
SIAM J. IMAGING SCIENCES c© 2015 Society for Industrial and Applied Mathematics
Vol. 8, No. 3, pp. 2133–2159

Sparsity Based Methods for Overparameterized Variational Problems∗

R. Giryes†, M. Elad‡, and A. M. Bruckstein‡

Abstract. Two complementary approaches have been extensively used in signal and image processing leading
to novel results, the sparse representation methodology and the variational strategy. Recently, a new
sparsity based model has been proposed, the cosparse analysis framework, which may potentially
help in bridging sparse approximation based methods to the traditional total-variation minimization.
Based on this, we introduce a sparsity based framework for solving overparameterized variational
problems. The latter has been used to improve the estimation of optical flow and also for general
denoising of signals and images. However, the recovery of the space varying parameters involved was
not adequately addressed by traditional variational methods. We first demonstrate the efficiency
of the new framework for one dimensional signals in recovering a piecewise linear and polynomial
function. Then, we illustrate how the new technique can be used for denoising and segmentation of
images.

Key words. sparsity, variational methods, total variation, overparameterization, cosparsity, compressed sens-
ing, denoising, line segmentation, image segmentation

AMS subject classifications. 47N10, 35A15, 49N45, 65M20, 65J22, 68U10, 94A12, 65D18

DOI. 10.1137/140998585

1. Introduction. Many successful signal and image processing techniques rely on the fact
that the given signals or images of interest belong to a class described by a certain a priori
known model. Given the model, the signal is processed by estimating the “correct” parameters
of the model. For example, in the sparsity framework the assumption is that the signals belong
to a union of low dimensional subspaces [6, 37, 4, 40]. In the variational strategy, a model
is imposed on the variations of the signal, e.g., its derivatives are required to be smooth
[52, 54, 10, 61].

Though both sparsity based and variational based approaches are widely used for signal
processing and computer vision, they are often viewed as two different methods with little in
common between them. One of the well-known variatonal tools is the total-variation (TV)
regularization, used mainly for denoising and inverse problems. It can be formulated as [54]

min
f̃

∥∥∥g −Mf̃
∥∥∥2
2
+ λ

∥∥∥∇f̃
∥∥∥
1
,(1)

∗Received by the editors December 5, 2014; accepted for publication (in revised form) August 10, 2015; published
electronically September 30, 2015. The research leading to these results has received funding from the European
Research Council under European Unions Seventh Framework Program, ERC grant agreement 320649. This research
was partially supported by AFOSR, ARO, NSF, ONR, and NGA.

http://www.siam.org/journals/siims/8-3/99858.html
†Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (raja.giryes@duke.

edu).
‡Department of Computer Science, The Technion - Israel Institute of Technology, Haifa, 32000, Israel (elad@cs.

technion.ac.il, freddy@cs.technion.ac.il).

2133

http://www.siam.org/journals/siims/8-3/99858.html
mailto:raja.giryes@duke.edu
mailto:raja.giryes@duke.edu
mailto:elad@cs.technion.ac.il
mailto:elad@cs.technion.ac.il
mailto:freddy@cs.technion.ac.il

2134 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

where g = Mf + e ∈ R
m are the given noisy measurements, M ∈ R

m×d is a measurement
matrix, e ∈ R

m is an additive (typically white Gaussian) noise, λ is a regularization parameter,
f ∈ R

d is the original unknown signal to be recovered, and ∇f is its gradients vector.
The anisotropic version of (1), which we will use in this work, is

min
f̃

∥∥∥g −Mf̃
∥∥∥2
2
+ λ

∥∥∥ΩDIFf̃
∥∥∥
1
,(2)

where ΩDIF is the finite-difference operator that returns the derivatives of the signal. In the
one dimensional (1D) case it applies the filter [1,−1], i.e.,

ΩDIF = Ω1D-DIF =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0
0 1 −1 0
...

. . .
. . .

. . .
. . .

...

0 0
. . . 1 −1 0

0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.(3)

For images it returns the horizontal and vertical derivatives using the filters [1,−1] and
[1,−1]T , respectively. Note that for 1D signals there is no difference between (1) and (2)
as the gradient equals the derivative. However, in the two dimensional (2D) case (1) considers
the sum of gradients (square root of the squared sum of the directional derivatives), while (2)
considers the absolute sum of the directional derivatives, approximated by finite differences.

Recently, a very interesting connection has been drawn between the TV minimization
problem and the sparsity model. It has been shown that (2) can be viewed as an �1-relaxation
technique for approximating signals that are sparse in their derivatives domain, i.e., after
applying the operator ΩDIF on them [48, 46, 33]. Such signals are said to be cosparse under
the operator ΩDIF in the analysis (co)sparsity model [46].

Notice that the TV regularization is only one example from the variational framework.
Another recent technique, which is the focus of this paper, is the overparameterization idea,
which represents the signal as a combination of known functions weighted by space-variant
parameters of the model [49, 50].

Let us introduce this overparameterized model via an example. If a 1D signal f is known
to be piecewise linear, its ith element can be written as f(i) = a(i)+b(i)i, where a(i) and b(i)
are the local coefficients describing the local line curve. As such, the vectors a and b should
be piecewise constant, with discontinuities in the same locations. Each constant interval in a
and b corresponds to one linear segment in f . When put in matrix-vector notation, f can be
written alternatively as

f = a+ Zb,(4)

where Z ∈ R
d×d is a diagonal matrix with the values 1, 2, . . . , d on its main diagonal. For

images this parameterization would similarly be f(i, j) = a(i, j) + b1(i, j)i + b2(i, j)j.
This strategy is referred to as ”overparameterization” because the number of representa-

tion parameters is larger than the signal size. In the above 1D example, while the original
signal contains d unknown values, the recovery problem that seeks a and b has twice as many

SPARSITY FOR VARIATIONAL PROBLEMS 2135

variables. Clearly, there are many other parameterization options for signals, beyond the lin-
ear one. Such parameterizations have been shown to improve the denoising performance of
the solution of the problem posed in (1) in some cases [49], and to provide very high quality
results for optical flow estimation [50, 53].

1.1. Our contribution. The true force behind overparameterization is that while it uses
more variables than needed for representing the signals, these are often more naturally suited
to describe its structure. For example, if a signal is piecewise linear then we may impose a
constraint on the overparameterization coefficients a and b to be piecewise constant.

Note that piecewise constant signals are sparse under the ΩDIF operator. Therefore, for
each of the coefficients we can use the tools developed in the analysis sparsity model [33,
34, 28, 51, 9]. However, in our case, a and b are jointly sparse, i.e., their change points are
collocated and therefore an extension is necessary.

Constraints on the structure in the sparsity pattern of a representation have already been
analyzed in the literature. They are commonly referred to as joint sparsity models, and those
are found in the literature, both in the context of handling groups of signals [15, 60, 59, 63, 42,
26], or when considering blocks of nonzeros in a single representation vector [64, 24, 57, 23, 3].
We use these tools to extend the existing analysis techniques to handle the block sparsity in
our overparameterized scheme.

In this paper we introduce a general sparsity based framework for solving overparame-
terized variational problems. As the structure of these problems enables segmentation while
recovering the signal, we provide an elegant way for recovering a signal from its deteriorated
measurements by using an �0 approach, which is accompanied by theoretical guarantees. We
demonstrate the efficiency of the new framework for 1D functions in recovering piecewise poly-
nomial signals. Then we shift our view to images and demonstrate how the new approach
can be used for denoising and segmentation.

1.2. Organization. This paper is organized as follows: In section 2 we present the overpa-
rameterized variational model with more details. In section 3 we describe briefly the synthesis
and analysis sparsity models. In sections 4 and 5 we introduce a new framework for solving
overparameterized variational problems using sparsity. Section 4 proposes a recovery strategy
for the 1D polynomial case based on the SSCoSaMP technique (defined in section 4) with
optimal projections [17, 35, 36]. We provide stable recovery guarantees for this algorithm for
the case of an additive adversarial noise and denoising guarantees for the case of a zero-mean
white Gaussian noise. In section 5 we extend our scheme beyond the 1D case to higher dimen-
sional polynomial functions such as images. We employ an extension of the GAPN algorithm
[45] for block sparsity for this task. In section 6 we present experiments for linear overpa-
rameterization of images and 1D signals. We demonstrate how the proposed method can be
used for image denoising and segmentation. Section 7 concludes our work and proposes future
directions of research.

