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Noise Removal 

Our story begins with signal/image denoising …

Remove 
Additive 
Noise

100 years of activity – numerous algorithms.

Considered Directions include: PDE, statistical estimators, 
adaptive filters, inverse problems & regularization, sparse 
representations, …
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Shrinkage For Denoising 

Shrinkage is a simple yet effective denoising 
algorithm [Donoho & Johnstone, 1993].

Justification 1: minimax near-optimal over the 
Besov (smoothness) signal space (complicated!!!!).

Apply 
Wavelet 

Transform

Apply Inv. 
Wavelet 

Transform

LUT

Justification 2: Bayesian (MAP) optimal [Simoncelli & Adelson 1996, Moulin & Liu 1999].

In both justifications, an additive Gaussian white noise and a unitary
transform are crucial assumptions for the optimality claims.
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Redundant Transforms? 

Apply its 
(pseudo) 
Inverse 

Transform

LUT

This scheme is still applicable, and it works fine (tested with curvelet,  
contourlet, undecimated wavelet, and more). 

However, it is no longer the optimal solution for the MAP criterion.

Number of coefficients 
is (much) greater than 
the number of input 

samples (pixels)

Apply 
Redundant 
Transform

TODAY’S FOCUS: 

IS SHRINKAGE STILL RELEVANT WHEN HANDLING  
REDUNDANT (OR NON-UNITARY) TRANSFORMS?                    

HOW? WHY?
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions

Thomas Bayes
1702 - 1761
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The MAP Approach 

Minimize the following function with respect to x:

( ) ( )xPryx
2
1

xf
2
2

⋅λ+−=

Log-Likelihood 
term

Prior or 
regularization

Given 
measurements

Unknown to be 
recovered
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Image Prior?  

During the past several decades we have made all sort of 
guesses about the prior Pr(x):   

( ) { }xxPr Lλρ=

Robust 
Statistics

( ) 2
2xxPr Lλ=

Smoothness

( ) 2xxPr WLλ=

Adapt+ 
Smooth

( ) 2
2xxPr λ=

Energy

( )
1

xxPr ∇λ=

Total-
Variation

( ) 1xxPr Wλ=

Wavelet 
Sparsity

( ) 1xxPr Tλ=

Sparse & 
RedundantToday’s Focus

• Mumford & Shah formulation,

• Compression algorithms as priors, 

• …
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(Unitary) Wavelet Sparsity 

We got a separable set of 1D optimization problems

( ) 1
2
2

xyx
2
1

xf W⋅λ+−=

( )
1

2

2
H x̂yx̂

2
1

x̂f ⋅λ+−= W

( )
1

2
2

x̂ŷx̂
2
1

xf ⋅λ+−=

( ) ( )
1

2

2
H x̂ŷx̂

2
1

x̂f ⋅λ+−= W

( )∑ ⎥⎦
⎤

⎢⎣
⎡ λ+−=

k
k

2
kk x̂ŷx̂

2
1

L2 is 
unitarily 
invariant

xx̂ W=
Define

x̂x HW=
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Why Shrinkage? 

( ) ( ) zaz
2
1

zf 2 λ+−=Want to minimize this 1-D 
function with respect to z

A LUT can be built for any other robust 
function (replacing the |z|), including non-
convex ones (e.g., L0 norm)!!

⎪
⎩

⎪
⎨

⎧

λ−≤λ+
λ<
λ≥λ−

=
aa
a0
aa

zopt

LUT
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions

nk×ℜ∈T

k

n
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An Overcomplete Transform

( ) 1
2
2

xyx
2
1

xf T⋅λ+−=

T x= = =α

Redundant transforms are important because they can   
(i) Lead to a shift-invariance property,

(ii) Represent images better (because of orientation/scale analysis),

(iii) Enable deeper sparsity (and thus give more structured prior).
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Analysis versus Synthesis

( ) ( )xfminArgf
~

minArg
x

≠α⋅
α

DHowever

( ) 1
2
2

xyx
2
1

xf T⋅λ+−=
xT=α

Define

α= +Tx( ) 1

2

2
y

2
1

f
~

α⋅λ+−α=α +T

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D Basis Pursuit 

Analysis 
Prior:

Synthesis 
Prior:

( ) ( )xfminArgf
~

minArg
x

=α⋅
α=α +TT

D
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Basis Pursuit As Objective 

Our Objective:

Dα-y=           -
Getting a sparse solution implies that y 
is composed of few atoms from D

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D
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Sequential Coordinate Descent

Set j=1

Fix all entries of α apart 
from the j-th one

Optimize with 
respect to αj

j=j+1 mod k

The unknown, α, has k entries.

How about optimizing w.r.t. 
each of them sequentially?

The objective per each becomes 

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D

Our objective

( ) zy~dz
2
1

zf
~ 2

2j λ+−=
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We Get Sequential Shrinkage

{ }
⎪
⎩

⎪
⎨

⎧

λ−≤λ+
λ<
λ≥λ−

=λ=
aa
a0
aa

,azopt Sand the solution was

( ) ( ) zaz
2
1

zf 2 λ+−=We had this 1-D    
function to minimize 

BEFORE:

NOW: ( ) zy~dz
2
1

zf
~ 2

2j λ+−=Our 1-D objective is

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
λ

=
2

2j
2
2jd

y~H
jd

opt
d

,z Sand the solution now is
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Sequential? Not Good!!

