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Boosting of Image Denoising Algorithms∗

Yaniv Romano† and Michael Elad‡

Abstract. In this paper we propose a generic recursive algorithm for improving image denoising methods. Given
the initial denoised image, we suggest repeating the following “SOS” procedure: (i) Strengthen
the signal by adding the previous denoised image to the degraded input image, (ii) Operate the
denoising method on the strengthened image, and (iii) Subtract the previous denoised image from
the restored signal-strengthened outcome. The convergence of this process is studied for the K-
SVD image denoising and related algorithms. Still in the context of K-SVD image denoising, we
introduce an interesting interpretation of the SOS algorithm as a technique for closing the gap
between the local patch-modeling and the global restoration task, thereby leading to improved
performance. In a quest for the theoretical origin of the SOS algorithm, we provide a graph-
based interpretation of our method, where the SOS recursive update effectively minimizes a penalty
function that aims to denoise the image, while being regularized by the graph Laplacian. We
demonstrate the SOS boosting algorithm for several leading denoising methods (K-SVD, NLM,
BM3D, and EPLL), showing its tendency to further improve denoising performance.
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1. Introduction. Image denoising is a fundamental restoration problem. Consider a given
measurement image y ∈ R

r×c, obtained from the clean signal x ∈ R
r×c by a contamination of

the form

y = x+ v,(1.1)

where v ∈ R
r×c is a zero-mean additive noise that is independent with respect to x. Note

that x and y are held in the above equation as column vectors after lexicographic ordering.
A solution to this inverse problem is an approximation x̂ of the unknown clean image x.

Plenty of sophisticated algorithms have been developed in order to estimate the original
image content; these include the NLM [6], K-SVD [15], BM3D [13], EPLL [53], and oth-
ers [51, 9, 35, 26, 46, 36]. These algorithms rely on powerful image models/priors, where
sparse representations [5, 14] and processing of local patches [27] have become two prominent
ingredients.
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1188 YANIV ROMANO AND MICHAEL ELAD

Despite the effectiveness of the above denoising algorithms, improved results can be ob-
tained by applying a boosting technique (see [46, 10, 31] for more details). There are several
such techniques that were proposed over the years, e.g., “twicing” [49], Bregman iterations
[32], l2-boosting [8], SAIF [46], and others (e.g., [36]). These algorithms are closely related
and share in common the use of the residuals (also known as the “method-noise” [6]) in order
to improve the estimates. The residual is defined as the difference between the noisy image
and its denoised version. Naturally, the residual contains signal leftovers due to imperfect
denoising (together with noise).

For example, motivated by this observation, the idea behind the twicing technique [49] is
to extract these leftovers by denoising the residual and then add them back to the estimated
image. This can be expressed as [10]

x̂k+1 = x̂k + f
(
y − x̂k

)
,(1.2)

where the operator f (·) represents the denoising algorithm and x̂k is the kth iteration denoised
image. The initialization is done by setting x̂0 = 0.

Using the concept of Bregman distance [4] in the context of total-variation denoising [39],
Osher et al. [32] suggest exploiting the residual by

x̂k+1 = f

(
y +

k∑
i=1

(
y− x̂i

))
,(1.3)

where the recursive function is initialized by setting x̂0 = 0. Note that if the denoising
algorithm f (·) can be represented as a linear (data-independent) matrix, (1.2) and (1.3)
coincide [10]. Furthermore, for these two boosting techniques, it has been shown [46] that as
k increases, the estimate x̂k returns to the noisy image y.

Motivated by the above-mentioned algorithms, our earlier work [36] improves the K-SVD
[15], NLM [6], and the first-stage of the BM3D [13] by applying an iterative boosting algorithm
that extracts the “stolen” image content from the method-noise image. The improvement is
achieved by adding the extracted content back to the initial denoised result. The work in [36]
suggests representing the signal leftovers of the method-noise patches using the same basis/
support that was chosen for the representation of the corresponding clean patch in the initial
denoising stage. As an example, in the context of the K-SVD, the supports are sets of atoms
that participate in the representation of the noisy patches.

However, in addition to signal leftovers that reside in the residual image, there are noise
leftovers that are found in the denoised image. Driven by this observation, SAIF [46] offers
a general framework for improving spatial domain denoising algorithms. Their algorithm
controls the denoising strength locally by iteratively filtering the image patches. For each
patch, it automatically chooses the improvement mechanism, twicing or diffusion, and the
number of iterations to apply. The diffusion [31] is a boosting technique that suggests repeating
applications of the same denoising filter, thereby removing the noise leftovers that rely on the
previous estimate (sometimes also sacrificing some of the high frequencies of the signal).

In this paper we propose a generic recursive function that treats the denoising method
as a “black-box” and has the ability to push it forward to improve its performance. UnlikeD

ow
nl

oa
de

d 
06

/0
3/

15
 to

 1
32

.6
8.

46
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOOSTING OF IMAGE DENOISING ALGORITHMS 1189

the above methods, instead of adding the residual (which mostly contains noise) back to
the noisy image, or filtering the previous estimate over and over again (which could lead to
oversmoothing), we suggest strengthening the signal by leveraging on the availability of the
denoised image. More specifically, given an initial estimation of the cleaned image, improved
results can be achieved by iteratively repeating the following SOS procedure:

1. Strengthen the signal by adding the previous denoised image to the noisy input image.
2. Operate the denoising method on the strengthened image.
3. Subtract the previous denoised image from the restored signal-strengthened outcome.

The core equation that describes this procedure can be written in the following form:

x̂k+1 = f
(
y + x̂k

)
− x̂k,(1.4)

where x̂0 = 0. As we show hereafter, a performance improvement is achieved since the signal-
strengthened image can be denoised more effectively compared to the noisy input image, due
to the improved signal-to-noise ratio (SNR).

The convergence of the proposed algorithm is studied in this paper by formulating the
linear part of the denoising method and assessing the iterative system’s matrix properties.
In this work we put special emphasis on the K-SVD and describe the resulting denoising
matrix and the corresponding convergence properties related to it. The work by Milanfar [31]
shows that most existing denoising algorithms (e.g., NLM [6], bilateral filter [47], LARK [11])
can be represented as row-stochastic positive definite matrices. In this context, our analysis
suggests that for most denoising algorithms, the proposed SOS boosting method is guaranteed
to converge. Therefore, we get a straightforward stopping criterion.

In addition, we introduce an interesting interpretation of the SOS boosting algorithm,
related to a major shortcoming of patch-based methods: the gap between the local patch-
processing and the global need for a whole restored image. In general, patch-based methods
(i) break the image into overlapping patches, (ii) restore each patch (local processing), and
(iii) reconstruct the image by aggregating the overlapping patches (the global need). The
aggregation is usually done by averaging the overlapping patches. The proposed SOS boosting
is related to a different algorithm that aims to narrow the local-global gap mentioned above
[37]. For each patch, this algorithm defines the difference between the local (intermediate)
result and the patch from the global outcome as a “disagreement.” Since each patch is
processed independently, such disagreement naturally exists.

Interestingly, in the context of the K-SVD image denoising, the SOS algorithm is equivalent
to repeating the following steps (see [37] and section 6.2 for more details): (i) compute the
disagreement per patch, (ii) subtract the disagreement from the degraded input patches, (iii)
apply the restoration algorithm on these patches, and (iv) reconstruct the image. Therefore,
the proposed algorithm encourages the overlapping patches to share their local information,
thus reducing the gap between the local patch-processing and the global restoration task.

The above should remind the reader of the EPLL framework [53], which also addresses the
local-global gap. EPLL encourages the patches of the final image (i.e., after patch-averaging)
to comply with the local prior. In EPLL, given a local patch model, the algorithm alternates
between denoising the previous result according to the local prior and an image reconstruction
step (patch-averaging). Several local priors can use this paradigm; the Gaussian mixture modelD
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1190 YANIV ROMANO AND MICHAEL ELAD

(GMM) is suggested in the original paper [53]. Similarly, EPLL with sparse and redundant
representation modeling was recently proposed in [43]. EPLL bares some resemblance to
diffusion methods [31], as it amounts to iterated denoising with a diminishing variance setup,
in order to avoid an oversmoothed outcome. In practice, at each diffusion step, the authors
of [53, 43] empirically estimate the noise that resides in x̂k (which is neither Gaussian nor
independent of x̂k). In contrast, in our scheme, setting this parameter is trivial; the noise
level of y + x̂k is nearly σ regardless of the iteration number.

In the context of image denoising, several works (e.g., [16, 2, 23, 24, 21]) suggest repre-
senting an image as a weighted graph, where the weights measure the similarity between the
pixels/patches. Since the graph Laplacian describes the structure of the underlying signal, it
can be used as an adaptive regularizer, as is done in the above-mentioned methods. Put dif-
ferently, the graph Laplacian preserves the geometry of the image by promoting similar pixels
to remain similar, thus achieving an effective denoising performance. It turns out that the
steady-state outcome of the SOS minimizes a cost function that involves the graph Laplacian
as a regularizer, providing another justification for the success of our method. Furthermore,
influenced by the SOS mechanism, we offer novel iterative algorithms that minimize the graph
Laplacian cost functions that are defined in [16, 2, 23]. Similarly to the SOS, the proposed it-
erative algorithms treat the denoiser as a “black-box” and operate on the strengthened image,
without an explicit construction of the weighted graph.

This paper is organized as follows: In section 2 we provide brief background material on
sparse representation and dictionary learning, with special attention to the K-SVD denoising
and its matrix form. In section 3 we introduce our novel SOS boosting algorithm, study
its convergence, and generalize it by introducing two parameters that govern the steady-state
outcome, the requirements for convergence and the rate of convergence. In section 4 we discuss
the relation between the SOS boosting and the local-global gap. In section 5 we provide
a graph-based analysis to the steady-state outcome of the SOS and offer novel recursive
algorithms for related graph Laplacian methods. Experiments are discussed in section 6,
showing a meaningful improvement of the K-SVD image denoising and similar boosting for
other methods—the NLM, BM3D, and EPLL. Conclusions and future research directions are
drawn in section 7.