2. The overparameterized variational framework. Considering again the linear relation-
ship between the measurements and the unknown signal,

g = Mf + e,(5)

note that without a prior knowledge on f we cannot recover it from g if m < d or e �= 0.

2136 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

In the variational framework, a regularization is imposed on the variations of the signal f .
One popular strategy for recovering the signal in this framework is by solving the following
minimization problem,

min
f̃

∥∥∥g −Mf̃
∥∥∥2
2
+ λ

∥∥∥A(f̃)
∥∥∥
p
,(6)

where λ is the regularization weight and p ≥ 1 is the type of norm used with the regularization
operator A, which is typically a local operator. For example, for p = 1 and A = ∇ we get the
TV minimization (2). Another example for a regularization operator is the Laplace operator
A = ∇2. Other types of regularization operators and variational formulations can be found
in [43, 11, 62, 2].

Recently, the overparameterized variational framework has been introduced as an exten-
sion to the traditional variational methodology [49, 50, 53, 56]. Instead of applying a regular-
ization on the signal itself, it is applied on the coefficients of the signal under a global parame-
terization of the space. Each element of the signal can be modeled as f(i) =

∑n
j=1 bj(i)xj(i),

where the {bj}nj=1 are the coefficients vectors and the {xj}nj=1 contain the parameterization
basis functions for the space.

Denoting by Xi � diag(xi) the diagonal matrix that has the vector xi on its diagonal,
we can rewrite the above as f =

∑n
j=1Xjbj . With this notation, the overparameterized

minimization problem becomes

min
b̃i,1≤i≤n

∥∥∥∥∥g −M
n∑

i=1

Xib̃i

∥∥∥∥∥
2

2

+
n∑

i=1

λi

∥∥∥Ai(b̃i)
∥∥∥
pi
,(7)

where each coefficient bi is regularized separately by the operator Ai (which can be the same
one for all the coefficients).1

Returning to the example of a linear overparameterization, we have that f = a+Zb, where
in this case X1 = I (the identity matrix) and X2 = Z = diag(1, . . . , d), a diagonal matrix with
1, . . . , d on its diagonal. If f is a piecewise linear function then the coefficient vectors a and b
should be piecewise constant, and therefore it would be natural to regularize these coefficients
with the gradient operator. This leads to the following minimization problem:

min
ã,b̃

∥∥∥g −M
(
ã+ Zb̃

)∥∥∥2
2
+ λ1 ‖∇ã‖1 + λ2

∥∥∥∇b̃
∥∥∥
1
,(8)

which is a special case of (7). The two main advantages of using the overparameterized
formulation are these: (i) the new unknowns have a simpler form (e.g., a piecewise linear
signal is treated by piecewise constant unknowns), and thus are easier to recover, and (ii) this
formulation leads to recovering the parameters of the signal along with the signal itself.

The overparameterization idea, as introduced in [49, 50, 53, 56], builds upon the vast work
in signal processing that refers to variational methods. As such, there are no known guarantees
for the quality of the recovery of the signal when using the formulation posed in (8) or its
variants. Moreover, it has been shown in [56] that even for the case of M = I (and, obviously,

1We note that it is possible to have more than one regularization for each coefficient, as practiced in [56].

SPARSITY FOR VARIATIONAL PROBLEMS 2137

e �= 0), a poor recovery is achieved in recovering f and its parameterization coefficients. Note
that the same happens even if more sophisticated regularizations are combined and applied
on a, b, and eventually on f [56].

This leads us to look for another strategy to approach the problem of recovering a piecewise
linear function from its deteriorated measurement g. Before describing our new scheme, we
introduce in the next section the sparsity model that will aid us in developing this alternative
strategy.

3. The synthesis and analysis sparsity models. A popular prior for recovering a signal
f from its distorted measurements (as posed in (5)) is the sparsity model [6, 37]. The idea
behind it is that if we know a priori that f resides in a union of low dimensional subspaces,
which do not intersect trivially with the null space of M, then we can estimate f stably by
selecting the signal that belongs to this union of subspaces and is the closest to g [4, 40].

In the classical sparsity model, the signal f is assumed to have a sparse representation α
under a given dictionary D, i.e., f = Dα, ‖α‖0 ≤ k, where ‖·‖0 is the �0 pseudonorm that
counts the number of nonzero entries in a vector, and k is the sparsity of the signal. Note that
each low dimensional subspace in the standard sparsity model, known also as the synthesis
model, is spanned by a collection of k columns from D. With this model we can recover f by
solving

min
α

‖g −MDα‖22s.t.‖α‖0 ≤ k(9)

if k is known, or

min
α

‖α‖0s.t.‖g −MDα‖22 ≤ ‖e‖22(10)

if we have information about the energy of the noise e. Obviously, once we get α, the
desired recovered signal is simply Dα. As both of these minimization problems are NP-
hard [19], many approximation techniques have been proposed to approximate their solution,
accompanied with recovery guarantees that depend on the properties of the matrices M and
D. These include �1-relaxation [22, 14, 21], known also as LASSO [58], matching pursuit
[41], orthogonal matching pursuit (OMP) [13, 18], compressive sampling matching pursuit
(CoSaMP) [47], subspace pursuit (SP) [16], iterative hard thresholding (IHT) [5] and hard
thresholding pursuit (HTP) [27].

Another framework for modeling a union of low dimensional subspaces is the analysis one
[46, 22]. This model considers the behavior of Ωf , the signal after applying a given operator
Ω on it, and assumes that this vector is sparse. Note that here the zeros are those that
characterize the subspace in which f resides, as each zero in Ωf corresponds to a row in Ω to
which f is orthogonal. Therefore, f resides in a subspace orthogonal to the one spanned by
these rows. We say that f is cosparse under Ω with a cosupport Λ if ΩΛf = 0, where ΩΛ is a
submatrix of Ω with the rows corresponding to the set Λ.

The analysis variants of (9) and (10) for estimating f are

min
f̃

∥∥∥g −Mf̃
∥∥∥2
2
s.t.

∥∥∥Ωf̃
∥∥∥
0
≤ k,(11)

2138 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

where k is the number of nonzeros in Ωf , and

min
f̃

∥∥∥Ωf̃
∥∥∥
0
s.t.

∥∥∥g −Mf̃
∥∥∥2
2
≤ ‖e‖22 .(12)

As in the synthesis case, these minimization problems are also NP-hard [46] and approxi-
mation techniques have been proposed including greedy analysis pursuit (GAP) [46], GAP
noise (GAPN) [45], analysis CoSAMP (ACoSaMP), analysis SP, analysis IHT and analysis
HTP [33].

4. Overparameterization via the analysis sparsity model. With the sparsity models now
defined, we revisit the overparameterization variational problem. If we know that our signal f
is piecewise linear, then it is clear that the coefficients parameters should be piecewise constant
with the same discontinuity locations, when linear overparameterization is used. We denote
by k the number of these discontinuity locations.

As a reminder, we rewrite f = [I,Z]
[
aT ,bT

]T
. Note that a and b are jointly sparse under

ΩDIF, i.e, ΩDIFa and ΩDIFb have the same nonzero locations. With this observation we can
extend the analysis minimization problem (11) to support the structured sparsity in the vector[
aT ,bT

]T
, leading to the following minimization problem:

min
a,b

∥∥∥∥g −M [I,Z]

[
a
b

]∥∥∥∥
2

2

(13)

s.t. ‖|ΩDIFa|+ |ΩDIFb|‖0 ≤ k,

where |ΩDIFa| denotes applying elementwise the absolute value on the entries of ΩDIFa.
Note that we can have a similar formulation for this problem also in the synthesis frame-

work using the Heaviside dictionary

DHS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1

0 1 . . .
. . . 1

... 0
. . .

