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the Minimization of the Function

by Iterated-Shrinkage Algorithms

Today’s Talk is About

( ) ( )αλρ+−α=α 2
2x

2
1

f D

Today we will discuss:
Why this minimization task is important?

Which applications could benefit from this minimization?

How can it be minimized effectively?

What iterated-shrinkage methods are out there? and 

Why This Topic? 
Key for turning theory to applications in Sparse-land,
Shrinkage is intimately coupled with wavelet,

The applications we target – fundamental signal processing ones. 

This is a hot topic in harmonic analysis.
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Agenda

1. Motivating the Minimization of f(α)
Describing various applications that need this minimization

2. Some Motivating Facts 
General purpose optimization tools, and the unitary case

3. Iterated-Shrinkage Algorithms
We describe five versions of those in detail

4. Some Results
Image deblurring results

5. Conclusions

( )αλρ+−α=α
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Why?
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Lets Start with Image Denoising

Remove 
Additive 

Noise? { }I2,0N~v

,vxy

σ

+=

Likelihood: Relation          
to measurements

Prior or                
regularization

y : Given measurements  

x : Unknown to be recovered

( ) ( )xPryx
2
1

xf
2
2

+−=

Many of the existing image denoising algorithms are related to 
the minimization of an energy function of the form

We will use a Sparse & Redundant Representation prior.
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Our MAP Energy Function 
We assume that x is created by M:                                                 
where α is a sparse & redundant
representation and D is a known dictionary.

This leads to: 

This MAP denoising algorithm is known as basis Pursuit        
Denoising [Chen, Donoho, Saunders 1995].

The term ρ(α) measures the sparsity of the solution α:

• L0-norm (||α||0) leads to non-smooth & non-convex problem. 

• The Lp norm (      ) with 0<p≤1 is often found to be equivalent. 

• Many other ADDITIVE sparsity measures are possible.

( ) α=⇒αλρ+−α=α
α

ˆx̂y
2
1

ArgMinˆ
2
2

DD

M αD
x

x

Dα=x= =
p
pα

( )αλρ+−α=α
α
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2
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ArgMinˆ D

This is Our Problem !!!
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General (linear) Inverse Problems

Assume that x is known to emerge fromM, as before.

vxy += HSuppose we observe                 , a “blurred” and noisy version 
of x. How could we recover x?

M 
αD

Nx ℜ∈

xH
My ℜ∈

Noise

x̂?

A MAP estimator leads to: ( )αλρ+−α=α
α

2
2

y
2
1

minargˆ HD

α= ˆx̂ D

( )αλρ+−α=α
α

2
2x

2
1

ArgMinˆ D

This is Our Problem !!!



A Wide-Angle View Of 
Iterated-Shrinkage Algorithms
By: Michael Elad, Technion, Israel

7/41

Inverse Problems of Interest 
De-Noising

De-Blurring 

In-Painting 

De-Mosaicing

Tomography 

Image Scale-Up                            
& super-resolution

And more …

( )αλρ+−α=α
α

2
2x

2
1

ArgMinˆ D

This is Our Problem !!!
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M2 
β2D 2x

Signal Separation

M1 
α1D

1x

Given a mixture z=x1+x2+v – two  
sources,M1 andM2 , and white  
Gaussian noise v, we desire to separate 
it to its ingredients.

Written differently:

Thus, solving this problem using MAP 
leads to the Morphological Component 
Analysis (MCA) [Starck, Elad, Donoho, 2005]:

v
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This is Our Problem !!!
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Compressed-Sensing [Candes et.al. 2006], [Donoho, 2006]

M 
αD

x

α=≈ PDPxy

In compressed-sensing we compress the signal x by exploiting        
its origin. This is done by p<<n random projections. 

The core idea:                       (P size: p×n) holds all the 
information about the original signal x, even though p<<n. 

Reconstruction? Use MAP again and solve 

( ) α=⇒αλρ+−α=α
α

ˆx̂y
2
1

minargˆ
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DPD
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Noise

x̂?