2. K-SVD image denoising revisited. We provide the following discussion on sparse rep-
resentations and specifically the K-SVD image denoising algorithm, because its matrix inter-
pretation will serve hereafter as a benchmark in the convergence analysis.

2.1. Sparse representation and K-SVD denoising. The sparse-land modeling [5, 14] as-
sumes that a given signal x ∈ R

n (in this context, the signal x is not necessarily an image)
can be well represented as x = Dα, where D ∈ R

n×m is a dictionary composed of m ≥ n
atoms as its columns, and α ∈ R

m is a sparse vector, i.e., has a few nonzero coefficients. For a
noisy signal y = x+ v, we seek a representation α̂ that approximates x up to an error bound,
which is proportional to the amount of noise in v. This is an NP-hard problem that can be
expressed as

α̂ = min
α

‖α‖0 s.t. ‖Dα − y‖22 ≤ ε2,(2.1)
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BOOSTING OF IMAGE DENOISING ALGORITHMS 1191

where ‖α‖0 counts the nonzero coefficients in α, and the constant ε is an error bound. There
are many efficient sparse-coding algorithms that approximate the solution of (2.1), such as
OMP [33], BP [12], and others [14, 48].

The above discussion assumes that D is known and fixed. A line of work (e.g., [17, 42, 1])
shows that adapting the dictionary to the input signal results in a sparser representation.
In the case of denoising, under an error constraint, since the dictionary is adapted to the
image content, the subspace that the noisy signal is projected onto is of smaller dimension
compared to the case of a fixed dictionary. This leads to a stronger noise reduction, i.e., better
restoration. Given a set of measurements {yi}Ni=1, a typical dictionary learning process [1, 17]
is formulated as

[
D̂, {α̂i}Ni=1

]
= min

D,{αi}Ni=1

N∑
i=1

γi‖αi‖0 + ‖Dαi − yi‖22,(2.2)

where D̂ and {α̂i}Ni=1 are the resulting dictionary and representations, respectively. The scalars
γi are signal-dependent so as to comply with a set of constraints of the form ‖Dαi−yi‖22 ≤ ε2.

Due to computational demands, adapting a dictionary to large signals (images in our case)
is impractical. Therefore, a treatment of an image is done by breaking it into overlapping
patches (e.g., of size 8 × 8). Then, each patch is restored according to the sparsity-inspired
prior. More specifically, the K-SVD image denoising algorithm [15] divides the noisy image into√
n ×√

n fully overlapping patches and then processes them locally by performing iterations
of sparse-coding (using OMP) and dictionary learning as described in (2.2). Finally, the
global denoised image is obtained by returning the cleaned patches to their original locations,
followed by an averaging with the input noisy image. The above procedure approximates the
solution of

[
x̂, D̂, {α̂i}Ni=1

]
= min

x,D,{αi}Ni=1

μ‖x− y‖22 +
N∑
i=1

γi‖αi‖0 + ‖Dαi −Rix‖22,(2.3)

where x̂ ∈ R
rc is the resulting denoised image, N is the number of patches, and Ri ∈ R

n×rc

is a matrix that extracts the ith patch from the image. The first term in (2.3) demands a
proximity between the noisy and denoised images. The second term demands that each patch
Rix be represented sparsely up to an error bound, with respect to a dictionary D. As to the
coefficients γi, those are spatially dependent and are set as explained in (2.2).

2.2. K-SVD image denoising: A matrix formulation. The K-SVD image denoising can
be divided into nonlinear and linear parts. The former is composed of preparation steps that
include the support determination within the sparse-coding and the dictionary update, while
the outcome of the latter is the actual image-adaptive filter that cleans the noisy image. The
matrix formulation of the K-SVD denoising represents its linear part, assuming the availability
of the nonlinear computations. At this stage we should note that the following formulation is
given as background to the theoretical analysis that follows, and it is not necessary when using
the proposed SOS boosting in practice.

Sparse-coding determines for each noisy patch Riy a small set of atoms Dsi which par-
ticipate in its representation. Following the last step of the OMP [33], given Dsi , the repre-D
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1192 YANIV ROMANO AND MICHAEL ELAD

sentation1 αi of the clean patch is obtained by solving

αi = min
z

‖Dsiz −Riy‖22,(2.4)

which has a closed-form solution

αi = (DT
siDsi)

−1DT
siRiy.(2.5)

Given αi, the clean patch p̂i is obtained by applying the inverse transform from the represen-
tation to the signal/patch space, i.e.,

p̂i = Dsiαi(2.6)

= Dsi(D
T
siDsi)

−1DT
siRiy.

Notice that although the computation of si is nonlinear, the clean patch p̂i is obtained by
filtering its noisy version, Riy, with a linear, image-adaptive, symmetric, and normalized
filter.

Following (2.3) and given all p̂i = Dsiαi, the globally denoised image x̂ is obtained by
minimizing

x̂ = min
x

μ‖x− y‖22 +
N∑
i=1

‖p̂i −Rix‖22.(2.7)

This is a quadratic expression that has a closed-form solution of the form

x̂=

(
μI +

N∑
i=1

RT
i Ri

)−1(
μy +

N∑
i=1

RT
i p̂i

)
(2.8)

=

(
μI +

N∑
i=1

RT
i Ri

)−1(
μI +

N∑
i=1

RT
i Dsi(D

T
siDsi)

−1DT
siRi

)
y

= D−1Ky

= Wy,

where I ∈ R
rc×rc is the identity matrix. The term

∑N
i=1R

T
i Ri is a diagonal matrix that

counts the appearances of each pixel (e.g., 64 for patches of size 8 × 8), and μI originates
from the averaging with the noisy image y. The matrix RT

i returns a clean patch p̂i to its
original location in the global image. The matrix W ∈ R

rc×rc is the resulting filter matrix
formulation of the linear part of the K-SVD image denoising. In the context of graph theory,
D and K are called the degree and similarity matrices, respectively (see section 5 for more
information).

A series of works [46, 31, 45] studies the algebraic properties of such formulations for
several image denoising algorithms (NLM [6], bilateral filter [47], kernel regression [11]), for

1We abuse notation here as αi refers hereafter only to the nonzero part of the representation, which is a
vector of length |si| � m.D
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which the filter-matrix is a nonsymmetric and row-stochastic matrix. Thus, this matrix has
real and positive eigenvalues in the range of [0, 1], and the largest eigenvalue is unique and
equals 1, with a corresponding eigenvector [1, 1, . . . , 1]T [40, 22]. In the K-SVD case, and
under the assumption of the periodic boundary condition,2 the properties of the resulting
matrix are somewhat different and are given in the following theorem.

Theorem 2.1. The resulting matrix W has the following properties:

1. Symmetric: W = WT , and thus all eigenvalues are real.
2. Positive definite: W � 0, and thus all eigenvalues are strictly positive.
3. The minimal eigenvalue of W satisfies λmin(W) ≥ μ

μ+n , where n is the patch size.

4. Doubly stochastic in the sense of W1 = WT 1 = 1. Note that W may have negative
entries, which violates the classic definition of row- or column-stochasticity.

5. The above implies that 1 is an eigenvalue corresponding to the eigenvector 1.
6. The spectral radius of W equals 1; i.e., ‖W‖2 = 1.
7. The above implies that the maximal eigenvalue satisfies λmax(W) = 1.
8. The spectral radius ‖W − I‖2 ≤ n

μ+n < 1.

Appendix B provides a proof of these claims.

For the denoising algorithms studied in [46, 31, 45], the matrix W is neither symmetric
nor positive definite; however, it can be approximated as such using the Sinkhorn procedure
[31]. In the context of the K-SVD, as described in Appendix A, W can become symmetric by
a proper treatment of the boundaries (essentially performing cyclic processing of the patches).

To conclude, the discussion above shows that the K-SVD is a member of a large family of
denoising algorithms that can be represented as matrices [31]. We will use this formulation
in order to study the convergence of the proposed SOS boosting and for demonstrating the
local-global interpretation.

3. SOS boosting. In this section we describe the proposed algorithm, study its conver-
gence, and generalize it by introducing two parameters that govern its steady-state outcome,
the requirements for convergence and its rate.

3.1. SOS boosting: The core idea. Leading image/patch priors are able to effectively
distinguish the signal content from the noise. However, an emphasis of the signal over the
noise could help the prior better identify the image content, thereby leading to better denoising
performance. As an example, the sparsity-based K-SVD could choose atoms that better fit
the underlying signal. Similarly, the NLM, which cleans a noisy patch by applying a weighted
average with its spatial neighbors, could determine better weights. This is the key idea
behind the proposed SOS boosting algorithm, which exploits the previous estimation in order
to enhance the underlying signal. In addition, the proposed algorithm treats the denoiser as a
black-box; thus it is easy to use and becomes applicable to a wide range of denoising methods.

As mentioned in section 1, the first class of boosting algorithms (twicing [49] or its variants
[32, 8, 36]) suggests extracting the “stolen” content from the method-noise image, with the
risk of returning noise back to the denoised image, together with the extracted information.
On the other hand, the second class of boosting methods (diffusion [31] or EPLL [53, 43])
aims at removing the noise that resides in the estimated image, with the risk of obtaining

2See Appendix A for an explanation of this requirement.D
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an oversmoothed result (this depends on the number of iterations or the denoiser parameters
at each iteration). As a consequence, these two classes of boosting algorithms are somewhat
lacking as they address only one kind of leftovers [46]—that which resides in the method-
noise, or the other, which is found in the denoised image. Also, these methods may result in
an undersmoothed or oversmoothed version of the noisy image.