. . .
...

...
. . .

. . . 1 1
0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(14)

whose atoms are step functions of different length. We use the known observation that every
1D signal with k change points can be sparsely represented using k + 1 atoms from DHS (k
columns for representing the change points plus one for the DC component). One way to
observe that is by the fact that ΩDIFD̃HS = I, where D̃HS is a submatrix of DHS obtained
by removing the last column of DHS (the DC component). Therefore, one may recover the
coefficient parameters a and b by their sparse representations α and β, solving

min
α,β

∥∥∥∥g −M [I,Z]

[
DHS 0
0 DHS

] [
α
β

]∥∥∥∥
2

2

(15)

s.t. ‖|α|+ |β|‖0 ≤ k,

SPARSITY FOR VARIATIONAL PROBLEMS 2139

where a = DHSα and b = DHSβ. This minimization problem can be approximated using
block-sparsity techniques such as the group-LASSO estimator [64], the mixed-�2/�1 relaxation
(extension of the �1 relaxation) [24, 57], the block OMP (BOMP) algorithm [23], or the
extensions of CoSaMP and IHT for structured sparsity [3]. The joint sparsity framework can
also be used with (15) [15, 60, 59, 63, 42, 26].

The problem with the above synthesis techniques is twofold: (i) no recovery guarantees
exist for this formulation with the dictionary DHS ; (ii) It is hard to generalize the model in
(9) to higher order signals, e.g., images.

The reason that no theoretical guarantees are provided for the DHS dictionary is the high
correlation between its columns. These create high ambiguity, causing the classical synthesis
techniques to fail in recovering the representations α and β. This problem has been addressed
in several contributions that have treated the signal directly and not its representation [17,
35, 36, 30, 31, 32].

We introduce an algorithm that approximates the solutions of both (9) and (11) and has
theoretical reconstruction performance guarantees for 1D functions f with matrices M that
are near isometric for piecewise polynomial functions. In the next section we shall present
another algorithm that does not have such guarantees but is generalizable to higher order
functions.

Though till now we have restricted our discussion only to piecewise linear functions, we
turn now to look at the more general case of piecewise 1D polynomial functions of degree n.
Note that this method approximates the following minimization problem, which is a general-
ization of (13) to any polynomial of degree n,

min
b0,b1,...,bn

∥∥∥∥∥∥∥∥∥
g −M

[
I,Z,Z2, . . . ,Zn

]
⎡
⎢⎢⎢⎣

b0

b1
...
bn

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥

2

2

(16)

s.t.

∥∥∥∥∥
n∑

i=0

|ΩDIFbi|
∥∥∥∥∥
0

≤ k,

where |ΩDIFbi| is an elementwise operation that calculates the absolute value of each entry in
ΩDIFbi.

We employ the signal space CoSaMP (SSCoSaMP) strategy2 [17, 35] to approximate the
solution of (16). This algorithm assumes the existence of a projection that for a given signal
finds its closest signal (in the �2-norm sense) that belongs to the model,3 where in our case the
model consists of piecewise polynomial functions with k jump points. This algorithm, along
with the projection required, are presented in Appendix A.

4.1. Recovery guarantees for piecewise polynomial functions. To provide theoretical
guarantees for the recovery by SSCoSaMP, we employ two theorems from [35] and [36]. These

2In a very similar way we could have used ACoSaMP [33, 28].
3Note that in [17, 35] the projection might be allowed to be near optimal in the sense that the projection

error is close to the optimal error up to a multiplicative constant.

2140 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

lead to reconstruction error bounds for SSCoSaMP that guarantee stable recovery if the noise
is adversarial, and an effective denoising effect if it is zero-mean white Gaussian.

Both theorems rely on the following property of the measurement matrix M, which is a
special case of the D-RIP [9] and Ω-RIP [33].

Definition 4.1. A matrix M has a polynomial restricted isometry property (RIP) of order
n (Pn-RIP) with a constant δk if for any piecewise polynomial function f of order n with k
jumps we have

(17) (1− δk) ‖f‖22 ≤ ‖Mf‖22 ≤ (1 + δk) ‖f‖22 .

Having the Pn-RIP definition we turn to present the first theorem, which treats the ad-
versarial noise case.

Theorem 4.2 (based on Corollary 3.2 in [35]). Let f be a piecewise polynomial function of
order n, e be an adversarial bounded noise, and M satisfy the Pn-RIP (17) with a constant
δ4k < 0.046. Then after a finite number of iterations, SSCoSaMP yields∥∥∥f̂ − f

∥∥∥
2
≤ C ‖e‖2 ,(18)

where C > 2 is a constant depending on δ4k.
Note that the above theorem implies that we may compressively sense piecewise polyno-

mial functions and achieve a perfect recovery in the noiseless case e = 0. Note also that if M
is a subgaussian random matrix then it is sufficient to use only m = O(k(n + log(d)) mea-
surements [4, 33]. It is worth mentioning that Corollary 3.2 in [35] provides stable recovery
guarantees for general sparse vectors under a given dictionary D with the assumption that
there exists a near-optimal projection algorithm that projects any vector to its closest sparse
vector under the same dictionary. We can deduce Theorem 4.2 from Corollary 3.2 in [35] due
to the optimal projection algorithm proposed in Section A.1.

Though the above theorem is important for compressed sensing, it does not guarantee
noise reduction, even for the case M = I, as C > 2. The reason for this is that the noise
here is adversarial, leading to a worst-case bound. By introducing a random distribution for
the noise, one may get better reconstruction guarantees. The following theorem assumes that
the noise is randomly Gaussian distributed, this way enabling it to provide effective denoising
guarantees.

Theorem 4.3 (based on Theorem 1.7 in [36]). Assume the conditions of Theorem 4.2 such
that e is a random zero-mean white Gaussian noise with a variance σ2. Then after a finite
number of iterations, SSCoSaMP yields∥∥∥f̂ − f

∥∥∥
2
≤(19)

C
√
(1 + δ3k)3k

(
1 +

√
2(1 + β) log(nd)

)
σ

with probability exceeding 1− 2
(3k)!(nd)

−β .
The bound in the theorem can be given on the expected error instead of being given only

with high probability using the proof technique in [29]. We remark that if we were given an

SPARSITY FOR VARIATIONAL PROBLEMS 2141

oracle that has foreknowledge of the locations of the jumps in the parameterization, the error
we would get would be O(

√
kσ). As the log(nd) factor in our bound is inevitable [7], we may

conclude that our guarantee is optimal up to a constant factor. Note that Theorem 1.7 in [35]
provides near-oracle performance guarantees for block-sparse vectors under a given dictionary
D with the assumption that there exists a near-optimal projection algorithm that projects
any vector to its closest sparse vector under the same dictionary. We can apply the result
of Theorem 1.7 in [35], resulting with Theorem 4.3, due to the optimal projection algorithm
proposed in Section A.1.

5. Sparsity based overparameterized variational algorithm for high dimensional func-
tions. We now turn to generalize the model in (13) to support other overparameterization
forms, including higher dimensional functions such as images. We consider the case where
an upper bound for the noise energy is given and not the sparsity k, as is common in many
applications. Notice that for the synthesis model, such a generalization is not trivial because
while it is easy to extend the ΩDIF operator to high dimensions, it is not clear how to do this
for the Heaviside dictionary.

Therefore we consider an overparameterized version of (12), where the noise energy is
known and the analysis model is used. Let X1, . . .Xn be matrices of the space variables
and b1 . . .bn their coefficients parameters. For example, in a 2D (image) case of piecewise
linear constants, X1 will be the identity matrix, X2 will be a diagonal matrix with the values
[1, 2, . . . , d, 1, 2, . . . , d, . . . 1, 2, . . . , d] on its main diagonal, and X3 will similarly be a diagonal
matrix with [1, 1, . . . , 1, 2, 2, . . . , 2, . . . d, d, . . . , d] on its main diagonal. Assuming that all the
coefficient parameters are jointly sparse under a general operator Ω, we may recover these
coefficients by solving

[
b̂T
1 , . . . , b̂

T
n

]T
= min

b̃1,...,b̃n

∥∥∥∥∥
n∑

i=1

∣∣∣Ωb̃i

∣∣∣
∥∥∥∥∥
0

(20)

s.t.