( )αλρ+−α=α
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ArgMinˆ D

This is Our Problem !!!
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Brief Summary #1

( ) ( )αλρ+−α=α 2
2x

2
1

f D

The minimization of the function

is a worthy task,                                      
serving many & various applications. 

So, How This Should be Done? 
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1. Motivating the Minimization of f(α)
Describing various applications that need this minimization

2. Some Motivating facts 
General purpose optimization tools, and the unitary case

3. Iterated-Shrinkage Algorithms
We describe five versions of those in detail

4. Some Results
Image deblurring results

5. Conclusions

Agenda

Apply 
Wavelet 

Transform

Apply Inv. 
Wavelet 

Transform

LUT
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Is there a Problem?

( ) ( )αλρ+−α=α 2
2x

2
1

f D
The first thought: With all the 
existing knowledge in optimization, 
we could find a solution.

Methods to consider:
• (Normalized) Steepest Descent – compute the gradient and follow it’s path.

• Conjugate Gradient – use the gradient and the previous update direction, 
combined by a preset formula.

• Pre-Conditioned SD – weight the gradient by the Hessian’s diagonal inverse.

• Truncated Newton – Use the gradient and Hessian to define a linear system, 
and solve it approximately by a set of CG steps. 

• Interior-Point Algorithms – Separate  to positive and negative entries, and 
use both the primal and the dual problems + barrier for forcing positivity.



A Wide-Angle View Of 
Iterated-Shrinkage Algorithms
By: Michael Elad, Technion, Israel

13/41

General-Purpose Software?

So, simply download one of many general-purpose packages:
• L1-Magic (interior-point solver),

• Sparselab (interior-point solver),

• MOSEK (various tools),

• Matlab Optimization Toolbox (various tools), …

A Problem: General purpose software-packages (algorithms)  
are typically performing poorly on our task. Possible reasons: 

• The fact that the solution is expected to be sparse (or nearly so) in our 
problem is not exploited in such algorithms. 

• The Hessian of f(α) tends to be highly                                            
ill-conditioned near the (sparse) solution.

So, are we stuck? Is this problem really that complicated? 

( ) ( ) ( )
( ) ( )αλρ+=α∇

αλρ+−α=α∇

''f
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Relatively small entries for the 
non-zero entries in the solution
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We got a separable 
set of m identical 
1D optimization 
problems

Consider the Unitary Case (DDH=I)

( ) ( )αλρ+−α=α 2
2x

2
1

f D

( ) ( )αλρ+−α=α
2

2
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2
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f DDD IDD =H
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( ) ( ) ( )αλρ+β−α=α
2
22

1
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L2 is 
unitarily 
invariant

β=xHD
Define
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The 1D Task

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ αλρ+β−α=α

α

2
opt 2

1
ArgMin

We need to solve the following 1D problem:

( )β=α λρ,opt S

Such a Look-Up-Table (LUT) αopt=Sρ,λ(β)
can be built for ANY sparsity measure 
function ρ(α), including non-convex ones 
and non-smooth ones (e.g.,  L0 norm), 
giving in all cases the GLOBAL
minimizer of g(α).

LUT

β

αopt
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The Unitary Case: A Summary  

( ) ( )αλρ+−α=α 2
2x

2
1

f DMinimizing

is done by:

Multiply    
by DH

Multiply 
by D

x

β

( )αλρ+β−α=
2
22

1

β=xHD

The obtained solution is the GLOBAL minimizer of f(α),               
even if f(α) is non-convex. 

x̂LUT
α̂

( )βλρ,S
DONE!
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Brief Summary #2

( ) ( )αλρ+−α=α 2
2x

2
1

f D

The minimization of 

Leads to two very Contradicting Observations:

1. The problem is quite hard – classic optimization find it hard.

2. The problem is trivial for the case of unitary D.

How Can We Enjoy This Simplicity   
in the General Case?
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1. Motivating the Minimization of f(α)
Describing various applications that need this minimization

2. Some Motivating Facts 
General purpose optimization tools, and the unitary case

3. Iterated-Shrinkage Algorithms
We describe five versions of those in detail

4. Some Results
Image deblurring results

5. Conclusions

Agenda
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Iterated-Shrinkage Algorithms?
We will present THE PRINCIPLES of several leading methods:
• Bound-Optimization and EM [Figueiredo & Nowak, `03],

• Surrogate-Separable-Function (SSF) [Daubechies, Defrise, & De-Mol, `04],

• Parallel-Coordinate-Descent (PCD) algorithm [Elad `05], [Matalon, et.al. `06],

• IRLS-based algorithm [Adeyemi & Davies, `06], and

• Stepwise-Ortho-Matching Pursuit (StOMP) [Donoho et.al. `07].