Adopting a different perspective, we suggest strengthening the signal by adding the clean
image x̂k to the noisy input y and then operating the denoising algorithm on the strengthened
result. Unlike diffusion filtering, as the estimated part of the signal is emphasized, there is
no loss of signal content that has not been estimated correctly (due to the availability of y).
Unlike twicing, we hardly increase the noise level (under the assumption that the energy of the
noise which resides in the clean image is small). Finally, a subtraction of x̂k from the outcome
should be done in order to obtain a faithful denoised result. This procedure is formulated in
(1.4):

x̂k+1 = f
(
y + x̂k

)
− x̂k,

where x̂0 = 0.
The SOS boosting obtains improved denoising performance due to higher SNR of the

signal-strengthened image, compared to the noisy input. In order to demonstrate this, let us
denote

x̂ = x+ vr,(3.1)

where vr is the error that resides in the outcome x̂, containing both noise residuals and
signal errors. Assuming that the denoising algorithm is effective, and x̂ has an improved SNR
compared to y, this means that

‖x‖
‖vr‖ � ‖x‖

‖v‖ ,(3.2)

implying

‖vr‖ = δ‖v‖, where δ 	 1.(3.3)

Thus, referring now to the addition y + x̂, its SNR satisfies

SNR2(y + x̂) =
‖2x‖2

‖v + vr‖2(3.4)

≥ 4‖x‖2
‖v‖2 + 2‖v‖‖vr‖+ ‖vr‖2 .

In the above we used the Cauchy–Schwarz inequality. Using (3.3), we get

SNR2(y + x̂) ≥ 4‖x‖2
(1 + δ)2‖v‖2(3.5)

=
4

(1 + δ)2
SNR2(y).
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Since δ 	 1, we have that

SNR(y + x̂) > SNR(y),(3.6)

where in the ideal case (δ = 0) the relation becomes

SNR(y + x̂) = 2 · SNR(y).(3.7)

3.2. Convergence analysis. Studying the convergence of the SOS boosting is done by
leveraging the linear matrix formulation of the denoising algorithm. The error of the SOS
recursive function

ek = x̂k − x̂∗(3.8)

is defined as the difference between the kth estimate,

x̂k = Wk

(
y + x̂k−1

)
− x̂k−1,(3.9)

and the outcome that is obtained after a large number iterations,

x̂∗ = W∗ (y + x̂∗)− x̂∗,(3.10)

where Wk is a filter matrix, which is equivalent to applying f (·) on the signal-strengthened
image. Substituting (3.9) and (3.10) into (3.8) leads to

ek =Wk

(
y + x̂k−1

)
− x̂k−1 − (W∗ (y + x̂∗)− x̂∗)(3.11)

= (Wk −W∗)y +Wkx̂
k−1 −Wkx̂

∗ +Wkx̂
∗ −W∗x̂∗ −

(
x̂k−1 − x̂∗

)
=(Wk −W∗)y +Wkek−1 + (Wk −W∗) x̂∗ − ek−1

=(Wk − I) ek−1 + (Wk −W∗) (y + x̂∗) ,

where we use the recursive connection ek−1 = x̂k−1− x̂∗. We should note that the nonlinearity
of f(y+ x̂k−1) = Wk(y+ x̂k−1) is neglected in the above derivation by allowing an operation
of the form Wk(y + x̂k−1) = Wky +Wkx̂

k−1.
In the following convergence analysis, we shall assume a fixed filter-matrixW that operates

on the signal-strengthened image throughout all of the SOS steps, i.e., W = Wk = W∗.
This comes up in practice after applying the SOS boosting for a large number of iterations
(as explained in the context of Figure 1). In this case, the above-mentioned abuse of the
nonlinearity becomes correct, and thus the convergence analysis is valid.

Theorem 3.1. Assume that W = Wk = W∗ and that the spectral radius of the transition
matrix ‖W − I‖2 = γ < 1. The error ek converges exponentially, i.e., ‖ek‖2 ≤ ‖e0‖2 · γk → 0
for k → ∞. Thus, the SOS recursive function is guaranteed to converge.

Proof. By assigning Wk = W∗, the second term (Wk −W∗) (y+ x̂∗) in (3.11) vanishes;
thus

ek = (W − I) ek−1(3.12)

= (W − I)k e0,
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1196 YANIV ROMANO AND MICHAEL ELAD

where e0 = x̂0 − x̂∗ = −x̂∗ is a constant vector. Using matrix-norm inequalities, we get

‖ek‖2 ≤ ‖W − I‖k2 · ‖e0‖2(3.13)

= γk · ‖e0‖2,
where we use ‖W− I‖2 = γ. As a result, ‖ek‖2 is bounded by γk · ‖e0‖2 and approaches zero
for k → ∞ when γ < 1.

As such, the SOS boosting is guaranteed to converge for a wide range of denoising
algorithms—those that can be formulated/approximated such that W− I is convergent, e.g.,
the K-SVD [15], NLM [6], bilateral filter [47], and LARK [11]. In the next subsection we soften
the convergence requirements and intensify its properties, along with a practical demonstra-
tion.

3.3. Parametrization. We generalize the SOS boosting algorithm by introducing two pa-
rameters that modify the steady-state outcome, the requirements for convergence (the eigen-
values range) and its rate. Starting with the first parameter, ρ, which controls the signal
emphasis, the proposed formulation is

x̂k+1 = f
(
y + ρx̂k

)
− ρx̂k,(3.14)

where a large value of ρ implies a strong emphasis of the underlying signal. Assigning x̂k+1 =
x̂k = x̂∗ and replacing f (·) with a fixed filter-matrix W∗ lead to

x̂∗ = W∗ (y + ρx̂∗)− ρx̂∗,(3.15)

which implies a steady-state result

x̂∗ = (I + ρ(I−W∗))−1 W∗y.(3.16)

This is the new steady-state outcome, obtained only if the SOS boosting converges. We should
note that this outcome also minimizes a cost function that involves the graph Laplacian as
a regularizer (see section 5 for further details). The conditions for convergence are studied
hereafter.

The second parameter, τ , modifies the eigenvalues of the error’s transition matrix, thereby
leading to a faster convergence and relaxing the requirement that only f(·) with eigenvalues
between 0 to 1 is guaranteed to converge. We introduce this parameter in such a way that
it will not affect that steady-state outcome (at least as far as the linear approximation is
concerned). We start with the steady-state relation

x̂∗ = f (y + ρx̂∗)− ρx̂∗.(3.17)

We multiply both sides by τ and add the term x̂∗ − x̂∗ to the right-hand side (RHS):

τ x̂∗ = τf (y + ρx̂∗)− τρx̂∗ + x̂∗ − x̂∗.(3.18)

Thus, the same x̂∗ solving (3.17) will also solve (3.18), and thus the steady-state is not affected.
Rearranging this equality leads to

x̂∗ = τf (y+ ρx̂∗)− (τρ+ τ − 1)x̂∗.(3.19)
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As a result, the proposed generalized SOS boosting is given by

x̂k+1 = τf
(
y + ρx̂k

)
− (τρ+ τ − 1)x̂k.(3.20)

It is important to note that although τ does not affect x̂∗ explicitly, it may modify the
estimates x̂k over the iterations. Due to the adaptivity of f(·) to its input, such modifications
may eventually affect the steady-state outcome.

We study the convergence of (3.20) the same way we did in section 3.2. We start with the
error computation, expressed by

ek =x̂k − x̂∗
(3.21)

=τWk

(
y + ρx̂k−1

)
− (τρ+ τ − 1)x̂k−1 − (τW∗ (y + ρx̂∗)− (τρ+ τ − 1)x̂∗)

=τ (Wk −W∗)y + τρWkx̂
k−1 − τρWkx̂

∗ + τρWkx̂
∗ − τρW∗x̂∗ − (τρ+ τ − 1)ek−1

=(τρWk − (τρ+ τ − 1)I) ek−1 + τ (Wk −W∗) (y + ρx̂∗) .

Next, following Theorem 3.1, and assuming W = Wk = W∗, we get that the condition for
convergence is

∀i φ(τ, ρ, λi) = |τρλi − (τρ+ τ) + 1| < 1,(3.22)

where {λi}Ni=1 and {φ(τ, ρ, λi)}Ni=1 are the eigenvalues of W and the error’s transition matrix,
respectively. In order to achieve the fastest convergence, we seek the parameter τ∗ that
minimizes

τ∗ = min
τ

max
1≤i≤N

φ(τ, ρ, λi) s.t. ∀i φ(τ, ρ, λi) < 1.(3.23)

Given τ∗, the rate of convergence is governed by

γ∗ = max
1≤i≤N

φ(τ∗, ρ, λi).(3.24)

Appendix D provides the following closed-form solution to (3.23):

τ∗ =
2

2(ρ+ 1)− ρ(λmin + λmax)
,(3.25)

along with optimal convergence rate

γ∗ =
ρ(λmax − λmin)

2(ρ+ 1)− ρ(λmin + λmax)
.(3.26)

In the context of the K-SVD image denoising [15], Figure 1 demonstrates the properties of
the generalized SOS recursive function for the image House, corrupted by zero-mean Gaussian
noise with σ = 25. Each K-SVD operation includes five iterations of sparse-coding and
dictionary-update with noise level of σ̂ = 1.05σ. We repeat these operations for 100 SOSD
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1198 YANIV ROMANO AND MICHAEL ELAD

steps and set x̂∗ = x̂100. In the following experiment, the denoised images are the outcome of
x̂k+1 = W(y + x̂k)− x̂k, where W is held fixed as W = W100, initializing with x̂0 = 0.