∥∥∥∥∥∥∥
g −M [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ ‖e‖2 .

Having an estimate for all these coefficients, our approximation for the original signal f is

f̂ = [X1, . . . ,Xn]
[
b̂T
1 , . . . , b̂

T
n

]T
.

As the minimization problem in (20) is NP-hard we suggest solving it by a generalization
of the GAPN algorithm [45]—the block GAPN (BGAPN). We introduce this extension in
Appendix B.

This algorithm aims at finding in a greedy way the rows of Ω that are orthogonal to the
space variables b1 . . .bn. Notice that once we find the indices of these rows, the set Λ that
satisfies ΩΛbi = 0 for i = 1 . . . n (ΩΛ is the submatrix of Ω with the rows corresponding to

2142 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

the set Λ), we may approximate b1 . . .bn by solving

[
b̂T
1 , . . . , b̂

T
n

]T
= min

b̃1,...,b̃n

n∑
i=1

∥∥∥ΩΛb̃i

∥∥∥2
2

(21)

s.t.

∥∥∥∥∥∥∥
g −M [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ ‖e‖2 .

Therefore, BGAPN approximates b1 . . .bn by finding Λ first. It starts with a Λ that includes
all the rows of Ω and then gradually removes elements from it by solving the problem posed
in (21) at each iteration and then finding the row in Ω that has the largest correlation with

the current temporal solution
[
b̂T
1 , . . . , b̂

T
n

]T
.

Note that there are no known recovery guarantees for BGAPN of the form we have had
for SSCoSaMP before. Therefore, we present its efficiency in several experiments in the next
section. As explained in Appendix B, the advantages of BGAPN over SSCoSaMP, despite the
lack of theoretical guarantees, are that (i) it does not need foreknowledge of k and (ii) it is
easier to use with higher dimensional functions.

Before we move to the next section we note that one of the advantages of the above
formulation and the BGAPN algorithm is the relative ease of adding to it new constraints. For
example, we may encounter piecewise polynomial functions that are also continuous. However,
we do not have such a continuity constraint in the current formulation. As we shall see in
the next section, the absence of such a constraint allows jumps in the discontinuity points
between the polynomial segments and therefore it is important to add it to the algorithm to
get a better reconstruction.

One possibility for solving this problem is to add a continuity constraint on the jump points
of the signal. In Appendix B we present also a modified version of the BGAPN algorithm that
imposes such a continuity constraint, and in the next section we shall see how this handles
the problem. Note that this is only one example of a constraint that one may add to the
BGAPN technique. For example, in images one may add a smoothness constraint on the
edges’ directions.

6. Experiments. For demonstrating the efficiency of the proposed method we perform
several tests. We start with the 1D case, testing our polynomial fitting approach with the
continuity constraint and without it for continuous piecewise polynomials of first and second
degrees. We compare these results to the optimal polynomial approximation scheme presented
in section 4 and to the variational approach in [56]. We continue with a compressed sensing
experiment for discontinuous piecewise polynomials and compare BGAPN with SSCoSaMP.
Then we perform some tests on images using BGAPN. We start by denoising cartoon images
using the piecewise linear model. We compare our outcome with the one of TV denoising [54]
and show that our result does not suffer from a staircasing effect [55]. We compare also to
a TV denoising version with overparameterization [49]. Then we show how our framework
may be used for image segmentation, drawing a connection to the Mumford–Shah functional
[44, 1]. We compare our results with the ones obtained by the popular graph-cuts based
segmentation [25].

SPARSITY FOR VARIATIONAL PROBLEMS 2143

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Noisy function σ = 0.1

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

original

BGAPN Recovery

BGAPN Continuous Recovery

(b) Function recovery for σ = 0.1

0 50 100 150 200 250 300
−10

−5

0

5

10

a Estimate

b Estimate

0 50 100 150 200 250 300
−10

−5

0

5

10

a true

b true

(c) Coefficients parameters recovery
for σ = 0.1

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

(d) Noisy function σ = 0.25

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

original

BGAPN Recovery

BGAPN Continuous Recovery

(e) Function recovery for σ = 0.25

0 50 100 150 200 250 300
−10

−5

0

5

10

a Estimate

b Estimate

0 50 100 150 200 250 300
−10

−5

0

5

10

a true

b true

(f) Coefficients parameters recovery
for σ = 0.25

Figure 1. Recovery of a piecewise linear function using the BGAPN algorithm with and without a constraint
on the continuity.

6.1. Continuous piecewise polynomial functions denoising. In order to check the perfor-
mance of the polynomial fitting, we generate random continuous piecewise linear and second
order polynomial functions with 300 samples, 6 jumps, and a dynamic range [−1, 1]. Then we
contaminate the signal with a white Gaussian noise with a standard deviation from the set
{0.05, 0.1, 0.15, . . . , 0.5}.

We compare the recovery result of BGAPN with and without the continuity constraint
with the one of the optimal approximation.4 Figures 1 and 2 present BGAPN reconstruction
results for the linear and second order polynomial cases, respectively, for two different noise
levels. It can be observed that the addition of the continuity constraint is essential for the
correctness of the recovery. Indeed, without it we get jumps between the segments. Note
also that the number of jumps in our recovery may be different than the one of the original
signal as BGAPN does not have preliminary information about it. However, it still manages
to recover the parameterization in a good way, especially in the lower noise case.

The possibility of providing a parametric representation is one of the advantages of our
method. Indeed, one may achieve good denoising results without using the linear model
in terms of MSE using methods such as free-knot spline [39]. However, the approximated

4We have done the same experiment with the BOMP algorithm [23], adopting the synthesis framework,
with and without the continuity constraint, and observed that it performs very similarly to BGAPN.

2144 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Noisy function σ = 0.1

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

original

BGAPN Recovery

BGAPN Continuous Recovery

(b) Function recovery for σ = 0.1

0 50 100 150 200 250 300
−10

−5

0

5

10

a Estimate

b Estimate

c Estimate

0 50 100 150 200 250 300
−10

−5

0

5

10

a true

b true

c true

(c) Coefficients parameters recovery
for σ = 0.1

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

(d) Noisy function σ = 0.25

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

original

BGAPN Recovery

BGAPN Continuous Recovery

(e) Function recovery for σ = 0.25

0 50 100 150 200 250 300
−10

−5

0

5

10

a Estimate

b Estimate

c Estimate

0 50 100 150 200 250 300
−10

−5

0

5

10

a true

b true

c true

(f) Coefficients parameters recovery
for σ = 0.25

Figure 2. Recovery of a piecewise second order polynomial function using the BGAPN algorithm with and
without a constraint on the continuity.

function is not guaranteed to be piecewise linear and therefore learning the change points
from it is suboptimal. See [56] and the references therein for more details.

To evaluate our method with respect to its MSE we compare it with the optimal approx-
imation for a piecewise polynomial function presented in Appendix A.1. Note that the target
signals are continuous while this algorithm does not use this assumption. Therefore, we add
the continuity constraint to this method as postprocessing (unlike BGAPN that merges this
into its steps). We take the changing points it has recovered and project the noisy measure-
ment g to its closest continuous piecewise polynomial function with the same discontinuities.