Common to all is a set of operations in every iteration that 
includes: (i)   Multiplication by D,                                               

(ii)  Multiplication by DH, and                                        
(iii) A Scalar shrinkage on the solution Sρ,λ(α). 

Some of these algorithms pose a direct generalization of the 
unitary case, their 1st iteration is the solver we have seen. 
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1. The Proximal-Point Method 

Aim: minimize f(α) – Suppose it is found to be too hard. 

Define a surrogate-function g(α,α0)=f(α)+dist(α-α0), using a  
general (uni-modal, non-negative) distance function. 

Then, the following algorithm necessarily converges to a local 
minima of f(α) [Rokafellar, `76]:

Comments: (i) Is the minimization of g(α,α0) easier? It better be!

(ii) Looks like it will slow-down convergence. Really?

Minimize

g(α,α1)

α2
Minimize

g(α,αk)

αk αk+1
Minimize

g(α,α0)

α0 α1
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The Proposed Surrogate-Functions 

( ) ( )αλρ+−α=α 2
2x

2
1

f D

( ) 2
20

2
200 2

1
2
c

,dist α−α−α−α⋅=αα DD

Our original function is: 

The distance to use:                 

Proposed by [Daubechies, Defrise, & De-Mol `04]. Require               .)(rc HDD>

2
2αDThe beauty in this choice: the term           vanishes

( ) 00
H

0 cxwhere α+α−=β DD( ) ( ) 0
H2

20 2
c

,g βα−α+αλρ=αα

It is a separable sum of m 
1D problems. Thus, we have 

a closed form solution by   
THE SAME SHRINKAGE !!
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c
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Minimization of g(α,α0) is done in a closed form by shrinkage, 
done on the vector βk, and this generates the solution αk+1
of the next iteration. 
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The Resulting SSF Algorithm 

Multiply    
by DH

Multiply 
by D

x

β

x̂LUT
α̂

( )βλρ,S

While the                         
Unitary                                  
case solution 
is given by

Multiply    
by DH/c

Multiply 
by D

x

kβ

x̂

LUT 1k +α

( )βλρ
c

,
S

++

-
+

( ) ⎟
⎠
⎞

⎜
⎝
⎛ α+α−=α λρ+ kk

H
,1k x

c
1

S
c

DDthe general case, by SSF requires : 

( ) α==α λρ ˆx̂;xSˆ H
, DD
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2. Bound-Optimization Technique 

Aim: minimize f(α) – Suppose it is found to be too hard. 

Define a function Q(α,α0) that satisfies the following conditions:

• Q(α0,α0)=f(α0),

• Q(α,α0)≥f(α) for all α, and 
• ∇Q(α,α0)= ∇f(α) at α0.

Then, the following algorithm necessarily converges to a local 
minima of f(α) [Hunter & Lange, (Review)`04]:

Well, regarding this method …

• The above is closely related to the EM algorithm [Neal & Hinton, `98].

• Figueiredo & Nowak’s method (`03): use the BO idea to minimize f(α). 
They use the VERY SAME Surrogate functions we saw before. 

0α α

( )αf( )0,Q αα

Minimize

Q(α,α1)

α2
Minimize

Q(α,αk)

αk αk+1
Minimize

Q(α,α0)

α0 α1
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3. Start With Coordinate Descent

( ) ( )αλρ+−α=α 2
2x

2
1

f DWe aim to minimize                                       .

First, consider the Coordinate Descent (CD) algorithm.