According to Theorem 2.1 and based on the original K-SVD parameters (n = 8 , m = 256,
μ = 1.02), we get λmin ≥ 0.015 and λmax = 1. These lead to τ∗ = 0.67 (see (3.25)). Figure
1(a) plots the logarithm of ‖ek‖2 for [τ1, τ2, τ3] = [12τ

∗, τ∗, 1]. As can be seen, the error norm
decreases linearly, and bounded by c · γki , where [γ1, γ2, γ3] = [0.66, 0.33, 0.98]. The fastest
convergence is obtained for τ2 = τ∗ = 0.67 with γ2 = γ∗ = 0.33, while the slowest is obtained
for τ3 = 1 with γ3 = 0.98.

Figure 1(b) demonstrates the peak SNR (PSNR) improvement (the higher the better) as a
function of the SOS step. As can be seen, faster convergence of ‖ek‖2 translates well into faster
improvement of the final image. The SOS boosting achieves a PSNR of 32.78dB, offering an
impressive improvement over the original K-SVD algorithm, which obtains 31.8dB.

4. Local-global interpretation. As described in section 1, there is a stubborn gap between
the local processing of image patches and the global need (creating a final image by aggregating
the patches). Consider a denoising scenario based on overlapping patches (e.g., [15, 51]): At
the local processing stage, each patch is denoised independently3 without any influence from
neighboring patches. Then, a global stage merges these outcomes by plainly averaging the
local denoising results.

Inspired by game-theory ideas, in particular the “consensus and sharing” optimization
problem [3], we introduce an interesting local-global interpretation of the above-proposed
SOS boosting algorithm. A game theoretical terminology of a patch-based processing can
be viewed as the following: There are several agents, and each one of them adjusts its local
variable to minimize its individual cost (in our case, representing the noisy patch sparsely).
In addition, there is a shared objective term (the global image) that describes the overall goal.
Imitating this concept, we call the following SOS interpretation “sharing the disagreement.”
This approach, reported in [37], reduces the local-global gap by encouraging the overlapping
patches to reach an agreement before they merge their forces by the averaging.

The proposed boosting algorithm reduces the local-global gap in the following way. For
each patch, we define the difference between the local (intermediate) result and the patch from
the global outcome as a “disagreement.” Since each patch is denoised independently, such
disagreement is almost always nonzero and even substantial. The information between the
overlapping patches is shared by subtracting the disagreement from the noisy image patches,
i.e., seeking an agreement between them. These modified patches are the new inputs to the
denoising algorithm. In this way we push the overlapping patches to share their local results,
influence each other, and reduce the local-global gap.

More specifically, given an initial denoised version of y and its intermediate patch results,
we suggest repeating the following procedure: (i) compute the disagreement for each patch,
(ii) subtract the result from the noisy input patches, (iii) apply the denoising algorithm to
these modified patches, and (iv) reconstruct the image by averaging on the overlaps. Focusing
on the K-SVD image denoising, this procedure is detailed in Algorithm 1.

3Note that in our terminology, even methods like BM3D [13] are considered local, even though they share
information between groups of patches. Indeed, our discussion covers this and related methods as well. In a
way, the approach taken in [35] offers some sort of remedy to the BM3D method.D
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(a) log10(‖ek‖2) (b) PSNR of x̂k

Figure 1. Illustration of the generalized SOS recursive function properties: (a) Convergence and (b) PSNR
improvement. These graphs are generated by operating the K-SVD denoising [15] on noisy (σ = 25) House
image.

Algorithm 1 : Sharing the disagreement approach [37].

Initialization:
1: D0 ∈ R

n×m – initial dictionary.
2: Set k = 0.
3: Set q0

i = 0, where qi ∈ R
n is a “disagreement” patch, corresponding to the ith patch in the image.

Repeat
1: Sparse-coding and dictionary update: Solve

[
Dk+1, {α̂k+1

i }Ni=1

]
= min

D,{αi}N
i=1

N∑
i=1

γi‖αi‖0 + ‖Dαi − (Riy − qk
i )‖22.(4.1)

In practice we approximate the representation of Riy − qk
i using the OMP [33] and update the

previous dictionary Dk using the K-SVD algorithm [1].
2: Image reconstruction: Solve

x̂k+1 = min
z

∑
i

‖Dk+1αk+1
i −Riz‖22.(4.2)

This term leads to a simple averaging of the denoised patches Dk+1αk+1
i on the overlaps.

3: Disagreement computation: Update

qk+1
i = Dk+1αk+1

i −Rix̂
k+1,(4.3)

where qk+1
i is the “disagreement” between the independent estimation Dk+1αk+1

i and the corre-
sponding patch from the global outcome Rix̂

k+1.

Until
Maximum denoising quality has been reached, else increment k and return to “Sparse-coding and
dictionary update.”

Output
x̂∗ – the last iteration result.
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1200 YANIV ROMANO AND MICHAEL ELAD

The modified input patches contain their neighbors’ information, thus encouraging the
locally denoised patches to agree on the global result. Substituting qk

i = Dkαk
i −Rix̂

k into
(4.1) leads to

[
Dk+1, {α̂k+1

i }Ni=1

]
= min

D,{αi}Ni=1

N∑
i=1

γi‖αi‖0 + ‖Dαi − (Riy−Dkαk
i +Rix̂

k)‖22.(4.4)

Now, by denoting the local residual (method-noise) as ri = Riy −Dkαk
i , we get

[
Dk+1, {α̂k+1

i }Ni=1

]
= min

D,{αi}Ni=1

N∑
i=1

γi‖αi‖0 + ‖Dαi − (Rix̂
k + ri)‖22,(4.5)

where the representation Dαi is the denoised version of the patch Rix̂
k + ri. In this formu-

lation, the input to the K-SVD is a patch from the global (previous iteration) cleaned image
Rix̂

k, contaminated by its own local method-noise ri. Notice the major differences between
(1.2), which denoises the method-noise, (1.3), which adds the method-noise to the noisy image
and then denoises the result, and our local approach, which aims at recovering the previous
global estimation, thereby leading to an agreement between the patches. Our algorithm is also
different from the EPLL [53], which denoises the previous cleaned image without considering
its method-noise.

Still in the context of the K-SVD, Appendix C shows, under some assumptions, an equiv-
alence between the SOS recursive function (equation (1.4)) and the above “sharing the dis-
agreement” algorithm. It is important to emphasize that the former treats the K-SVD as a
black-box and is thereby blind to the K-SVD intermediate results (the independent denoised
patches, before the patch averaging step). On the contrary, in the case of the disagreement
approach, these intermediate results are crucial; they are central in the algorithm. Therefore,
the connection between the SOS and the disagreement algorithms is far from trivial.

5. Graph Laplacian interpretation. In this section we present a graph-based analysis to
the SOS boosting. We start by providing a brief background on graph representation of an
image in the context of denoising. Second, we explore the graph Laplacian regularization in
general and, in the context of (3.16), the steady-state outcome of the SOS boosting. Finally,
we suggest novel recursive algorithms (that treat the denoiser as a black-box) to the graph
Laplacian regularizers that are described in [16, 2, 23, 24].

Recent works [19, 20, 16, 2, 41, 29, 21, 23, 24] suggest representing an image as a weighted
graph G = (V ,E,K), where the vertices V represent the image pixels, and the edges E ⊆
V ×V represent the connection/similarity between pairs of pixels, with a corresponding weight
K(i, j).

A constructive approach for composing a graph Laplacian for an image is via image de-
noising algorithms. Given a denoising process for an image, which can be represented as a
matrix multiplication, x̂ = Wy, one can refer to the entry (i, j) as revealing information about
the proximity between the ith and jth pixels. We note that the existence of the matrix W
does not imply that the denoising process is linear. Rather, the nonlinearity is hidden within
the construction of the entries of W. For example, in the case of the NLM [6], bilateral [47],D
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and LARK [11] filters, the entries of K can be expressed by

K(i, j) = exp

(
−d2(i, j)

h2

)
,(5.1)

where d(i, j) measures the distance between the (i, j) pixels (or patches), and h is a smoothing
parameter. Notice that in the case of the sparsity-based K-SVD denoising [15], the weights
K(i, j), as defined in (2.8), measure the similarity between the (i, j) pixels through the dic-
tionary D. Dealing with an undirected graph G, the degree di of the vertex V i can be defined
by

D(i, i) = di =
∑
j

K(i, j),(5.2)

where di is a sum over the weights on the edges that are connected to V i, and D is a diagonal
matrix (called the degree matrix) containing the values of {di}Ni=1 in its diagonal.4

The graph Laplacian has an important role in describing functions on a graph [50] and, in
the case of image denoising, in representing the structure of the underlying signal [16, 2, 29,
21, 24]. There are several definitions of the graph Laplacian. In the context of the proposed
SOS boosting, we shall use a normalized Laplacian, defined as

L = I−W,(5.3)

where W is a filter matrix representing the denoiser f(·) (see (2.8)). Note that W is a
normalized version of the similarity matrix K and thus has eigenvalues in a range of 0 to 1.
There are several ways to obtain W from K. For example, W = D−1K is used in [44] and
in this work (leading to a random walk Laplacian); another way is W = D−1/2KD−1/2, as
used in [30]. Recently, Kheradmand and Milanfar [24] suggest W = C−1/2KC−1/2, where
C is the outcome of Sinkhorn algorithm [25]. Notice that different versions of W result in
different properties of L (refer to [24] for more information).

In general, the spectrum of a graph is defined by the eigenvectors and eigenvalues of L. In
the context of image denoising, as argued in [18, 30, 21, 24], the eigenvectors that correspond
to the small eigenvalues of L encapsulate the underlying structure of the image. On the other
hand, the eigenvectors that correspond to the large eigenvalues mostly represent the noise.
Meyer and Shen [30] showed that the small eigenvalues are stable even for high noise scenarios.
As a result, the graph Laplacian can be used as a regularizer, preserving the geometry of the
image by encouraging similar pixels to remain similar in the final estimate [16, 2].