Figure 3 presents the recovery performance of BGAPN and the projection algorithm with
and without the continuous constraint. Without the constraint, it can be observed that
BGAPN achieves better recovery performance. This is due to the fact that it is not restricted
to the number of change points in the initial signal and therefore it can use more points and
thus adapt itself better to the signal, achieving lower MSE. However, after adding the con-
straint in the piecewise linear case the optimal projection achieves a better recovery error.
The reason is that, as the optimal projection uses the exact number of points, it finds the
changing locations more accurately. Note though that in the case of second order polyno-
mial functions, BGAPN gets better recovery. This happens because this program uses the
continuity constraint also within its iterations and not only at the final step, as is the case

SPARSITY FOR VARIATIONAL PROBLEMS 2145

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18

20

σ

M
ea

n
S

qu
ar

ed
 E

rr
or

BGAPN
BGAPN Continuous
Optimal Projection
Optimal Continuous
TVOPNL

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18

20

σ

M
ea

n
S

qu
ar

ed
 E

rr
or

BGAPN
BGAPN Continuous
Optimal Projection
Optimal Continuous
TVOPNL

Figure 3. Mean squared error (MSE) of the recovered piecewise linear functions (left) and piecewise second
order polynomial functions (right) as a function of the noise variance σ for the methods BGAPN with and
without the continuity constraint and the optimal approximation with and without continuity postprocessing. As
a reference we compare this to the TVOPNL approach introduced in [56].

with the projection algorithm. As the second order polynomial case is more complex than
the piecewise linear one, the impact of the usage of the continuity prior is higher and more
significant than the information on the number of change points.

We also compare these results to the nonlocal overparameterized TV algorithm (TVOPNL)
in [56],5 which was shown to be better for the task of line segmentation when compared with
several alternatives including the ones reported in [49] and [50]. Clearly, our proposed scheme
achieves better recovery performance than TVOPNL, demonstrating the supremacy of our
line segmentation strategy.

6.2. Compressed sensing of piecewise polynomial functions. We perform also a com-
pressed sensing experiment in which we compare the performance of SSCoSAMP, with the
optimal projection, and BGAPN for recovering a second order polynomial function with 6
jumps from a small set of linear measurements. Each entry in the measurement matrix M is
selected from an independently and identically distributed normal distribution and then all
columns are normalized to have a unit norm. The polynomial functions are selected as in the
previous experiment but with two differences: (i) we omit the continuity constraint and (ii)
we normalize the signals to be with a unit norm.

Figure 4 presents the recovery rate (noiseless case σ = 0) of each program as a function of
the number of measurementsm. Note that for a very small or large number of samples BGAPN
behaves better. However, in the middle range SSCoSaMP achieves a better reconstruction
rate. Nonetheless, we may say that their performance is more or less the same.

6.3. Cartoon image denoising. We turn to evaluating the performance of our approach
on images. A piecewise smooth model is considered to be a good model for images, and
especially to the ones with no texture, i.e., cartoon images [8, 20]. Therefore, we use a

5Code provided by the authors.

2146 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Rate: m/d

R
ec

ov
er

y
R

at
e

BGAPN
SSCoSaMP

Figure 4. Recovery rate of piecewise second order polynomial functions as a function of the sampling rate
m/d for the methods BGAPN and SSCoSaMP.

linear overparameterization of the 2D plane and employ the 2D difference operator ΩDIF that
calculates the horizontal and vertical discrete derivatives of an image by applying the filters
[1,−1] and [1,−1]T to it. In this case, the problem in (20) turns out to be (notice that M = I)

[
b̂T
0 , b̂

T
h , b̂

T
v

]T
=(22)

min
b̃0,b̃h,b̃v

∥∥∥∥
∣∣∣ΩDIFb̃0

∣∣∣2 + ∣∣∣ΩDIFb̃h

∣∣∣2 + ∣∣∣ΩDIFb̃v

∣∣∣2
∥∥∥∥
0

s.t.

∥∥∥∥∥∥g− [X0,Xh,Xv]

⎡
⎣ b̃0

b̃h

b̃v

⎤
⎦
∥∥∥∥∥∥
2

≤ ‖e‖2 ,

where X0, Xh,Xv are the matrices that contain the DC, the horizontal, and the vertical
parameterizations, respectively, and b̂0, b̂h, b̂v are their corresponding space variables.

We apply this scheme for denoising two cartoon images, swoosh and sign. We compare our
results with the ones of TV denoising [54]. Figures 5 and 6 present the recovery of swoosh and
sign from their noisy version contaminated with an additive white Gaussian noise with σ = 20.
Note that we achieve better recovery results than TV and do not suffer from its staircasing
effect. We have tuned the parameters of TV separately for each image to optimize its output
quality, while we have used the same setup for our method in all the denoising experiments.
To get a good quality with BGAPN, we run the algorithm several times with different sets
of parameters (which are the same for all images) and then provide as an output the average
image of all the runs. Notice that using this technique with TV degrades its results.

To test whether our better denoising is just a result of using overparameterization or an
outcome of our new framework, we compare it also to TV with linear overparameterization
[49].6 Notice that while plugging overparameterization directly into TV improves the results
in some cases [49], this is not the case with the images here. Therefore, we see that our

6Code provided by the authors.

SPARSITY FOR VARIATIONAL PROBLEMS 2147

(a) Original image (b) Noisy image σ = 20 (c) BGAPN with ΩDIF. PSNR =
40.09 dB

(d) TV recovery. PSNR = 38.95 dB (e) TV OP recovery. PSNR =
37.41 dB

Figure 5. Denoising of swoosh using the BGAPN algorithm with and without diagonal derivatives. Notice
that we do not have the staircasing effect that appears in the TV reconstruction. OP stands for overparameter-
ized.

new framework that links sparsity with overparameterization has an advantage over the old
approach that still acts within the variational scheme.

We could use other forms of overparameterization such as cubical instead of planar or add
other directions of the derivatives in addition to the horizontal and vertical ones. For example,
one may apply our scheme using an operator that also calculates the diagonal derivatives

using the filters [
1 0
0 −1] and [

0 1
−1 0]. Such choices may lead to an improvement in different

scenarios. Future work should focus on learning the overparameterizations and the types of
derivatives that should be used for denoising and for other tasks. We believe that such a study
has the potential to lead to state-of-the-art results.

6.4. Image segmentation. As a motivation for the task of segmentation we present the
denoising of an image with a texture. We continue using the model in (22) and consider the
house image as an example. Figure 7 demonstrates the denoising result we get for this image.
Note that here as well we do not suffer from the staircasing effect that appears in the TV

2148 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

(a) Original image (b) Noisy image σ = 20 (c) BGAPN with ΩDIF. PSNR =
34.02 dB

(d) TV recovery. PSNR = 33.69 dB (e) TV OP recovery. PSNR =
31.83 dB

Figure 6. Denoising of sign using the BGAPN algorithm. The results of TV and OP-TV are presented as
a reference. OP stands for overparameterized.

recovery. However, due to the nature of our model we lose the texture and therefore achieve
an inferior PSNR compared to the TV denoising.7

Though the removal of texture is not favorable for the task of denoising, it makes the
recovery of salient edges in the original image easier. In Figure 8 we present the gradient
map of our recovered image and the one of the original image. It can be seen that while the
gradients of the original image also capture the texture changes, our method finds only the
main edges.8 This motivates us to use our scheme for segmentation.

7The lower PSNR we get with our method is because our model is linear and therefore is less capable of
adapting itself to the texture. By using a cubic overparameterization we get PSNR which is equal to the one
of TV. Note also that for larger noise magnitudes the recovery performance of our algorithm in terms of PSNR
becomes better than TV also with the linear model, as in these conditions, we tend to lose the texture anyway.

8We have tested our approach also in the presence of a blur operator. The edges in this case are preserved
as well.

SPARSITY FOR VARIATIONAL PROBLEMS 2149

(a) Original image (b) Noisy image σ = 20 (c) BGAPN with ΩDIF. PSNR =
30.77 dB

(d) TV recovery. PSNR = 31.44 dB (e) TV OP recovery. PSNR =
30.6 dB

Figure 7. Denoising of house using the BGAPN algorithm. Notice that we do not have the staircasing
effect that appears in the TV reconstruction. Because our model is linear we do not recover the texture and
thus we get slightly inferior results compared to TV with respect to PSNR. Note that if we use a cubic overpa-
rameterization with BGAPN instead of linear we get PSNR (= 31.81 dB) better than that of TV. OP stands
for overparameterized.

Since our scheme divides the image into piecewise linear regions, we can view our strategy
as an approach that minimizes the Mumford–Shah functional [44, 1]. On the other hand, if
the image has only two regions, our segmentation result can be viewed as a solution of the
Chan–Vese functional with the difference that we model each region by a polynomial function
instead of approximating it by a constant [12].

