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Today’s Talk Is About

the Minimization of the Function

1
fla)= > |Da-x > +1pla)

by Iterated-Shrinkage Algorithms

VWiaay hve Tablicliscuss:

0 VEhké&hisontuimirativredeskdsdpiieeasts in Sparse-land,

0 WhighyiaRateations critelpepehfct i ihivattkimization?

0 HoWltaraiiplieatidnisneedaifectivRlindamental signal processing ones.
0 Whdhisasatebedtiopkade msthenls ar@lyststhere? and




Agenda

1. Motivating the Minimization of f(a)
Describing various applications that need this minimization

é = ArgMin —|Da - x(5 + 7p(c)

Why?




Lets Start with Image Denoising

BT

Remove
Additive
Noise

Many of the existing image denoising algorithms are related to
the minimization of an energy function of the form

fo)= Sfx=yly + Prlx)

X : Unknown to be recovered Likelihood: Relation Prior or
to measurements regularization

y : Given measurements

We will use a Sparse & Redundant Representation prior.




Our MAP Energy Function

d We assume that x is created by 9:

where o is a sparse & redundant
representation and D is a known dictionary.

Q This leads to: & = ArgMin l]] X

o

J

. 1 2
. = ArgMin > [Da = x5 + 2pla)

d

s

This is Our Problem ! . .

LI l—p A S R \ ”ﬁ“p} VVILL I W \V—‘-L fad NP0 WSl 0 I\Jund to be eqUiva’ent-

e Many other sparsity measures are possible.




General (linear) Inverse Problems

[ Assume that x is known to emerge from M, as before.

 Suppose we observe Y =HX+V, a "blurred” and noisy version
of x. How could we recover x?

3 A MAP estimator leads to: ‘@ = arg min%]] Hbo, Ili + xp(g)

o

. 1 2
& = ArgMin - [Da - x5 + rpla)
This is Our Problem !1!

Noise oy




Inverse Problems of Interest

E
O De-Blurring

6 = ArgMin = [Da - x|2 + 2p(c)
o 2

This is Our Problem !!!

O De-Mosaicing

d Tomography

3 And more ...




Signhal Separation

Dia

L _Given o miviiire z—v_Lv_+v — tWwoO
d white

9‘/[1 | a = ArgaMin %HD@ — xH; + kp(g) sire to separate

X

This is Our Problem !!! _DZ]{

B

Z (1 Thus, solving this problem using MAP
leads to the Morphological Component
Analysis (MCA)

. 2
E\j arggmln% [Dl’DZ][g}—Z 2+kpq




Compressed-Sensing

O In compressed-sensisa-uascamarass thacianalacbu aualaiting
its origin. This is dol

A .1 p)
0 The core idea: y ~ H RS ArgMin EHDQ b XHz l 7‘9(@)

information about tt &

iS i 1
O Reconstruction? This is Our Problem !!!
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Brief Summary #1

The minimization of the function

1
flo) =5 Da-x 2+ pla)

IS @ worthy task,
serving many & various applications.

So, How This Should be Done?




Agenda

2. Some Motivating facts )
General purpose optimization tools, and the unitary case " :

Apply Apply Inv.
Wavelet i Wavelet
Transform Transform




Is there a Problem?

1 ) Q The first thought: With all the
f(_) = 2 H Da - X Hz T kp(g) existing knowledge in optimization,
we could find a solution.

E‘f";._ ‘ ..I" ...1'|11 AR

Amlied
Onptimization

i# dieny andsthe-previous directior
PRACTICA) Lieven vafglberghe with NIAI LAB '

OPTIMIZATION Programming

sdient and PiaEETaMZES
set of CG steps.

P. Venkataraman

arate to positive and neg Lnirie
Al problems + barrier for forcing positivity.
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General-Purpose Software?

. Relatively small entries for the
non-zero entries in the solution

10
15
20
25

30

5 10 15 20 25 30

d A Problem: General purpose software-packages (algorithms)
are typically performing poorly on our task.

e The fact that the solution is expected to be sparse (or nearly so) in our
roblem is not exploited in such algorithms.
P i 0 Vf(a) =D"(Da - x)+ Ap' ()
e The Hessian of f(a) tends to be highly 5 H .
ill-conditioned near the (sparse) solution. 'V f(g) =D'D+Ap (g)

[ So, are we stuck? Is this problem really that complicated?




Consider the Unitary Case (DD"=1)

Define
DMx =B

We got a separable
set of m identical
1D optimization
problems

1
flo) = [Da - |5 +pla)

P
- o0 ko

1 2
=5 Pl - E}‘z +2pla) L, is
! . _unita_rily
— —Hg _ [3”2 +apla) = invariant

= Z{ (o5 - B3 F +7*P(°‘J)}

j=1




The 1D Task

We need to solve the following 1D problem:

Cropt = ArgMin{% (@—pp + xp(a)}

(00

- Copt

o =Spa) T

Such a Look-Up-Table (LUT) o, =S, ,(B)
can be built for ANY sparsity measure
function p(a), including non-convex ones
and non-smooth ones (e.g., L, horm),
giving in all cases the GLOBAL
minimizer of g(a).

T | A Wide-Angle View Of
mee—p Iterated-Shrinkage Algorithms
| By: Michael Elad, Technion, Israel




The Unitary Case: A Summary

Minimizing f(g):-” Do, — XHz +2p(a ——Ha BHZ +p(a)

is done by: DHx = B

X

EEW

Multiply N ulERly -
N LT

B

Sp,k B

The obtained solution is the GLOBAL minimizer of f(a),
even if f(a) is non-convex.