What can we do with L? The obvious usage of it is as an image adaptive regularizer in
inverse problems. There are several ways to integrate L in a cost function; for example, [16, 2]
suggest solving the minimization problem5

x̂ = min
x

‖x− y‖22 + ρxTLx,(5.4)

4The K-SVD degree matrix, as defined in (2.8), also holds the relation described in (5.2). According to
Theorem 2.1, 1 is an eigenvector of W = D−1K, corresponding to eigenvalue λ = 1, leading to D−1K1 = 1.
Multiplying both sides by D results in the desired relation K1 = D1, i.e., D(i, i) =

∑
j K(i, j).

5The work in [21] is closely related, but their regularization term is ‖Lx‖22, and thus it leads to LTL in the
steady-state formula, where L = D −K is an unnormalized graph Laplacian. Thus, we omit it from the next
discussion.D
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leading to a closed-form expression for x̂,

x̂ = (I + ρL)−1y.(5.5)

The authors of [24] suggest an iterative graph-based framework for image restoration. Specif-
ically, in the case of image denoising [23], they suggest a variant of (5.4),

x̂ = min
x

(x− y)TW(x − y) + ρxTLx.(5.6)

Unlike (5.4), the above expression offers a weighted data fidelity term, resulting in the following
closed-form expression to the final estimate:

x̂ = (W + ρL)−1Wy.(5.7)

It turns out that (3.16), the steady-state result of the SOS boosting, i.e.,

x̂∗ = (I + ρ(I−W∗))−1W∗y(5.8)

= (I + ρL∗)−1W∗y,

can be also treated as emerging from a graph Laplacian regularizer, being the outcome of the
following cost function:

x̂∗ = min
x

‖x−W∗y‖22 + ρxTL∗x.(5.9)

Notice the differences between (5.4), (5.6), and (5.9). The last expression suggests that SOS
aims to find an image that is close to the estimated image W∗y rather than the noisy y itself.
In the spirit of the SOS boosting,

x̂k+1 = f
(
y + ρx̂k

)
− ρx̂k,

we can suggest expressing the above-mentioned graph Laplacian regularization methods, i.e.,
(5.5) and (5.7), as recursive, providing novel black-box iterative algorithms that minimize
their corresponding penalty functions without explicitly building the matrix W. Starting
with (5.5), the steady-state outcome should satisfy

(I + ρ(I−W)) x̂ = y.(5.10)

There are many ways to rearrange this expression, using the fixed point strategy, in order
to get a recursive update formula. We shall adopt a path that leads to an iterative process
that operates on the strengthened image, y + x̂k, in order to expose the similarities to and
differences from our scheme. Therefore, we suggest adding Wy −Wy to the RHS, i.e.,

x̂+ ρx̂− ρWx̂ = y +Wy −Wy.(5.11)

Rearranging the above expression results in

x̂ =
1

(1 + ρ)
[W (y + ρx̂) + (y−Wy)] .(5.12)
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As a consequence, the obtained iterative black-box formulation to the conventional graph
Laplacian regularization [16, 2] is given by

x̂k+1 =
1

(1 + ρ)

[
f
(
y + ρx̂k

)
+ (y− f (y))

]
.(5.13)

As can be seen, we got an iterative algorithm that, similar to SOS, operates on the strength-
ened image. However, rather than simply subtracting ρx̂k from the outcome, we add the
method noise and then normalize.

In a similar way, (5.7), which is formulated as

(W + ρ(I−W)) x̂ = Wy,(5.14)

can be expressed by

x̂ =
1

ρ
W(ρx̂+ y − x̂),(5.15)

and in the general case, the black-box version of [23] is formulated by

x̂k+1 =
1

ρ
f(ρx̂k + y− x̂k) =

1

ρ′ + 1
f(y + ρ′x̂k),(5.16)

where ρ′ = ρ− 1. Again, we see a close resemblance to our SOS method. However, instead of
subtracting ρx̂k from the denoised strengthened image, we simply normalize accordingly.

Equations (5.13) and (5.16) offer two iterative algorithms that are essentially minimizing
the penalty functions (5.4) and (5.6), respectively. However, these algorithms offer far more;
both can be applied with the denoiser as a black-box, implying that no explicit matrix con-
struction of W (or L) is required. Furthermore, these schemes, given in the form of denoising
on the strengthened image, imply that parameter setting is trivial; the noise level is nearly
σ regardless of the iteration number. Finally, an update of W within the iterations of these
recursive formulas seems most natural.

(a) Foreman (b) Lena (c) House (d) Fingerprint (e) Peppers

Figure 2. Visualization of the test images.

6. Experimental results. In this section, we provide detailed results of the SOS boosting
and its local-global variant, “sharing the disagreement.” The results are presented for the
images Foreman, Lena, House, Fingerprint, and Peppers (see Figure 2). These images areD
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1204 YANIV ROMANO AND MICHAEL ELAD

extensively tested in earlier work, thus enabling a convenient and fair demonstration of the
potential of the proposed boosting. The images are corrupted by an additive zero-mean
Gaussian noise with a standard deviation σ. The denoising performance is evaluated using
the PSNR, defined as 20 log10(

255√
MSE

), where MSE is the mean squared error between the

original image and its denoised version.

6.1. SOS boosting with state-of-the-art algorithms. The proposed SOS boosting is ap-
plicable to a wide range of denoising algorithms. We demonstrate its abilities by improving
several state-of-the-art methods: (i) K-SVD [15], (ii) NLM [6, 7], (iii) BM3D [13], and (iv)
EPLL [53]. The K-SVD [15], which was discussed in detail in this paper, is based on an adap-
tive sparsity model. The NLM [6] leverages the “self-similarity” property of natural images,
i.e., the assumption that each patch may have similar patches within the image. The BM3D
[13] combines the self-similarity property with a sparsity model, achieving the best restora-
tion, and even touches some recently developed image denoising bounds [28]. The EPLL [53],
which was described in section 1, represents the image patches using the Gaussian mixture
model (GMM) and encourages the global result to comply with the prior local patches. As
can be inferred, these algorithms are diverse and build upon different models and forces. Fur-
thermore, the EPLL itself can be considered as a boosting method designed to improve a
GMM denoising algorithm. The diversity of the above algorithms emphasizes the potential of
the SOS boosting.

The improved denoising performance is gained simply by applying the authors’ original
software as a black-box, without any internal algorithmic modifications or parameters settings.6

Such modifications may lead to better results, and we leave these for future study. In order to
apply SOS boosting we need to set the parameters ρ, τ and a modified noise-level σ̂ (although
σ is known). The parameter σ̂, which might be a little higher than σ, represents the noise-level
of y+ ρx̂k. We can estimate σ̂ automatically (e.g., using [52]) or tune a fixed value manually.
In the following experiments we choose the second option. We set τ = 1 (the effect of τ∗ is
demonstrated later) and run several tests to tune ρ and σ̂ for each noise-level and denoising
algorithm, as detailed in Table 1 under the “SOS params” column.

In the case of the EPLL and BM3D, the authors’ software is designed to denoise an input
image in the range of 0 to 1. As such, we apply the SOS boosting (τ = 1) in the following
formulation:

x̂k+1 =
1

1− ρ̃
· f
(
(1− ρ̃)y + ρ̃x̂k

)
− ρ̃

1− ρ̃
· x̂k,(6.1)

with a corresponding σ̃. In order to remain consistent with the SOS parameters of the K-SVD
and NLM, which apply (3.14), we provide hereafter the parameters ρ = ρ̃

1−ρ̃ and σ̂ = σ̃
1−ρ̃ for

the EPLL and BM3D.
Table 1 lists the restoration results of various denoising algorithms and their SOS versions.

The PSNR values that appear in the “Orig” column are obtained by applying the denoising
algorithm on y using the input noise level σ (and not σ̂ as done at the consecutive SOS steps).

6The original K-SVD uses 8×8 patches, but our experiments show that 9×9 yields nearly the same results
for the core algorithm, while enabling better improvement with the SOS boosting. As a consequence, in the
following experiments we demonstrate the results of the 9× 9 version.D
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Table 1
Comparison between the denoising results (PSNR) of various algorithms (K-SVD [15], NLM [7], BM3D

[13], and EPLL [53]) and their SOS boosting outcomes. For each denoising algorithm, we apply the authors’
original software with the SOS formulation (using τ = 1, with the appropriate ρ and σ̂). The best results for
each denoising algorithm, image, and noise level are highlighted.

K-SVD [15]

σ
SOS params Foreman Lena House Fingerprint Peppers Average

ρ σ̂ Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Imprv.

10 0.30 1.00σ 36.92 37.13 35.47 35.58 36.25 36.49 32.27 32.35 34.68 34.71 35.12 35.25 0.13

20 0.60 1.00σ 33.81 34.11 32.43 32.67 33.34 33.62 28.31 28.54 32.29 32.35 32.04 32.26 0.22

25 1.00 1.00σ 32.83 33.12 31.32 31.62 32.39 32.72 27.13 27.44 31.43 31.49 31.02 31.28 0.26

50 1.00 1.00σ 28.88 29.85 27.75 28.37 28.01 28.98 23.20 23.98 28.16 28.66 27.20 27.97 0.77

75 1.00 1.00σ 26.24 27.32 25.74 26.40 25.23 26.85 19.93 21.88 25.73 26.72 24.57 25.83 1.26

100 1.00 1.00σ 25.21 25.39 24.50 24.99 23.69 24.59 17.98 19.61 24.17 25.03 23.11 23.92 0.81

NLM [7]

σ
SOS params Foreman Lena House Fingerprint Peppers Average

ρ σ̂ Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Imprv.