We present our segmentation results for three images, and for each we display the piecewise
constant version of each image together with its boundary map. Our segmentation results
appear in Figures 9, 10, and 11. We compare our results to the popular graph-cuts based
segmentation [25]. Notice that we achieve a comparable performance, where in some places
our method behaves better and in others the strategy in [25] provides a better result.

Though we get good segmentation, it is clear that there is still large room for improvement
compared to the current state of the art. One direction for improvement is to use more filters

2150 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

(a) Original image gradients (b) Recovered image gradients

Figure 8. Gradient map of the clean house image and our recovered image from Figure 7.

within Ω. Another one is to calculate the gradients of the coefficients parameters and not of
the recovered image as they are supposed to be truly piecewise constant. We leave these ideas
to future work.

7. Conclusion and future work. This work has presented a novel framework for solving
the overparameterized variational problem using sparse representations. We have demon-
strated how this framework can be used both for 1D and 2D functions, while a generalization
to other higher dimensions (such as three dimensions) is straightforward. We have solved
the problem of line fitting for piecewise polynomial 1D signals and then shown how the new
technique can be used for compressed sensing, denoising, and segmentation.

Though this work has focused mainly on linear overparameterizations, the extension to
other forms is straightforward. However, to keep the discussion as simple as possible, we have
chosen to use simple forms of overparameterizations in the experiments section. As a future
research, we believe that a learning process should be added to our scheme. It should adapt
the functions of the space variables X1, . . . ,Xn and the filters in Ω to the signal at hand.
We believe that this has the potential to lead to state-of-the-art results in segmentation,
denoising, and other signal processing tasks. Combining of our scheme with the standard
sparse representation approach may provide the possibility of adding support to images with
texture. This will lead to a scheme that works globally on the image for the cartoon part and
locally for the texture part. Another route for future work is to integrate our scheme in the
state-of-the-art overparameterized based algorithm for optical flow in [50].

Appendix A. The SSCoSaMP algorithm.
For approximating (16), we use a block sparsity variant of SSCoSaMP [36] and adapt it to

our model. It is presented in Algorithm 1. Due to the equivalence between DHS and ΩDIF ,
we use the latter in the algorithm.

This method uses a projection Sn(·, k) that, given a signal, finds its closest piecewise
polynomial functions with k jump points. We calculate this projection using dynamic pro-
gramming. Our strategy is a generalization of the one that appears in [33, 38] and is presented
in the next subsection.

SPARSITY FOR VARIATIONAL PROBLEMS 2151

(a) Original image (b) Piecewise linear version of the image

(c) Image segmentation (d) Image segmentation using graph cuts [25]

Figure 9. Piecewise linear version of coins image together with the segmentation result. We compare it to
the popular graph-cuts based segmentation [25].

The halting criterion we use in our work in Algorithm 1 is
∥∥gt

r

∥∥
2
≤ ε for a given small

constant ε. Other options for stopping criteria are discussed in [47].

A.1. Optimal approximation using piecewise polynomial functions. Our projection tech-
nique uses the fact that once the jump points are set, the optimal parameters of the polynomial
in a segment [t, l] can be calculated optimally by solving a least squares minimization problem

∥∥∥∥∥∥∥∥∥
[I[t, l],Z[t, l], . . . ,Zn[t, l]]

⎡
⎢⎢⎢⎣

b0[t, l]
b1[t, l]

...
bn[t, l]

⎤
⎥⎥⎥⎦− g[t, l]

∥∥∥∥∥∥∥∥∥

2

2

,(23)

2152 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

(a) Original image (b) Piecewise linear version of the image

(c) Image segmentation (d) Image segmentation using graph cuts [25]

Figure 10. Piecewise linear version of airplane image together with the segmentation result. We compare
it to the popular graph-cuts based segmentation [25].

where g[t, l] is the subvector of g supported by the indices t to l (t ≤ l) and Zi[t, l] is the
(square) submatrix of Zi corresponding to the indices t to l. We denote by Pn(g[t, l]) the
polynomial function we get by solving (23). Indeed, in the case that the size of the segment
[t, l] is smaller than the number of parameters, e.g., segment of size one for a linear function, the
above minimization problem has infinitely many options for setting the parameters. However,
all of them lead to the same result, which is keeping the values of the points in the segment,
i.e., having Pn(g[t, l]) = g[t, l].

Denote by Sn(g[1, d̃], k) the optimal approximation of the signal g[1, d̃] by a piecewise
polynomial function with k jumps. It can be calculated by solving the following recursive
minimization problem

t̂ = argmin
1≤t<d̃

‖Sn(g[1, t], k − 1)− g[1, t]‖22(24)

+
∥∥∥Pn(g[t + 1, d̃])− g[t+ 1, d̃]

∥∥∥2
2
,

SPARSITY FOR VARIATIONAL PROBLEMS 2153

(a) Original image (b) Piecewise linear version of the image

(c) Image segmentation (d) Image segmentation using graph cuts [25]

Figure 11. Piecewise linear version of man image together with the segmentation result. We compare it to
the popular graph-cuts based segmentation [25].

and setting

Sn(g[1, d̃], k) =

[
Sn(g[1, t̂], k − 1)

Pn(g[t̂+ 1, d̃])

]
.(25)

The vectors Sn(g[1, t], k−1) can be calculated recursively using (24). The recursion ends with
the base case Sn(g[1, t], 0) = Pn(g[1, t]).

This leads us to the following algorithm for calculating an optimal approximation for a
signal g. Notice that this algorithm provides us also with the parameterization of a piecewise
polynomial.

1. Calculate Sn(g[1, t], 0) = Pn(g[1, t]) for 1 ≤ t ≤ d.
2. For k̃ = 1 : k − 1 do

• Calculate Sn(g[1, d̃], k̃) for 1 ≤ d̃ ≤ d using (24) and (25).
3. Calculate Sn(g[1, d], k) using (24) and (25).

Denoting by T the worst case complexity of calculating Pn(g[t, l]) for any pair t, l, we have
that the complexity of step (1) is O(dT); of step (2) is O(kd2(T + d)), as the computation of

2154 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

Algorithm 1 Signal Space CoSaMP (SSCoSaMP) for Piecewise Polynomial Func-

tions.

Input: k,M,g, γ, where g = Mf + e, f =
[
I,Z,Z2, . . . ,Zn

] [
bT
0 ,b

T
1 , . . . ,b

T
n

]T
is a piecewise

polynomial function of order n, k = ‖∑n
i=0 |ΩDIFbi|‖0 is the number of jumps in the

representation coefficients of f , e is an additive noise, and γ is a parameter of the algorithm.
Sn(·, k) is a procedure that approximates a given signal by a piecewise polynomial function
of order n with k jumps.

Output: f̂ : A piecewise polynomial with k + 1 segments that approximates f .
• Initialize the jumps’ locations T 0 = ∅, the residual g0

r = g, and set t = 0.
while halting criterion is not satisfied do

• t = t+ 1.
• Find the parameterization br,0,br,1, . . . ,br,n of the residual’s polynomial approxima-
tion by calculating Sn(M

Tgt−1
r , γk).

• Find new temporal jump locations: TΔ = the support of
∑n

i=0 |ΩDIFbr,i|.
• Update the jumps locations’ indices: T̃ t = T t−1 ∪ TΔ.
• Compute temporal parameters:

[bp,0, . . . ,bp,n] = argminb̃0,...,b̃n

∥∥∥∥∥∥∥∥∥
g −M

[
I,Z,Z2 . . . ,Zn

]
⎡
⎢⎢⎢⎣

b̃0

b̃1
...

b̃n

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥

2

2

s.t. (ΩDIFb̃0)(T̃ t)C = 0, . . . (ΩDIFb̃n)(T̃ t)C = 0.
• Calculate a polynomial approximation of order n:

f t = Sn(
[
I,Z,Z2, . . . ,Zn

] [
bT
p,0, . . . ,b

T
p,n

]T
, k).

