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Generating Signals in Sparseland
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Sparseland Signals Are Interesting
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Every generated
signal is built as a linear
combination of few
from our D

A general model: the
obtained signals are a special

type (or
Laplacians).

Recent work on
signal and image processing
adopt this model and
successfully deploys it to
applications.




Signal Processing in Sparseland
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Questions

e How effective?

e How do we get D?
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Problem Setting
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Given a set of data examples, we
assume the Sparseland model

and ask D ?




Choose D — Modeling Approach

)]

Replace the model with another, well-
defined simple mathematical, model (e.g. « Build on existing methods,
images as piece-wise C2 smooth regions
with C2 smooth edges) and fit a dictionary
accordingly, based on existing methods.

e Fast transforms,
e Proven optimality for the model.

Examples: Curvelet

Contourlet e Relation to Sparseland ? Linearity?
Bandlet e How to adapt to other signals?
and others ... e Bad for “smaller” signal families.
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Choose D — Training Approach

< >{ Xj }jp—l

Train the dictionary directly based on the
given examples, optimizing w.r.t. sparsn.y
and other desired properties (normaV
atoms, etc.).

Examples: ML (
MAP

MOD
ICA-like
and others ...

:

e Slow training,
e Scalability issues?
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Practical Approach — Objective
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Each example is Each example has a
a linear combination sparse representation with
of atoms from D no more than L atoms

(n,K,L are assumed known)
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K—Means For Clustering

Clustering: An extreme sparse coding
Initialize D
D

Sparse Coding
Neareieighbor T
Dictionary
Update

Column-by-Column by
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The K—=SVD Algorithm — General

Initiali
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K—SVD: Sparse Coding Stage

: P 2 :
Min - 2Dy [, st v, fog] <L D

D is known!
For the jth item
we solve T

X

Min [Pu-xjf, st fd <L
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K—SVD: Dictionary Update Stage

G, : The examples in{ x,}”

j=1

that use the column d,.

The content of d, influences
only the examples in G,.

Let us fix all A and D apart
from the kth column and seek
both d, and the kt" column in
A to better fit the residual!
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K—SVD: Dictionary Update Stage

We should solve: D
Residual

Min || "o —E

d, ,a|i/ / \ it

d, is obtained by on the examples’ residual in G,.
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K—SVD: A Synthetic Experiment

Create A 20x30 random dictionary =~ Generate 2000 signal examples with Train a dictionary using the KSVD
with normalized columns 3 atoms per each and add noise and MOD and compare
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for Redundant and Sparse
representation of Signals
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K—SVD on Images
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Overcomplete Haar

The K—=SVD: Design of Dictionaries
for Redundant and Sparse
representation of Signals

10,000 sample 8-by-8 images.
K-SVD: 441 dictionary elements.
Approximation method: OMP
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Filling—In Missing Pixels

Given an image Get the recovered
EIES : image
o Apply pursuit (per Multiply the
each block of found
‘ size(8x8) using a ‘ representation ‘
decimated dictionary by the complete
with rows removed dictionary
K-SVD Results Haar Results
60% missing Average # Average #
pixels coefficients 4.08 coefficients 4.42

RMSE: 11.68 RMSE: 21.52

0.4 0.5 0.6

ratio of corrupted pixels in image
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Summary

Today we discussed: Open Questions:

A Visit to Sparsg[and 1. Scalability — treatment of bigger

Motivating redundancy & Sparsity blocks and large images.

Uniqueness? Influence of noise?
The Quest for a Dictionary — Fundamentals

Common Approaches? Equivalence? A guarantee to get

the perfect dictionary?

The Quest for a Dictionary — Practice 4. Choosing K? What forces govern
Introducing the K-SVD the redundancy?

Results 5. Other applications? ...

Preliminary results and applications

http://www.cs.technion.ac.il/~elad
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Supplement Slides

for Redundant and Sparse
representation of Signals
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Uniqueness?

P
{ XJ' }jzl
— |& Multiply
by D
I X =Da
oy =L Is D unique in

explaining the origin
of the signals?

;

(n,K,L are assumed known)




Uniqueness? YES !!

_ If {x, " is rich enough* and if
Uniqueness =1

» Sparg{D}

then D is unique.

Comments:

e "Rich Enough”: The signals from 9% could be clustered to m groups that
share the same support. At least L+1 examples per each are needed.

e This result is proved constructively, but the number of examples needed
to pull this off is huge — we will show a far better method next.

e A parallel result that takes into account noise could be constructed
similarly.
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Naive Compression

K-SVD Haar DCT
dictionary dictionary  dictionary

OMP with

BEroK
bounad
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Naive Compression
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