10 0.10 1.20σ 35.55 36.13 34.32 34.72 34.93 35.39 31.04 31.45 34.02 34.37 33.97 34.41 0.44

20 0.10 1.10σ 32.78 33.15 31.59 31.84 32.40 32.86 27.26 27.55 31.49 31.78 31.10 31.44 0.34

25 0.40 1.10σ 31.26 31.88 30.51 30.88 31.22 31.87 26.20 26.22 30.47 30.85 29.93 30.34 0.41

50 0.50 1.05σ 27.62 28.05 27.31 27.57 27.42 28.00 23.00 23.06 26.79 26.97 26.43 26.73 0.30

75 0.60 1.05σ 25.38 26.06 25.12 25.75 24.59 25.49 20.84 21.13 24.63 24.94 24.11 24.67 0.56

100 0.60 1.05σ 23.82 24.21 23.71 24.17 23.07 23.45 19.50 19.67 23.27 23.65 22.67 23.03 0.36

BM3D [13]

σ
SOS params Foreman Lena House Fingerprint Peppers Average

ρ σ̂ Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Imprv.

10 0.05 1.02σ 37.23 37.24 35.84 35.85 36.54 36.55 32.46 32.47 34.96 34.96 35.40 35.41 0.01

20 0.11 1.03σ 34.50 34.55 33.00 33.02 33.81 33.81 28.82 28.83 32.67 32.68 32.56 32.58 0.02

25 0.18 1.04σ 33.41 33.48 32.02 32.04 32.90 32.90 27.72 27.72 31.87 31.89 31.58 31.61 0.03

50 0.25 1.04σ 30.22 30.36 28.98 29.00 29.68 29.80 24.57 24.59 29.09 29.14 28.51 28.58 0.07

75 0.43 1.04σ 28.09 28.30 27.15 27.21 27.73 27.95 22.84 22.88 27.09 27.11 26.58 26.69 0.11

100 0.43 1.11σ 26.16 26.42 25.77 25.82 25.74 25.93 21.56 21.67 25.72 25.81 24.99 25.13 0.14

EPLL [53]

σ
SOS params Foreman Lena House Fingerprint Peppers Average

ρ σ̂ Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Imprv.

10 0.09 1.11σ 36.98 37.09 35.53 35.66 35.67 35.73 32.12 32.33 34.82 34.93 35.02 35.15 0.13

20 0.09 1.11σ 33.70 34.03 32.57 32.77 33.06 33.33 28.26 28.49 32.48 32.69 32.01 32.26 0.25

25 0.18 1.11σ 32.44 32.78 31.62 31.84 32.07 32.38 27.14 27.30 31.59 31.87 30.97 31.23 0.26

50 0.43 1.11σ 29.24 29.60 28.39 28.66 28.78 29.24 23.63 23.69 28.67 29.00 27.74 28.04 0.30

75 0.43 1.11σ 27.17 27.55 26.53 26.85 26.78 27.28 21.51 21.54 26.73 27.10 25.74 26.06 0.32

100 0.43 1.11σ 25.58 25.91 25.23 25.49 25.08 25.47 19.77 19.77 25.36 25.73 24.20 24.47 0.27
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1206 YANIV ROMANO AND MICHAEL ELAD

(a) Noisy image (b) KSVD, 31.20 (c) NLM, 30.02 (d) BM3D, 31.88 (e) EPLL, 30.88

(f) Algo. 1, 31.85 (g) SOS KSVD,31.91 (h) SOS NLM, 30.56 (i) SOS BM3D, 31.94 (j) SOS EPLL, 31.15

Figure 3. Visual and PSNR comparisons between standard denoising and boosting outcomes of a 100×120
cropped region from noisy image House (σ = 25).

These are also the first estimates of the SOS boosting (i.e., x̂1). In the case of the K-SVD
denoising [15], at the first SOS step we apply 20 iterations of sparse-coding and dictionary
update, while at the remaining SOS steps we apply only two such iterations (we found this
to be a convenient compromise between runtime and performance). We operate the K-SVD
[15], NLM [7], BM3D [13], and EPLL [53] for 30, 2, 3, and 4 SOS steps, respectively.

The ‘Average Imprv.” column in Table 1 indicates that the SOS boosting achieves an
improvement over the original denoising algorithms. More specifically, for all denoising al-
gorithms, images, and noise levels, the SOS outcomes are at least as good as the original
results and, more importantly, usually better (in terms of PSNR). A clear improvement over
the whole range of noise-levels is achieved for the K-SVD [15], NLM [7, 6], and EPLL [53].
While in the case of the BM3D [13], we succeed in improving it slightly, mainly for high noise
energy. The fact that the BM3D performance is very close to the denoising bound posed in
[28] explains the difficulties in improving it. A visual comparison is given in Figures 3, 4, and
5, illustrating the effectiveness of the SOS boosting. Compared to the original results, the
SOS offers better restoration of edges (in the case of the K-SVD, focus on the house’s roof,
the foreman’s eye and ear, and Lena’s hat). In addition, the SOS obtains cleaner estimations
(when using the NLM) and fewer artifacts (for the EPLL and somewhat also for the BM3D).

In the context of the K-SVD denoising, based on (3.25), we demonstrate the effect of τ∗

on the SOS recursive function. Note that we do not test its influence on the other denoising
algorithms because the information about their eigenvalues’ range, which is required in (3.25),
is not derived. Figure 6 plots the average PSNR over the test images (σ = 50), as a functionD
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(a) Noisy image (b) KSVD, 33.72 (c) NLM, 31.64 (d) BM3D, 34.66 (e) EPLL, 33.62

(f) Algo. 1, 34.37 (g) SOS KSVD,34.38 (h) SOS NLM, 32.28 (i) SOS BM3D, 34.71 (j) SOS EPLL, 34.09

Figure 4. Visual and PSNR comparisons between standard denoising and boosting outcomes of a 100×150
cropped region from noisy image Foreman (σ = 25).

of the SOS-step, for three different parameter settings: First, as a baseline, we apply the SOS
with ρ = 1 and τ = 1 (without using the closed-form expression for τ∗). Second, we improve
the convergence rate by using τ∗ with the same signal-emphasis factor (ρ = 1). Third, we
plot the PSNR obtained by the couple that leads to the best restoration (ρ = 1.1 with the
corresponding τ∗). As a reminder, according to section 3.3 and Appendix D, the parameters
ρ and τ affect the conditions for convergence and its rate. More specifically, a modification
of ρ without an adjustment of τ may violate the condition for convergence (e.g., according
to condition (3.22), the couple ρ = 1.1 and τ = 1 results in γ > 1). Therefore, using the
parameter τ∗ enables modification of ρ without violating the requirements for convergence,
even leading to the fastest rate of convergence. These results are consistent with Table 2,
which lists the achieved PSNR when applying the SOS for 30 steps using the best ρ and τ∗

(per noise level). As can be seen, τ∗ not only results in a faster convergence but also allows a
stronger emphasis of the estimated signal, thus leading to better restoration.

6.2. Sharing the disagreement. We demonstrate the effectiveness of the local-global in-
terpretation of the SOS boosting, which was described in section 4. The denoising results
of Table 3 are obtained by applying Algorithm 1 for 30 steps, where each step includes twoD

ow
nl

oa
de

d 
06

/0
3/

15
 to

 1
32

.6
8.

46
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1208 YANIV ROMANO AND MICHAEL ELAD

(a) Noisy image (b) KSVD, 33.06 (c) NLM, 32.13 (d) BM3D, 34.03 (e) EPLL, 33.29

(f) Algo. 1, 33.56 (g) SOS KSVD,33.48 (h) SOS NLM, 32.41 (i) SOS BM3D, 34.07 (j) SOS EPLL, 33.56

Figure 5. Visual and PSNR comparisons between standard denoising and boosting outcomes of a 100×120
cropped region from noisy image Lena (σ = 20).

Figure 6. Demonstration of the effect of τ∗ on the SOS boosting outcome for the K-SVD denoising (σ = 50).

sparse-coding and dictionary update iterations. The initial dictionary is obtained by applying
20 iterations of the K-SVD algorithm. Similarly to the SOS boosting, we tune the parameter
σ̂ for each input σ (this variant is limited to ρ = 1 and τ = 1).

According to Table 3, for all images and noise levels, “sharing the disagreement” boosting
achieves a clear improvement over the original K-SVD algorithm [15]. Notice the resemblance
and the differences in the PSNR values between Table 3 and the K-SVD part in Table 1.
In general, the differences originate from the nonlinearity of the denoising algorithm; the
input patch to the sparse-coding step differs between the SOS and its local-global variant.
As a reminder, the equivalence between these two approaches is valid under the assumption
of a fixed filter-matrix (see Appendix C for more details). Furthermore, in the case of SOSD
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Table 2
Denoising results (PSNR) of the K-SVD [15] and its SOS boosting outcomes, where we use the parameter

τ∗ (according to (3.25)) along with the appropriate ρ and σ̂. The best results for each image and noise level
are highlighted.

σ
SOS params Foreman Lena House Fingerprint Peppers Average

ρ σ̂ Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Orig SOS Imprv.

10 0.30 1.00σ 36.92 37.14 35.47 35.58 36.25 36.49 32.27 32.35 34.68 34.72 35.12 35.26 0.14

20 0.60 1.00σ 33.81 34.11 32.43 32.68 33.34 33.62 28.31 28.54 32.29 32.35 32.04 32.26 0.22

25 1.00 1.00σ 32.83 33.12 31.32 31.65 32.39 32.74 27.13 27.46 31.43 31.53 31.02 31.30 0.28

50 1.10 1.00σ 28.88 29.86 27.75 28.42 28.01 29.05 23.20 24.03 28.16 28.68 27.20 28.01 0.81

75 1.20 1.00σ 26.24 27.36 25.74 26.50 25.23 27.08 19.93 22.02 25.73 26.80 24.57 25.95 1.38

100 1.20 1.00σ 25.21 25.46 24.50 25.09 23.69 24.70 17.98 19.93 24.17 25.17 23.11 24.07 0.96

Table 3
Comparison between the denoising results (PSNR) of the original K-SVD algorithm [15] and its “sharing the

disagreement” boosting outcome (Algorithm 1). The best results for each image and noise level are highlighted.