This is a 1D minimization problem:

It has a closed for solution,                                   
using a simple SHRINKAGE
as before, applied on the                                       
scalar <ej,dj>.

( )jαλρ+-
2

2

x

D

α

( )
2
1

f j =α

jαjd

-
2

2

je

( )jαλρ+( )
2
1

f j =α ⋅αj

jd

( )
⎭
⎬
⎫

⎩
⎨
⎧ αλρ+−⋅α=α

α
j

2

2jjopt ed
2
1

ArgMin

( )jH
j,opt edS

2
jd

λρ=α

LUT

in

αopt
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Parallel Coordinate Descent (PCD)

Current solution for 
minimization of f(α)

∑
=

m

1j
jv

1v

2v

jv

mv

Descent directions 
obtained by the 
previous CD algorithm

:}v{ m
1jj =

m-dimensional 
space

kα

We will take the sum of these                                
m descent directions for the                           
update step. 

Line search is mandatory.

This leads to 
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( )DDQ H1diag−=

The PCD Algorithm [Elad, `05] [Matalon, Elad, & Zibulevsky, `06]

( )( )[ ]kkk
H

,k1k xS α−α+α−µ+α=α λρ+ DDQQ

Note: Q can be computed quite easily off-line. Its storage is just 
like storing the vector αk.

Where                       and µ represents a line search (LS).

Multiply    
by QDH

Multiply 
by D

x

kβ

x̂

LUT 1k +α

( )βλρ Q,S

++

-
+

Line Search
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1k+α

v

1k+α

Algorithms’ Speed-Up

?1k =α +

v

0α

1α

kα
Option 1 – Use v as is:  v1k =α +

1k−α

2k−α

3k−α

For example (SSF):      

( ){ }kk
T

c
1

c
,

xSv α+α−= λ
ρ

DD
Option 2 – Use line-search with v:  

( )kk1k v α−µ+α=α +

Option 3 – Use Sequential Subspace OPtimization (SESOP):  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

µ

µ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+α=α α−α−αα−αα−α+ −−−−+−

0

M

vk1k

||||

||||

k1kk2k1kMk1Mk ML

v1k =α +

Surprising as it may sound, these very 
effective acceleration methods can be 
implemented with no additional “cost”

(i.e., multiplications by D or DT)

[Zibulevsky & Narkis, ‘05]

[Elad, Matalon, & Zibulevsky, `07]
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Brief Summary #3

( ) ( )αλρ+−α=α 2
2x

2
1

f D

For an effective minimization of the function 

we saw several iterated-shrinkage algorithms, built using

4. Iterative Reweighed LS

5. Fixed Point Iteration

6. Greedy Algorithms

1. Proximal Point Method

2. Bound Optimization

3. Parallel Coordinate Descent

How Are They Performing?            
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1. Motivating the Minimization of f(α)
Describing various applications that need this minimization

2. Some Motivating Facts
General purpose optimization tools, and the unitary case

3. Iterated-Shrinkage Algorithms
We describe five versions of those in detail

4. Some Results
Image deblurring results

5. Conclusions

Agenda



A Wide-Angle View Of 
Iterated-Shrinkage Algorithms
By: Michael Elad, Technion, Israel

30/41

A Deblurring Experiment

White Gaussian 
Noise σ2=2

15×15 kernel

( )
7m,n7

1mn
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Penalty Function: More Details 

A given blurred and noisy                  
image of size 256×256

2D un-decimated Haar wavelet 
transform, 3 resolution layers, 

7:1 redundancy 

075.0=λ

Approximation of L1 with 
slight (S=0.01) smoothing 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
+⋅−α=αρ S1logS

The blur operator

( ) ( )αλρ+−α=α
2
2

y
2
1

f HD
Note: This experiment is similar (but not 

eqiuvalent) to one of tests done in  
[Figueiredo & Nowak `05], that leads to               
state-of-the-art results. 
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Iterations/Computations

f(α)-fmin
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So, The Results: The Function Value
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f(α)-fmin

0 5 10 15 20 25 30 35 40 45 50
102

103

104
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108
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SSF
SSF-LS
SSF-SESOP-5
PCD-LS
PCD-SESOP-5

So, The Results: The Function Value

Iterations/Computations

Comment:

Both SSF and PCD (and 
their accelerated versions) 
are provably converging 
to the minima of f(α). 
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So, The Results: The Function Value
f(α)-fmin
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So, The Results: ISNR
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So, The Results: ISNR
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So, The Results: ISNR

0 50 100 150 200 250
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ISNR [dB]

Comments:

StOMP is inferior in 
speed and final quality  
(ISNR=5.91dB) due to 
to over-estimated 
support. 