• Find new jump locations: T t = the locations of the jumps in the parameterization of
f t.
• Update the residual: gt

r = g−Mf t.
end while
• Form final solution f̂ = f t.

the projection error is of complexity O(d); and of step (3) O(d(T + d)). Summing all together
we get a total complexity of O(kd2(T+d)) for the algorithm, which is a polynomial complexity
since T is polynomial.

Appendix B. The block GAPN algorithm.
For approximating (20), we extend the GAPN technique [45] to block sparsity and adapt it

to our model. It is presented in Algorithm 2. Notice that this program, unlike SSCoSaMP, does
not assume the knowledge of k or the existence of an optimal projection onto the signals’ low
dimensional union of subspaces. Note also that it suits a general form of overparameterization
and not only 1D piecewise polynomial functions. It is possible to accelerate BGAPN for highly
scaled problems by removing from the cosupport several elements at a time instead of one in
the update cosupport stage.

SPARSITY FOR VARIATIONAL PROBLEMS 2155

Algorithm 2 The Block GAPN Algorithm.

Input: M,g,Ω, where g = Mf + e, f = [X1, . . . ,Xn]
[
bT
1 , . . . ,b

T
n

]T
such that

∑n
i |Ωbi| is

sparse, and e is an additive noise.

Output: f̂ = [X1, . . . ,Xn]
[
b̂T
1 , . . . , b̂

T
n

]T
: an estimate for f such that

∑n
i

∣∣∣Ωb̂i

∣∣∣ is sparse.
Initialize cosupport Λ = {1, . . . , p} and set t = 0.
while halting criterion is not satisfied do
t = t+ 1.
Calculate a new estimate:

[
b̂T
1 , . . . , b̂

T
n

]T
= argmin

b̃1,...,b̃n

n∑
i=1

∥∥∥ΩΛb̃i

∥∥∥2
2

(26)

s.t.

∥∥∥∥∥∥∥
g −M [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ ‖e‖2 .

Update cosupport: Λ = Λ \
{
argmaxj

∑n
i=1

∥∥∥Ωjb̂i

∥∥∥2
2

}
.

end while

Form an estimate for the original signal: f̂ = [X1, . . . ,Xn]
[
b̂T
1 , . . . , b̂

T
n

]T
.

Ideally, we would expect that after several iterations of updating the cosupport in BGAPN
we would have ΩΛb̂i = 0. However, many signals are only nearly cosparse, i.e., have k
significantly large values in Ωbi while the rest are smaller than a small constant ε. Therefore,

a natural stopping criterion in this case would be to stop when the maximal value in
∣∣∣Ωb̂i

∣∣∣ is
smaller than ε. This is the stopping criterion we use throughout this paper for BGAPN. Of
course, this is not the only option for a stopping criterion, e.g., one may look at the relative
solution change in each iteration or use a constant number of iterations if k is foreknown.

We present also a modified version of BGAPN in Algorithm 3 that imposes a continuity
constraint on the change points. This is done by creating a binary diagonal matrix W =
diag(w1, . . . , wp) such that in each iteration of the program the ith element wi is 1 if it
corresponds to a change point and zero otherwise. This matrix serves as a weights matrix to
penalize discontinuity in the change point. This is done by adding the regularizing term L

γ

∥∥∥∥∥∥∥
WΩ [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥

2

2

to the minimization problem in (26) (27) in Algorithm 3), which leads to the additional step
(28) in the modified program.

2156 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

Algorithm 3 The Block GAPN Algorithm with Continuity Constraint.

Input: M,g,Ω, γ, where g = Mf + e, f = [X1, . . . ,Xn]
[
bT
1 , . . . ,b

T
n

]T
such that

∑n
i |Ωbi|

is sparse, e is an additive noise, and γ is a weight for the continuity constraint.

Output: f̂ = [X1, . . . ,Xn]
[
b̂T
1 , . . . , b̂

T
n

]T
: an estimate for f such that

∑n
i

∣∣∣Ωb̂i

∣∣∣ is sparse.
Initialize cosupport Λ = {1, . . . , p} and set t = 0.
while halting criterion is not satisfied do
t = t+ 1.
Calculate a new estimate:

[
b̂T
1 , . . . , b̂

T
n

]T
= argmin

b̃1,...,b̃n

n∑
i=1

∥∥∥ΩΛb̃i

∥∥∥2
2

(27)

s.t.

∥∥∥∥∥∥∥
g −M [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ ‖e‖2 .

Update cosupport: Λ = Λ \
{
argmaxj

∑n
i=1

∥∥∥Ωjb̂i

∥∥∥2
2

}
.

Create weight matrix: W = diag(w1, . . . , wp), where wi = 0 if i ∈ Λ or wi = 1 otherwise.
Recalculate the estimate:

[
b̂T
1 , . . . , b̂

T
n

]T
= argmin

b̃1,...,b̃n

n∑
i=1

∥∥∥ΩΛb̃i

∥∥∥2
2

(28)

+γ

∥∥∥∥∥∥∥
WΩ [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥

2

2

s.t.

∥∥∥∥∥∥∥
g −M [X1, . . .Xn]

⎡
⎢⎣

b̃1
...

b̃n

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ ‖e‖2 .

end while

Form an estimate for the original signal: f̂ = [X1, . . . ,Xn]
[
b̂T
1 , . . . , b̂

T
n

]T
.

Acknowledgments. The authors would like to thank Tal Nir and Guy Roseman for provid-
ing their code for the experiments. The authors would like to thank the anonymous reviewers
for their helpful and constructive comments that greatly contributed to improving this paper.

REFERENCES

[1] L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic
functional via t-convergence, Comm. Pure Appl. Math., 43 (1990), pp. 999–1036.

SPARSITY FOR VARIATIONAL PROBLEMS 2157

[2] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential
Equations and the Calculus of Variations, Appl. Math. Sci. 147, Springer, 2006.

[3] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, Model-based compressive sensing, in
IEEE Trans. Inform. Theory, 56 (2010), pp. 1982–2001.

[4] T. Blumensath and M. E. Davies, Sampling theorems for signals from the union of finite-dimensional
linear subspaces, IEEE Trans. Inform. Theory., 55 (2009), pp. 1872 –1882.

[5] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput.
Harmon. Anal., 27 (2009), pp. 265–274.

[6] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to
sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34–81.

[7] E. J. Candès, Modern statistical estimation via oracle inequalities, Acta Numer., 15 (2006), pp. 257–325.
[8] E. J. Candès and D. L. Donoho, Curvelets? A surprisingly effective nonadaptive representation for ob-

jects with edges, in Curves and Surface Fitting: Saint-Malo 99, C. Rabut A. Cohen, and L. Schumaker,
eds., Vanderbilt University Press, Nashville, 2000, p. 105–120.

[9] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, Compressed sensing with coherent and
redundant dictionaries, Appl. Comput. Harmon. Anal., 31 (2011), pp. 59–73.

[10] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Int. J. Comput. Vis., 22 (1997),
pp. 61–79.

[11] T. F. Chan and J. Shen, Image Processing and Analysis, SIAM, Philadelphia, 2005.
[12] T. F. Chan and L.A. Vese, Active contours without edges, IEEE Trans. Image Process., 10 (2001),

pp. 266–277.
[13] S. Chen, S. A. Billings, and W. Luo, Orthogonal least squares methods and their application to

non-linear system identification, Int. J. Control, 50 (1989), pp. 1873–1896.
[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM J.