σ σ̂
Foreman Lena House Fingerprint Peppers Average

Orig Boost Orig Boost Orig Boost Orig Boost Orig Boost Orig Boost Imprv.

10 1.08σ 36.92 37.13 35.47 35.58 36.25 36.34 32.27 32.35 34.68 34.70 35.12 35.22 0.10

20 1.02σ 33.81 34.11 32.43 32.68 33.34 33.56 28.31 28.59 32.29 32.37 32.04 32.26 0.22

25 1.02σ 32.83 33.17 31.32 31.64 32.39 32.71 27.13 27.47 31.43 31.60 31.02 31.32 0.30

50 1.00σ 28.88 29.37 27.75 28.28 28.01 28.67 23.20 24.04 28.16 28.55 27.20 27.78 0.58

75 1.00σ 26.24 27.04 25.74 26.28 25.23 26.54 19.93 21.76 25.73 26.52 24.57 25.63 1.06

100 1.00σ 25.21 25.28 24.50 24.91 23.69 24.43 17.98 19.82 24.17 24.92 23.11 23.87 0.76

boosting, more freedom is obtained by tuning the parameters ρ and τ , which may lead to better
utilization of the prior (as shown in Figure 6 and Table 2). However, visually, according to
Figures 3, 4, and 5, the outcomes of the SOS and its local-global variant are very similar;
both of them effectively improve the restoration of the underlying signal.

To conclude, we demonstrate the potential of the SOS boosting and its local-global in-
terpretation. The proposed algorithm achieves a clear and meaningful improvement over the
examined state-of-the-art denoising algorithms, both visually and in terms of PSNR.

7. Conclusions and future directions. We have presented the SOS boosting, a generic
method for improving various image denoising algorithms. The improvement is achieved by
treating the denoiser as a black-box and repeating three simple SOS steps: (i) Strengthening
the signal, (ii) Operating the denoising algorithm, and (iii) Subtracting the previous denoised
image from the result. In addition, we provided an interesting local-global interpretation,
called “sharing the disagreement” boosting, indicating that the SOS boosting not only lever-
ages the improved SNR of the estimates but also reduces the gap between the local patch
processing and the global need for a whole denoised image, all in the context of the K-SVD
denoising algorithm. We also constructed the matrix-formulation of the K-SVD (and similar
algorithms), showing that its eigenvalues are in the range of 0 to 1. Under these conditions,
we have studied the convergence of the SOS boosting recursive function, leading to the conclu-D
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1210 YANIV ROMANO AND MICHAEL ELAD

sion that for various known denoising algorithms, the SOS boosting is guaranteed to converge.
Moreover, a generalization of the SOS function has been obtained by introducing two param-
eters that govern the steady-state result and soften the requirements for convergence (the
eigenvalues’ range) and the rate of convergence. We also provided a closed-form expression
for the parameter that leads to the fastest convergence.

Finally, we have introduced a graph-based interpretation, showing that the SOS boosting
acts as a graph Laplacian regularization method, thus effectively estimating the structure of
the underlying signal. Inspired by the SOS scheme, we suggested novel recursive algorithms
that treat the denoiser as a black-box in order to minimize related graph Laplacian objective
functions, without explicitly constructing the weighted graph.

The proposed algorithm is easy to use, it reduces the local-global gap, acting as a graph
Laplacian regularizer, it is applicable to a wide range of denoising algorithms, and it converges.
These attributes make it a powerful and convenient tool for improving various denoising
algorithms, as demonstrated in the experiments.

It is intriguing to study the proposed iterative algorithms that are defined in section 5
(which minimize different graph Laplacian cost functions). They may lead to better results
than the original methods due to the nonlinearity of the denoiser and its adaptivity to the
signal-strengthened image. We hope that other restoration problems, such as superresolution
[34] and interpolation/inpainting [38], could also benefit from a similar concept.

Appendix A. Periodic boundary condition. Following (2.8), the periodic boundary con-
dition affects the term

∑N
i=1 R

T
i Ri, which is a diagonal matrix that counts the number of

appearances per pixel in the final patch-averaging. Due to boundary effects, the values along
the diagonal in this matrix are different (since the number of overlapping patches in the
image borders is smaller than in other areas). As shown in Appendix B, the numerator of
Equation (2.8) is a symmetric and positive definite matrix. Each row of this matrix is nor-
malized by the number of overlapping patches, i.e., by the corresponding diagonal element
from (μI +

∑N
i=1R

T
i Ri). As a result, the rows and columns are normalized by different con-

stants which ruin the symmetric property. By assuming the periodic boundary condition, all
the pixels have the same number of representations, which equals to the patch size. In this
case, we get

∑N
i=1R

T
i Ri = nI, where n is the patch size, and thus the rows and columns are

normalized by the same constant, which preserves the symmetric property of W.

Appendix B. Properties of the K-SVD filter-matrix.
Proof of property 1: Symmetric W = WT . Following (2.8) and based on the assumption

of the periodic boundary condition (see Appendix A), the matrix W can be expressed as

W=

(
μI +

N∑
i=1

RT
i Ri

)−1(
μI +

N∑
i=1

RT
i Dsi

(
DT

siDsi

)−1
DT

siRi

)
(B.1)

= (μI + nI)−1

(
μI +

N∑
i=1

RT
i Dsi

(
DT

siDsi

)−1
DT

siRi

)

=
1

μ+ n

(
μI +

N∑
i=1

RT
i Dsi

(
DT

siDsi

)−1
DT

siRi

)
.

D
ow

nl
oa

de
d 

06
/0

3/
15

 to
 1

32
.6

8.
46

.1
00

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOOSTING OF IMAGE DENOISING ALGORITHMS 1211

Notice that the term Zi = RT
i Dsi(D

T
siDsi)

−1DT
siRi is symmetric (in fact, it is also positive

semidefinite (PSD), as it is built of RT
i ẐiRi, where Ẑi is a projection matrix [22]). Thus,

W is built as a sum of N + 1 matrices, each of them symmetric, which leads to the claimed
symmetry, W = WT .

Proof of properties 2 and 3: Positive definite W � 0 and λmin(W) ≥ μ
μ+n . As we have

seen above, W can be written as

W=
μ

μ+ n
I +

1

μ+ n

N∑
i=1

(
RT

i Dsi

(
DT

siDsi

)−1
DT

siRi

)
(B.2)

=
μ

μ+ n
I +

1

μ+ n

N∑
i=1

Zi

= bI +A,

where A = 1
μ+n

∑N
i=1Zi and b = μ

μ+n > 0. As mentioned above, Zi is PSD, and therefore,
according to (B.2), A is a linear combination of Zi � 0; thus it is PSD as well [22]. Finally,
based on the fact that the eigenvalues of A + bI are lower-bounded by b > 0, we get that
W � 0, with minimal eigenvalue satisfying

λmin(W) ≥ b =
μ

μ+ n
.(B.3)

Proof of property 4 (and 5): W1 = WT 1 = 1. This property originates directly from the
K-SVD denoising algorithm, which preserves the DC component of the image. In general, the
trained dictionary is adapted to the image patches after their DC is removed. Once trained,
the DC is returned as an additional atom d0. Thus, this DC atom is necessarily orthogonal
to the rest of the dictionary atoms. Each patch is represented by

Dsi = [d0, d1, d2, . . .] = [d0, D̃si ],(B.4)

where d0 ∈ R
n is the DC atom (the DC atom is included if the mean of the patch is not zero),

and for the rest of the atoms (if any), dTi d0 = 0, i.e., dT0 D̃si = 0. Note that the Gram matrix
in this case is block-diagonal:

DT
siDsi =

[
1 0

0 D̃T
siD̃si

]
.(B.5)

Following (B.2), when multiplying W by a constant image, 1, we get

W1 =
μ

μ+ n
1 +

1

μ+ n

N∑
i=1

Zi1.(B.6)

Let us look at the term Zi1:

Zi1 = RT
i Dsi

(
DT

siDsi

)−1
DT

siRi1.(B.7)
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1212 YANIV ROMANO AND MICHAEL ELAD

(a) Ω1 (b) Ω2 (c) Ω3 (d) Ω4

Figure 7. Dividing r× c = 6× 6 input image (its pixels are numbered in 1, 2, . . . , 36) into
√
n×√

n = 2× 2
overlapping patches (solid squares in different colors). We assume a cycling processing of the patches (periodic
boundary condition); thus there are N = 36 such patches, which can be divided into {Ωj}4j=1 possible distinct
groups of nonoverlapping patches: (a) Ω1, without any shift; (b) Ω2, down shift; (c) Ω3, right shift; (d) Ω4,
down and right shift.

Ri1 = 1; this is a shorter constant vector of length n. DT
si1 = [n, 0, 0, . . .]T due to the orthog-

onality of the rest of the atoms to the DC. Multiplication of the inverse of DT
siDsi results in

[n, 0, 0, . . .]T . The outcome of Dsi [n, 0, 0, . . .]
T = nd0 = 1 is the desired DC patch of length n.

Finally, RT
i returns the resulting constant patch back to its original location in the image.

Returning to (B.6), the input image 1 is divided into N overlapping patches (one per pixel)
of length n, where each DC patch is represented perfectly by Zi. Since each pixel appears in
n patches, we get that

∑N
i=1 Zi1 = n1. As a result, W1 = μ

μ+n1 +
n

μ+n1 = 1 preserves the DC

of the image. Based on the symmetric property of W, we get that WT 1 = W1 = 1.