PDCO is very slow due 
to the numerous inner 
Least-Squares iterations 
done by CG. It is not 
competitive with the 
Iterated-Shrinkage 
methods.Iterations/Computations
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Visual Results

original (left), Measured (middle), and Restored (right): Iteration: 0  ISNR=-16.7728 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 1  ISNR=0.069583 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 2  ISNR=2.46924 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 3  ISNR=4.1824 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 4  ISNR=4.9726 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 5  ISNR=5.5875 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 6  ISNR=6.2188 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 7  ISNR=6.6479 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 8  ISNR=6.6789 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 12  ISNR=6.9416 dBoriginal (left), Measured (middle), and Restored (right): Iteration: 19  ISNR=7.0322 dB

PCD-SESOP-5 Results:
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1. Motivating the Minimization of f(α)
Describing various applications that need this minimization

2. Some Motivating Facts
General purpose optimization tools, and the unitary case

3. Iterated-Shrinkage Algorithms
We describe five versions of those in detail

4. Some Results
Image deblurring results

5. Conclusions

Agenda
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Conclusions – The Bottom Line

( ) ( )αλρ+−α=α 2
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f D
If your work leads you to the
need to minimize the problem:

Then:

We recommend you use an Iterated-Shrinkage algorithm.

SSF and PCD are Preferred: both are provably converging to 
the (local) minima of f(α), and their performance is very good, 
getting a reasonable result in few iterations.

Use SESOP Acceleration – it is very effective, and with hardly 
any cost. 

There is Room for more work on various aspects of these 
algorithms – see the accompanying paper. 
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Thank You for Your Time & Attention

More information,                  
including these slides                              
and the accompanying                       
paper, can be found on                             
my web-page 
http://www.cs.technion.ac.il/~elad

THE END !!

This field of 
research  is         
very hot …
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3. The IRLS-Based Algorithm

Use the following principles [Edeyemi & Davies `06]: 

(1) Iterative Reweighed Least-Squares (IRLS) & (2) Fixed-Point Iteration
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This is the IRLS algorithm, used in FOCUSS [Gorodinsky & Rao `97].
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The IRLS-Based Algorithm

Use the following principles [Edeyemi & Davies `06]: 

(2) Fixed-Point Iteration

( ) ( ) 02x k
H =ααλ+α−− WDD:somehowSolve

( ) ( ) 0cc2x k
H =α−α+ααλ+α−− WDD

( ) 0xx =−Φ

The Fixed-Point-Iteration method:

Task: solve the system

Idea: assign indices                          

The actual algorithm: 

( ) 0xx 1kk =−Φ +
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Notes:   (1) For convergence, we should require c>r(DHD)/2.
(2) This algorithm cannot guarantee local-minimum. 

Diagonal Entries
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( )( )k
H xS α− DD

4. Stagewise-OMP [Donoho, Drori, Starck, & Tsaig, `07] 

Multiply    
by DH
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||Dα-x||^2   

on S

x

kβ
LUT k

~α

( )βTS

++

-
+kr s kα

Multiply    
by D

x̂

StOMP is originally designed to solve

and especially so for random dictionary D (Compressed-Sensing).

Nevertheless, it is used elsewhere (restoration) [Fadili & Starck, `06].

If S grows by one item at each iteration, this becomes OMP. 

LS uses K0 CG steps, each equivalent to 1 iterated-shrinkage step.
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Iterations

f(α)-fmin
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So, The Results: The Function Value
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So, The Results: ISNR
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