Set j=1

Fix all entries of α apart 
from the j-th one

Optimize with 
respect to αj

j=j+1 mod k

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
λ

=α

α+α−=

2

2j
2
2jd

y~H
jdopt

j

jj

d
,

anddyy~

S

D

This method requires drawing 
one column at a time from D.

In most transforms this is not 
comfortable at all !!!
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How About Parallel Shrinkage? 

Assume a current solution αn.

Using the previous method, we 
have k descent directions 
obtained by a simple shrinkage.

How about taking all of them at 
once, with a proper relaxation?  

Little bit of math lead to …

( ) 1
2
2

y
2
1

f
~

α⋅λ+−α=α D
Our objective

Update the solution by 

∑µ+α=α
=

+
k

1j
jn1n v

For j=1:k

Compute the descent 
direction per αj :  vj.



Shrinkage for 
Redundant 
representations?

18

The Proposed Algorithm 

The synthesis error

Back-projection to the signal domain

Shrinkage operation

Update by line-search

{ }DDW H1diag−=(*)

At all stages, the 
dictionary is applied as 
a whole, either directly, 

or via its adjoint

.0k&00 ==αInitialize

Compute

(*)

{ }
( )

1kk.5

e.4

1,ee.3

ee.2

ye.1

k
S
Tk1k

kT
S
T

H
T

k

+=

α−µ+α=α

⋅λα+=

=

α−=

+

WS

WD

D



Shrinkage for 
Redundant 
representations?

19

The First Iteration – A Closer Look 

{ }1,yH
1 ⋅λ=α DS

For Example:
Tight (DDH=c⋅I)        
and normalized  
(W=I) frame

.0k&00 ==αInitialize

Compute

{ }DDW H1diag−=

(*)

(*)

{ }
( )

1kk.5

e.4

1,ee.3

ee.2

ye.1

k
S
Tk1k

kT
S
T

H
T

k

+=

α−µ+α=α

⋅λα+=

=

α−=

+

WS

WD

D

00 =α

{ }1,yH
1 ⋅λµ=α WWDS

{ }1,yx̂ H
1 ⋅λ⋅= DSD
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Relation to Simple Shrinkage

Apply 
Redundant 
Transform

Apply its 
(pseudo) 
Inverse 

Transform

LUT

yHD
{ }1,yH ⋅λ=α DS

αD
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A Simple Example

( ) 1
2
2

y
2
1

f
~
Minimize

α⋅λ+−α=α D

D: a 100×1000, union of 10  

random unitary matrices,        
y: Dα, with α having 15 non-

zeros in random locations,     

λ=1, α0=0, 

Line-Search: Armijo 0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Steepest Descent
Sequential Shrinkage
Parallel Shrinkage with line-search
MATLAB’s fminunc
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Image Denoising

( ) 1
2
2

y
2
1

f
~
Minimize

α⋅λ+−α=α WD

1000

2000
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7000

8000

9000

Objective function

0        2         4         6         8        10       12     14        16      18 
Iterations

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Truncated Newton
• The Matrix W gives a 

variance per each 
coefficient, learned from 
the corrupted image.

• D is the contourlet
transform (recent version). 

• The length of α: ~1e+6.

• The Seq. Shrinkage 
algorithm can no longer be 
simulated
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Image Denoising

( ) 1
2
2

y
2
1

f
~

Minimize

α⋅λ+−α=α WD

0        2         4         6         8        10       12     14        16      18 

22

23

24

25

26

27

28

29

30

Denoising PSNR

Iterations

Iterative Shrinkage

Steepest Descent

Conjugate Gradient

Truncated Newton

31

32

2
2TruexˆEvaluate −αD

Even though one iteration 
of our algorithm is 

equivalent in complexity to 
that of the SD, the 

performance is much better
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Image Denoising

Original 
Image

Noisy 
Image with 
σ=20

Iterated 
Shrinkage –

First Iteration 
PSNR=28.30dB

Iterated 
Shrinkage –
second iteration 
PSNR=31.05dB
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Closely Related Work

The “same” algorithm was derived in several other works:

• Sparse representation over curvelet [Starck, Candes, Donoho, 2003].

• E-M algorithm for image restoration [Figueiredo & Nowak 2003]. 

• Iterated Shrinkage for problems of the form                     
[Daubechies, Defrise, & De-Mol, 2004].

The work proposed here is different in several ways:

• Motivation: Shrinkage for redundant representation, rather than general 
inverse problems.

• Derivation: We used a parallel CD-algorithm, and others used the EM or a 
sequence of surrogate functions. 

• Algorithm: We obtain a slightly different algorithm, where the norms of the 
atoms are used differently, different thresholds are used, the choice of µ is 
different.

1
2
2

xyxMinimize WK ⋅λ+−
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Agenda

1. Bayesian Point of View – a Unitary Transform
Optimality of shrinkage

2. What About Redundant Representation?
Is shrinkage is relevant? Why? How?

3.   Conclusions
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Conclusion

How?

When 
optimal?  

How to avoid 
the need to 

extract  
atoms?

What if the 
transform is 
redundant?  

Getting what?

Shrinkage is an 
appealing signal 

denoising 
technique

Option 1: apply 
sequential coordinate 
descent which leads 

to a sequential 
shrinkage algorithm

Go 
Parallel

Compute all the 
CD directions, 
and use the 

average

We obtain a very easy to implement 
parallel shrinkage algorithm that 

requires forward transform, scalar 
shrinkage, and inverse transform.

For additive 
Gaussian noise 

and unitary 
transforms
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