Proof of property 6 (and 7): ‖W‖2 = 1. In order to denoise the image, we break it into√
n × √

n overlapping patches. The following proof relies on the observation that we can
divide the N overlapping patches into {Ωj}nj=1 distinct groups of nonoverlapping patches, as
demonstrated in Figure 7. As a consequence, the matrix W, which is a sum over N projection
matrices (one for each patch), can be expressed as a sum over n distinct groups:

W=
μ

μ+ n
I +

1

μ+ n

N∑
i=1

(
RT

i Dsi

(
DT

siDsi

)−1
DT

siRi

)
(B.8)

=
μ

μ+ n
I +

1

μ+ n

N∑
i=1

(
RT

i ẐiRi

)

=
μ

μ+ n
I +

1

μ+ n

n∑
j=1

⎡
⎣∑
k∈Ωj

(
RT

k ẐkRk

)⎤⎦

=
μ

μ+ n
I +

1

μ+ n

n∑
j=1

W̃j.

Based on the property that RkR
T
l = 0 for all (k �= l) ∈ Ωj, the following shows that W̃j isD
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an idempotent matrix:

(W̃j)
2=

⎡
⎣∑
k∈Ωj

(RT
k ẐkRk)

⎤
⎦
⎡
⎣∑
l∈Ωj

(RT
l ẐlRl)

⎤
⎦(B.9)

=
∑
k∈Ωj

(
RT

k ẐkRk

)(
RT

k ẐkRk

)

=
∑
k∈Ωj

(
RT

k ẐkẐkRk

)

=
∑
k∈Ωj

(
RT

k ẐkRk

)

= W̃j,

where we have used the equality RkR
T
k = I ∈ R

n×n, and

(Ẑk)
2=
(
Dsi

(
DT

siDsi

)−1
DT

si

)(
Dsi

(
DT

siDsi

)−1
DT

si

)
(B.10)

= Dsi

(
DT

siDsi

)−1
DT

si

= Ẑk.

As a result, following (B.9), we can infer that ‖W̃j‖2 = 1 [22]. Finally, using the matrix-norm
inequalities, we get

‖W‖2=
∥∥∥∥ μ

μ+ n
I +

1

μ+ n

n∑
j=1

W̃j

∥∥∥∥
2

(B.11)

≤ μ

μ+ n
· ‖I‖2 + 1

μ+ n
·

n∑
j=1

‖W̃j‖2

=
μ

μ+ n
+

n

μ+ n

= 1.

To conclude, based on the above and by relying on the property that 1 is an eigenvalue of W,
we get that λmax(W) = 1, i.e., ‖W‖2 = 1.

Proof of property 8: ‖W − I‖2 ≤ n
μ+n . In general, the eigenvalues of A + bI are bigger

than the eigenvalues of A by the constant b [22]. Therefore, the eigenvalues of (W − I) are
equal to λ(W)− 1. Based on μ

μ+n ≤ λ(W) ≤ 1, we get that

‖W − I‖2 ≤ |λmin(W) − 1|(B.12)

=

∣∣∣∣ μ

μ+ n
− 1

∣∣∣∣
=

n

μ+ n
.
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1214 YANIV ROMANO AND MICHAEL ELAD

Appendix C. Equivalence between the SOS boosting and sharing the disagreement
procedure. In the context of the K-SVD image denoising [15], we show an equivalence be-
tween the SOS boosting recursive function (1.4) and the disagreement and sharing approach
(Algorithm 1). The following study assumes fixed supports and dictionary during the iter-
ations, i.e., the projection matrix Dsi of the ith patch is known and fixed. In addition, a
periodic boundary is considered (see Appendix A), and we use the K-SVD matrix form (see
(B.1)) with μ = 0, i.e.,

W=
1

n

N∑
i=1

RT
i Dsi

(
DT

siDsi

)−1
DT

siRi(C.1)

=
1

n

N∑
i=1

RT
i ẐiRi.

Following Algorithm 1, we denote by pk
i the kth iteration input patch to the denoising

algorithm, which is influenced by the neighbors’ information. Using the projection matrix
Ẑi = Dsi(D

T
siDsi)

−1DT
si , let us compute the disagreement patch—the difference between an

independent denoised patch, as defined in (2.6),

p̂k
i = Ẑip

k
i ,(C.2)

and its corresponding patch from the global outcome (after patch-averaging), Rix̂
k, thus

expressed by

qk
i = p̂k

i −Rix̂
k.(C.3)

Next, we subtract the disagreement patch from the corresponding noisy one, i.e.,

pk+1
i = Riy− qk

i(C.4)

= Riy− p̂k
i +Rix

k

= Riy− Ẑip
k
i +Rix

k.

Following (C.2), the denoised version of pk+1
i is given by

p̂k+1
i = Ẑip

k+1
i(C.5)

= ẐiRiy − ẐiẐip
k
i + ẐiRix̂

k

= ẐiRiy − Ẑip
k
i + ẐiRix̂

k

= ẐiRi

(
y+ x̂k

)
− p̂k

i ,

where we use the idempotent property of Ẑi. Similarly to (2.8) and based on (C.1), the globalD
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Figure 8. Illustration of φ(τ, ρ, λ), the eigenvalues of the SOS error’s transition matrix (in absolute value),
as a function of τ . The dashed (blue), solid (black), and dotted (magenta) lines correspond to φ with the
arguments λmin, λi, and λmax, respectively. The horizontal black dash-dotted line denotes the condition for
convergence, determining the values of τmin and τmax (red circles). The highlighted line illustrates the function
maxi φ(τ, ρ, λi), where τ∗ obtains its minimal value (green circle).

denoised image is formulated by

x̂k+1 =
1

n

N∑
i=1

RT
i p̂

k+1
i(C.6)

=
1

n

N∑
i=1

RT
i

(
ẐiRi

(
y + x̂k

)
− p̂k

i

)

=

(
1

n

N∑
i=1

RT
i ẐiRi

)(
y+ x̂k

)
− 1

n

N∑
i=1

RT
i p̂

k
i

= W
(
y + x̂k

)
− x̂k.

Thus, the SOS boosting (see (1.4)) and the “sharing the disagreement” algorithms are equiv-
alent for a fixed W.

Appendix D. Seeking the fastest convergence. We aim to provide conditions for the
SOS algorithm to converge in terms of the parameters ρ and τ and in addition get closed-form
expression for τ∗, the solution of (3.23). The eigenvalues of the SOS error’s transition matrix
(in absolute value) are formulated by

φ(τ, ρ, λi) = |τ(ρλi − ρ− 1) + 1|,(D.1)

where {λi}Ni=1 are the eigenvalues of W. In the following analysis we shall assume that λi ≤ 1.
Figure 8 plots φ(τ, ρ, λmin), φ(τ, ρ, λi), and φ(τ, ρ, λmax) as a function of τ for ρ > 0. As can
been seen, φ has a negative slope for 0 ≤ τ ≤ 1

ρ+1−ρλi
and a positive slope for τ > 1

ρ+1−ρλi
.

All of these are true under the assumption that ρλi− ρ− 1 < 0, which always holds for λi = 1
and for

ρ > ρmin = min
i

−1

1− λi
∀λi �= 1.(D.2)

Next, we shall find the valid range of τ ∈ (τmin, τmax), satisfying φ < 1. Following Figure
8, the minimal τ that leads to an intersection with φ = 1 is

τmin = 0.(D.3)
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1216 YANIV ROMANO AND MICHAEL ELAD

Figure 9. Demonstration of maxi φ(τ, ρ, λ) for λ ∈ [0.1, 1], where cold and warm colors indicate small and
large values, respectively. The magenta dash-dotted, dashed, and solid lines plot the boundaries for convergence,
corresponding to τmax, τmin, and ρmin, respectively. The white dotted line plots the analytic expression of τ∗

as a function of ρ.

Then, by increasing τ we get φ < 1, until reaching τmax—the first τ > τmin that obtains
φ = 1 again. As demonstrated in Figure 8, for ρ > 0 we get τmax = 2

ρ+1−ρλmin
, while for

ρ < 0 we get τmax = 2
ρ+1−ρλmax

; thus

τmax = min

{
2

ρ+ 1− ρλmin
,

2

ρ+ 1− ρλmax

}
.(D.4)

The obtained conditions on ρ and τ are illustrated in Figure 9, which plots the function
maxi φ(τ, ρ, λi) for λ ∈ [0.1, 1], where φ < 1. As can be seen, ρmin, τmin, and τmax perfectly
bound the valid range for convergence.

We now turn to discuss τ∗, the solution of (3.23),

τ∗ = min
τ

max
1≤i≤N

φ(τ, ρ, λi) s.t. ∀i φ(τ, ρ, λi) < 1.

Following Figure 8, under the obtained conditions on ρ and τ , we seek the minimum value
of the highlighted graph (the green circle). As can be seen, τ∗ is obtained by the following
equality:

φ(τ∗, ρ, λmin) = φ(τ∗, ρ, λmax).(D.5)

Based on condition (D.2), we can infer that

φ(τ∗, ρ, λmin) = −τ∗(ρλmin − ρ− 1)− 1(D.6)

and

φ(τ∗, ρ, λmax) = τ∗(ρλmax − ρ− 1) + 1.(D.7)

Substituting (D.6) and (D.7) into (D.5) leads to

τ∗ =
2

2(ρ+ 1)− ρ(λmin + λmax)
.
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In addition, by substituting τ∗ into (D.7) we get

γ∗ =
ρ(λmax − λmin)

2(ρ+ 1)− ρ(λmin + λmax)
.

An illustration that τ∗ obtains the minimal eigenvalue of the error’s transition matrix is
shown in Figure 9, as a curve running through all possible values of ρ. Note that the fastest
convergence is obtained for the couple τ = 1 and ρ = 0 (γ∗ = 0), i.e., applying the original
denoising algorithm only once, without any SOS step. However, as we aim to improve the
denoising performance by strengthening the underlying signal (setting ρ �= 0), this choice of
parameters is meaningless.
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