Sci. Comput., 20 (1998), pp. 33–61.
[15] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, Sparse solutions to linear inverse

problems with multiple measurement vectors, IEEE Trans. Signal Process., 53 (2005), pp. 2477–2488.
[16] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE

Trans. Inform. Theory., 55 (2009), pp. 2230 –2249.
[17] M. A. Davenport, D. Needell, and M. B. Wakin, Signal space CoSaMP for sparse recovery with

redundant dictionaries, IEEE Trans. Inform. Theory, 59 (2013), pp. 6820–6829.
[18] G. Davis, S. Mallat, and M. Avellaneda, Adaptive time-frequency decompositions, Opt. Eng., 33

(1994), pp. 2183–2191.
[19] G. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations, Constr. Approx., 50

(1997), pp. 57–98.
[20] D. L. Donoho, Sparse components of images and optimal atomic decompositions, Constr. Approx., 17

(2001), pp. 353–382.
[21] D. L. Donoho and M. Elad, On the stability of the basis pursuit in the presence of noise, Signal

Process., 86 (2006), pp. 511–532.
[22] M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Prob-

lems, 23 (2007), pp. 947–968.
[23] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, Block-sparse signals: Uncertainty relations and efficient

recovery, in IEEE Trans. Signal Process., 58 (2010), pp. 3042–3054.
[24] Y. C. Eldar and M. Mishali, Robust recovery of signals from a structured union of subspaces, in IEEE

Trans. Inform. Theory, 55 (2009), pp. 5302–5316.
[25] P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, Int. J.

Comput. Vis., 59 (2004), pp. 167–181.
[26] M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity con-

straints, SIAM J. Numer. Anal., 46 (2008), pp. 577–613.
[27] S. Foucart, Hard thresholding pursuit: An algorithm for compressive sensing, SIAM J. Numer. Anal.,

49 (2011), pp. 2543–2563.
[28] R. Giryes and M. Elad, CoSaMP and SP for the cosparse analysis model, in Proceedings of the

20th European Signal Processing Conference (EUSIPCO-2012), Bucharest, Romania, 2012, IEEE,
Piscataway, NJ, 2012, pp. 964–968.

2158 RAJA GIRYES, MICHAEL ELAD, AND ALFRED M. BRUCKSTEIN

[29] R. Giryes and M. Elad, RIP-based near-oracle performance guarantees for SP, CoSaMP, and IHT,
IEEE Trans. Signal Process., 60 (2012), pp. 1465–1468.

[30] R. Giryes and M. Elad, Can we allow linear dependencies in the dictionary in the synthesis framework?,
in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, IEEE,
Piscataway, NJ, 2013, pp. 5459–5463.

[31] R. Giryes and M. Elad, Iterative hard thresholding for signal recovery using near optimal projections, in
Proceedings of the 10th International Conference on Sampling Theory and Applications (SAMPTA),
2013, pp. 212–215.

[32] R. Giryes and M. Elad, OMP with highly coherent dictionaries, in Proceedings of the 10th International
Conference on Sampling Theory and Applications (SAMPTA), 2013, pp. 9–12.

[33] R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. E. Davies, Greedy-like algorithms for the
cosparse analysis model, Linear Algebra Appl., 441 (2014), pp. 22–60.

[34] R. Giryes, S. Nam, R. Gribonval, and M. E. Davies, Iterative cosparse projection algorithms for
the recovery of cosparse vectors, in Proceedings of the 19th European Signal Processing Conference
(EUSIPCO-2011), Barcelona, Spain, 2011, IEEE, Piscataway, NJ, 2011, pp. 1460–1464.

[35] R. Giryes and D. Needell, Greedy signal space methods for incoherence and beyond, Appl. Comput.
Harmon. Anal., 39 (2015), pp. 1–20.

[36] R. Giryes and D. Needell, Near oracle performance and block analysis of signal space greedy methods,
J. Approx. Theory, 194 (2015), pp. 157–174.

[37] R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Trans. Inform Theory.,
49 (2003), pp. 3320–3325.

[38] T. X. Han, S. Kay, and T. S. Huang, Optimal segmentation of signals and its application to image
denoising and boundary feature extraction, in Proceedings of the IEEE International Conference on
Image Processing (ICIP), Vol. 4, 2004, IEEE, Piscataway, NJ, 2004, pp. 2693–2696.

[39] D. L. B. Jupp, Approximation to data by splines with free knots, SIAM J. Numer. Anal., 15 (1978),
pp. 328–343.

[40] Y. M. Lu and M. N. Do, A theory for sampling signals from a union of subspaces, IEEE Trans. Signal
Process., 56 (2008), pp. 2334–2345.

[41] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal
Process., 41 (1993), pp. 3397–3415.

[42] M. Mishali and Y. C. Eldar, Reduce and boost: Recovering arbitrary sets of jointly sparse vectors,
IEEE Trans. Signal Process., 56 (2008), pp. 4692–4702.

[43] J. M. Morel and S. Solimini, Variational Methods in Image Segmentation, Birkhauser Boston, Cam-
bridge, MA, 1995.

[44] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated vari-
ational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577–685.

[45] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, Recovery of cosparse signals with greedy analysis
pursuit in the presence of noise, in Proceedings of the 4th IEEE International Workshop on Com-
putational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, IEEE, Piscataway, NJ,
2011, pp. 361–364.

[46] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, The cosparse analysis model and algorithms,
Appl. Comput. Harmon. Anal., 34 (2013), pp. 30–56.

[47] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate sam-
ples, Appl. Comput. Harmon. Anal., 26 (2009), pp. 301–321.

[48] D. Needell and R. Ward, Stable image reconstruction using total variation minimization, SIAM J.
Imaging Sci., 6 (2013), pp. 1035–1058.

[49] T. Nir and A. M. Bruckstein, On over-parameterized model based TV-denoising, in Proceedings of
the International Symposium on Signals, Circuits, and Systems, ISSCS, 2007, vol. 1, 2007, IEEE,
Piscataway, NJ, pp. 1–4.

[50] T. Nir, A. M. Bruckstein, and R. Kimmel, Over-parameterized variational optical flow, Int. J. Com-
put. Vis., 76 (2008), pp. 205–216.

[51] T. Peleg and M. Elad, Performance guarantees of the thresholding algorithm for the CoSparse analysis
model, IEEE Trans. Inform. Theory, 59 (2013), pp. 1832–1845.

[52] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans.
Pattern Anal. Mach. Intell., 12 (1990), pp. 629–639.

SPARSITY FOR VARIATIONAL PROBLEMS 2159

[53] G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. M. Bruck-

stein, Over-parameterized optical flow using a stereoscopic constraint, in Scale Space and Variational
Methods in Computer Vision, A. M. Bruckstein, B. M. Haar Romeny, A. M. Bronstein, and M. M.
Bronstein, eds., Lecture Notes in Comput. Sci. 6667, Springer, Berlin, 2012, pp. 761–772.

[54] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.
D, 60 (1992), pp. 259–268.

[55] J. Savage and K. Chen, On multigrids for solving a class of improved total variation based staircasing
reduction models, in image processing based on partial differential equations, X.-C. Tai, K.-A. Lie,
T. F. Chan, and S. Osher, eds., Math. Vis., Springer, Berlin, 2007, pp. 69–94.

[56] S. Shem-Tov, G. Rosman, G. Adiv, R. Kimmel, and A. M. Bruckstein, On globally optimal local
modeling: from moving least squares to over-parametrization, in Innovations for Shape Analysis,
Springer, Heidelberg, 2013, pp. 379–405.

[57] M. Stojnic, F. Parvaresh, and B. Hassibi, On the reconstruction of block-sparse signals with an
optimal number of measurements, IEEE Trans. Signal Process., 57 (2009), pp. 3075–3085.

[58] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996),
pp. 267–288.

[59] J. A. Tropp, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, Signal
Process., 86 (2006), pp. 589–602.

[60] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, Algorithms for simultaneous sparse approximation.
Part I: Greedy pursuit, Signal Process., 86 (2006), pp. 572–588.

[61] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, Germany, 1998.
[62] J. Weickert, A. Bruhn, T. Brox, and N. Papenberg, A survey on variational optic flow methods for

small displacements, in Mathematical Models for Registration and Applications to Medical Imaging,
Math. Ind. 10, Springer, Berlin, 2006, pp. 103–136.

[63] D. P. Wipf and B. D. Rao, An empirical Bayesian strategy for solving the simultaneous sparse approx-
imation problem, IEEE Trans. Signal Process., 55 (2007), pp. 3704–3716.

[64] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. Roy. Statist.
Soc. Ser. B, 68 (2006), pp. 49–67.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

