video Denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Fig. 15. Results obtained with the proposed multiscale K-SVD for video denoising. From left to
right: five frames of an original video, the same frames with Gaussian additive noise (σ = 25), the
results obtained when applying the color image denoising algorithm working on each frame separately
(PSNR: 27.14dB), and the result of the proposed color video denoising multiscale K-SVD (PSNR:
28.28dB). The last row presents a zoomed version of one part of the last frame. (This is a color
figure.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 239

(a) Original (b) Damaged (c) Image Inpainting (d) Video Inpainting

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Fig. 16. Results obtained with the proposed multiscale K-SVD for video inpainting. From left
to right: five frames of a video are shown, the same sequence with 80% of data missing, the results
obtained when applying the image inpainting algorithm to each frame separately (PSNR: 24.38dB),
and the result of the new video inpainting K-SVD (PSNR: 28.49dB). The last row presents a zoomed
version of one part of the last frame. Each time, an adaptive dictionary was used.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

240 JULIEN MAIRAL, GUILLERMO SAPIRO, AND MICHAEL ELAD

REFERENCES

[1] M. Aharon, M. Elad, and A. M. Bruckstein, The k-svd: An algorithm for designing of over-
complete dictionaries for sparse representations, IEEE Trans. Signal Process., 54 (2006),
pp. 4311–4322.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in SIGGRAPH
’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, ACM, New York, 2000, pp. 417–424.

[3] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[4] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new

one, Multiscale Model. Simul., 4 (2005), pp. 490–530.
[5] E. Candes and D. L. Donoho, Recovering edges in ill-posed inverse problems: Optimality of

curvelet frames, Ann. Statist., 30 (2002), pp. 784–842.
[6] E. Candes and D. L. Donoho, New tight frames of curvelets and the problem of approximating

piecewise C2 images with piecewise C2 edges, Comm. Pure Appl. Math., 57 (2004), pp.
219–266.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[8] K.-H. Chung and Y.-H. Chan, Color demosaicing using variance of color differences, IEEE
Trans. Image Process., 15 (2006), pp. 2944–2955.

[9] A. Criminisi, P. Perez, and K. Toyama, Region filling and object removal by exemplar-based
image inpainting, IEEE Trans. Image Process., 13 (2004), pp. 1200–1212.

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising with block-matching
and 3D filtering, in Proc. SPIE Electronic Imaging: Algorithms and Systems V, Vol. 6064,
San Jose, CA, 2006.

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Color image denoising by sparse 3d
collaborative filtering with grouping constraint in luminance-chrominance space, in Pro-
ceedings of the IEEE International Conference on Image Processing (ICIP), San Antonio,
TX, 2007, pp. 313–316.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3d
transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080–
2095.

[13] G. M. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations, Construct.
Approx., 13 (1997), pp. 57–98.

[14] G. M. Davis, S. Mallat, and Z. Zhang, Adaptive time-frequency decompositions, SPIE J.
Opt. Engin., 33 (1994), pp. 2183–2191.

[15] M. Do and M. Vetterli, Contourlets, Beyond Wavelets, Academic Press, New York, 2003.
[16] M. Do and M. Vetterli, Framing pyramids, IEEE Trans. Signal Process., 51 (2003), pp.

2329–2342.
[17] D. Donoho, Wedgelets: Nearly minimax estimation of edges, Ann. Statist., 27 (1998), pp.

859–897.
[18] D. Donoho, M. Elad, and V. Temlyakov, Stable recovery of sparse overcomplete represen-

tations in the presence of noise, IEEE Trans. Inform. Theory, 52 (2006), pp. 6–18.
[19] M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation,

in Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), New York, 2006, pp. 895–900.

[20] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over
learned dictionaries, IEEE Trans. Image Process., 54 (2006), pp. 3736–3745.

[21] W. T. Freeman and E. H. Adelson, The design and the use of steerable filters, IEEE Trans.
Patt. Anal. Mach. Intell., 13 (1991), pp. 891–906.

[22] C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising,
IEEE Trans. Image Process., 15 (2006), pp. 2866–2878.

[23] R. Kimmel, Demosaicing: Image reconstruction from color ccd samples, IEEE Trans. Image
Process., 8 (1999), pp. 1221–1228.

[24] E. Le Pennec and S. Mallat, Bandelet image approximation and compression, Multiscale
Model. Simul., 4 (2005), pp. 992–1039.

[25] X. Li, Demosaicing by successive approximations, IEEE Trans. Image Process., 14 (2005), pp.
267–278.

[26] S. Lyu and E. P. Simoncelli, Statistical modeling of images with fields of Gaussian scale
mixtures, in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt,
and T. Hoffmann, eds., MIT Press, Cambridge, MA, 2007, pp. 945–952.

[27] J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE
Trans. Image Process., 17 (2008), pp. 53–69.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MULTISCALE AND SPARSE REPRESENTATIONS 241

[28] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, New York, 1999.
[29] S. Mallat and E. Le Pennec, Sparse geometric image representation with bandelets, IEEE

Trans. Image Process., 14 (2005), pp. 423–438.
[30] S. Mallat and Z. Zhang, Matching pursuit in a time-frequency dictionary, IEEE Trans.

Signal Process., 41 (1993), pp. 3397–3415.
[31] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecological
statistics, in Proceedings of the 8th International Conference on Computer Vision, Vol. 2,
2001, pp. 416–423.

[32] D. D. Muresan and T. W. Parks, Demosaicing using optimal recovery, IEEE Trans. Image
Process., 14 (2005), pp. 267–278.

[33] B. A. Olshausen, P. Sallee, and M. S. Lewicki, Learning sparse multiscale image represen-
tations, in Advances in Neural Information Processing Systems 15, MIT Press, Cambridge,
MA, 2003, pp. 1327–1334.

[34] K. A. Patwardhan, G. Sapiro, and M. Bertalmio, Video inpainting under constrained
camera motion, IEEE Trans. Image Process., 16 (2007), pp. 545–553.

[35] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, Image denoising using scale
mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 13 (2004), pp.
496–508.

[36] M. Protter and M. Elad, Image sequence denoising via sparse and redundant representa-
tions, IEEE Trans. Image Process., submitted.

[37] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, Efficient learning of sparse represen-
tations with an energy-based model, in Advances in Neural Information Processing Systems
19, B. Schölkopf, J. Platt, and T. Hoffman, eds., MIT Press, Cambridge, MA, 2007, pp.
1137–1144.

[38] S. Roth and M. J. Black, Fields of experts: A framework for learning image priors, in Pro-
ceedings of the IEEE International Conference on Computer Vision and Pattern Recogni-
tion (CVPR), San Diego, CA, 2005, pp. 860–867.

[39] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable multi-scale
transforms, IEEE Trans. Inform. Theory, 38 (1992), pp. 587–607.

[40] N. Srebro and T. Jaakkola, Weighted low-rank approximations, in Proceedings of the 20th
International Conference on Machine Learning (ICML), AAAI Press, Menlo Park, CA,
2003, pp. 720–727.

[41] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform.
Theory, 50 (2004), pp. 2231–2242.

[42] J. A. Tropp, Just relax: Convex programming methods for identifying sparse signals, IEEE
Trans. Inform. Theory, 51 (2006), pp. 1030–1051.

[43] Y. Weiss and W. T. Freeman, What makes a good model of natural images?, in Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
Minneapolis, MN, 2007, pp. 1–8.

[44] Y. Wexler, E. Shechtman, and M. Irani, Space-time completion of video, IEEE Trans. Patt.
Anal. Mach. Intell., 29 (2007), pp. 463–476.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

