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Noise Removal

Our story begins with signal/image denoising ...

Remove ‘)
Additive

Noise @

100 years of activity — numerous algorithms.

1 Considered Directions include: PDE, statistical estimators,
adaptive filters, inverse problems & regularization, sparse
representations, ...
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Shrinkage For Denoising

O Shrinkage is a simple yet effective denoising
algorithm [Donoho & Johnstone, 1993].

O Justification 1: minimax near-optimal over the
Besov (smoothness) signal space (complicated!!n).

LUT |
Apply Apply Inv.
Wavelet > Wavelet
Transform Transform

O Justification 2: Bayesian (MAP) optimal [simoncelli & Adelson 1996, Moulin & Liu 1999].

O In both justifications, an additive Gaussian white noise and a unitary
transform are crucial assumptions for the optimality claims.
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Redundant Transforms?

Number of coefficients .

O This sohemedisstill Epplicable, and it works fine (tested with curvelet,

contolirlét Gfdetiniated wavelet, and more).
samples (pixels)
L However, it is no ionger the optimal solution for the MAP criterion.
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Agenda

1. Bayesian Point of View — a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?

Is shrinkage is relevant? Why? How?

3. Conclusions

Thomas Bayes
1702 - 1761
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The MAP Approach

Minimize the following function with respect to x:

N L

Unknown to be Given

recovered measurements
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Image Prior?

During the past several decades we have made all sort of
guesses about the prior Pr(x):

Prix) =1y Prix)=njLxl;  Prix)=2xfy,  Pr(x)=2piLx]

@ Energy é@SmoothneSS

Prix) = 1|V,

L: Robust
7\ Statistics

e Mumford & Shah formulation,

e Compression algorithms as priors,

£y Total-
1> Variation
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(Unitary) Wavelet Sparsity

1
flx) =~ x - |, + 2w,

2
L, is HWH yi‘ s
unitarily
Invariant

1.~ A ~
f(0)= SR -9, [,
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Define

X = WXx
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x = WHR



Why Shrinkage?

Want to minimize this 1-D (2) 1 (z—af + Az
function with respect to z

LUT |

(a— )\ a>
Zopt =4 O lal <&
ka+x a< -\

A LUT can be built for any other robust
function (replacing the |z|), including non-
convex ones (e.g., Ly, norm)!!
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Agenda

»
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1. Bayesian Point of View — a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?

Is shrinkage is relevant? Why? How?

3. Conclusions
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An Overcomplete Transform

Redundant transforms are important because they can
() Lead to a shift-invariance property,
(i) Represent images better (because of orientation/scale analysis),

(i) Enable deeper sparsity (and thus give more structured prior).
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Analysis versus Synthesis

. _HX yH2+k HTXH1

flo)=2

Analysis
Prior:

Tt yH + ol

\ 4

SUES 1
P?/igtr: o -: EHDQ B XH? A H@Hl Basis Pursuit

» D - Arg min f (o) = Arg min f(x) .

+
.. —.—.e—_—_—_ Ml
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Basis Pursuit As Objective

Our Objective: f(a _H-Hz + - |,

\ 4

Getting a sparse solution implies that y
IS composed of few atoms from D
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Sequential Coordinate Descent

Our objective
— 1 2 Set j:].
fo)=~|Da-y[s+7. |a, |
Fix all entries of o apart
from the j-th one

d The unknown, «, has k entries. ‘

O How about optimizing w.r.t. Optimize with
each of them sequentially? respect to o

1 The objective per each becomes ‘

— _ J=)J+1 mod k
f(z)= %H zd; —XHi + Az
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We Get Sequential Shrinkage

We had this 1-D f(z) _ E(Z 5 a)2 N 7“‘2‘

function to minimize 2
(a— A a> A
and the solution was  zgne =S{a,Aj=1 O al <
a+A a< -\
Our 1-D objective is  f(z)= lH zdj -y Hz +AlZ
? — 112
: _ KQHz oy |
and the solution now is zgp = S3 |
\HQJHZ HQJHZ,
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Sequential? Not Good!!

g

O This method requires drawing
one column at a time from D.

L In most transforms this is not
comfortable at all I!!
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How About Parallel Shrinkage?

i)ur objective
~ 2
fla)= EH Do —y |, + 2+ el

For j=1:k

'

Compute the descent

direction per a; : ;.

d Assume a current solution a.,.

1 Using the previous method, we
have k descent directions

obtained by a simple shrinkage. Update the solution by

J How about taking all of them at Ol = O
once, with a proper relaxation?

 Little bit of math lead to ...
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The Proposed Algorithm

Initialize a5=0 & k=0.
The synthesis error

Back-projection to the signal domain

Compute Shrinkage operation

Update by line-search

QRVE diag‘l{DHD}
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The First Iteration — A Closer Look
Initialize a5=0 & k=0.

Compute

S
- Qg = G ""“(@T —Qk)

1
2
3. e3 =S{gT +gk,xw.1}
A
5. k=k+1

(*) W= diag‘l{DHD}
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Relation to Simple Shrinkage
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A Simple Example

Minimize
-~ 1 2 ) Steepest Descent
f (a) = — H D(l — y H + 7\‘ . HGH Sequential Shrinkage
i 2 — =12 =1 ) - - Parallel Shrinkage with line-search | _
- — MATLAB'’s fminunc

D: a 100x1000, union of 10

random unitary matrices,
y: Da, with o having 15 non-

o
=
[
>
=
.2
=
(8]
=
>
=
o
=
=
3]
g
2
(@)

zeros in random locations,

7\‘:11 g0:Q1

Line-Search: Armijo ‘ 2

Iteration
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Image Denoising

Minimize

fla)= 5[ Da-y[5 +7.-[wal,

e The Matrix W gives a
variance per each
coefficient, learned from
the corrupted image.

e D is the contourlet
transform (recent version).

e The length of o.: ~1e+6.

e The Seq. Shrinkage
algorithm can no longer be
simulated

. Objective function

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Iterations

\ 4
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Image Denoising

Minimize 1 Denoising PSNR
~ 1 2
Fla)-]0a - y 2+ & |l I
— I I [
Evaluate |D@& - Xrue Hg / /

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Iterations

\ 4



Image Denoising

Original Noisy
Image = Image with
- 6=20
Iterated Iterated
Shrinkage — Shrinkage —

second iteration
PSNR=31.05dB

First Iteration
PSNR=28.30dB
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Closely Related Work

O The “same” algorithm was derived in several other works:
e Sparse representation over curvelet
e E-M algorithm for image restoration

- Iterated Shrinkage for problems of the form Minimize |Kx -y H; + - W,

1 The work proposed here is different in several ways:

. Shrinkage for redundant representation, rather than general
inverse problems.

. We used a parallel CD-algorithm, and others used the EM or a
sequence of surrogate functions.

. We obtain a slightly different algorithm, where the norms of the
atoms are used differently, different thresholds are used, the choice of p is
different.
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Agenda

Bayesian Point of View — a Unitary Transform
Optimality of shrinkage

What About Redundant Representation?

Is shrinkage is relevant? Why? How?

Conclusions
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Conclusion

Shrinkage is an For additive

appealing signal Gaussian noise What if the
denoising and unitary transform is
technique transforms redundant?

Compute all the
CD directions,
and use the Go

average Parallel [WUACKWEIS  Option 1: apply

Getting what? LIRS sequential coordinate
extract )
descent which leads
atoms?

We obtain a very easy to implement ht'o Iii Sequlentl_aL
parallel shrinkage algorithm that shrinkage algorithm

requires forward transform, scalar
shrinkage, and inverse transform.
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