Brief Summary #2

The minimization of

1
flo) == Da-x 2+ ple)

Leads to two very Contradicting Observations:

1. The problem is quite hard — classic optimization find it hard.

2. The problem is trivial for the case of unitary D.

How Can We Enjoy This Simplicity
IN the General Case?




3. Iterated-Shrinkage Algorithms ¢e¢
We describe five versions of those in detail

T | A Wide-Angle View Of
— & Iterated-Shrinkage Algorithms
| By: Michael Elad, Technion, Israel




Iterated-Shrinkage Algorithms?

d We will present THE PRINCIPLES of several leading methods:

Bound-Optimization and EM ,
Surrogate-Separable-Function (SSF)
Parallel-Coordinate-Descent (PCD) algorithm
{RLS-based algorithm , and
Stepwise-Ortho-Matching Pursuit (StOMP)
JCommon to all is a set of operations in every iteration that
includes: (i) Multiplication by D,
(ii) Multiplication by D", and
(i) A Scalar shrinkage on the solution S, (o).

dSome of these algorithms pose a direct generalization of the
unitary case, their 1t iteration is the solver we have seen.




1. The Proximal-Point Method

d Aim: minimize f(a) — Suppose it is found to be too hard.

Q Define a surrogate-function g(o,0,)=f(a)+dist(a-0,), using a
general (uni-modal, non-negative) distance function.

d Then, the following algorithm necessarily converges to a local
minima of f(a) :

Ly 31 by Oy Og+1

0 Comments: (i) Is the minimization of g(a,0,) easier? It better be!

(ii) Looks like it will slow-down convergence. Really?
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The Proposed Surrogate-Functions

0 Our original function is: f(a) =%H Do — X H; +p(a)

A The distance to use: dist(g, g0)= % : || (0. 0.7 ||§ _%” Da —Dag ||§

Proposed by . Require ¢ >r(D"D).

0 The beauty in this choice: the term | Dchg vanishes

gla, 0g)=rp(a)+ %H a H; - @HBO where B, = DM(x -~ Dayg ) + Cag

d M|n|m|zat|onm ég:(ocoa I51C|0§Ie lﬁJEBSC' se 's'ﬁb ISP € GIE(ég’\?/eorﬁgl:\q/e
done onTHel jec@RBj/ and this gener tes Clo%e Iﬂ@%‘%@lhtlon by
of the next {tetation. THE SAME SHRINKAGE !!
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The Resulting SSF Algorithm

While the l

Unitary (A% Multiply
case solution (] 4 by D"

is given by ; i

n

o= Splk(DHg) » X =Da

X

1 g a by DH/c

Multiply

s,

by D

1
the general case, by SSF requires ™ @x;1 =S ; (— DH(X ~Day )+ ij

=\ C

by D

Multiply ] 2 | :
l E
Ak +1




2. Bound-Optimization Technique

d Aim: minimize f(a) — Suppose it is found to be too hard.

Q Define a function Q(a,a,) that satisfies the following conditions:
o Q(ug.a0)=F(ap), 1

+ Quay)2f(@ forall g and | Q(q, )
¢ VQ(a.00)= Vf(a) at a,. I

A Then, the following algorithm necesSarily convergges to a local
minima of f(a) :

Ly 0y L5 Oy Og+1




3. Start With Coordinate Descent

We aim to minimize f(o.) :%H Do — X H; + 1pla).

First, consider the Coordinate Descent (CD) algorithm.

This(isa Dm]bilm § B 2

fagg-);g@mi: i |+ aplo)

A OLopt |

It has a closed for seiution;

using a simple S F;I!\@;GE e

as before, applietf pn T

scalar <g; d;>. Clopt = / H LJ Sy




Parallel Coordinate Descent (PCD)

d We will take the sum of these
m descent directions for the

update step. m-dimensional

[ Line search is mandatory. space

d ThisleadSt0 eeeee oo o




The PCD Algorithm

Og4+1 =G * Hlsp,Qx(Q DH(X—D@k)Jf@k)—Qk]

Where Q = diag‘l(DHD) and p represents a line search (LS).

X

¢ a by oo " Multiply
Y A by QD" by D

Lot | Zk+1

Note: Q can be computed quite easily off-line. Its storage is just
like storing the vector o,.




Algorithms’ Speed-Up

®
Ol 3
Oy 1 v
\ o Oichiz ¥
Surprlsmg as it may sound, these very a
2o effective acceleration methods can be (SSF):
Optior implemented with no additional “cost” (SODak +0tk

(i.e., multiplications by D or DT)
i“K+1| ks (G g W FK/ | | “M

M1 %M """ Qg O OOy VO




Brief Summary #3

For an effective minimization of the function

1 2
f(or) =§H Do~ X 5 +1plal
we saw several iterated-shrinkage algorithms, built using
1. Proximal Point Method
2. Bound Optimization

3. Parallel Coordinate Descent

How Are They Performing?




Some Results
Image deblurring results

T | A Wide-Angle View Of
——> Iterated-Shrinkage Algorithms
| By: Michael Elad, Technion, Israel




A Deblurring Experiment

. Hx .+'
= 15x15 kernel ‘_

(n +m +1) White Gaussian

_7< n,m <7 NOise ('52=2

T | A Wide-Angle View Of
— & Iterated-Shrinkage Algorithms
| By: Michael Elad, Technion, Israel




Penalty Function: More Detalls

A given blurred and noisy
image of size 256x256 A =0.075

The blur operator \

f((x.\ :lH HDo —.Hz + anla)

~ Note: This experiment is similar (but not
egiuvalent) to one of tests done in
, that leads to
2D L state-of-the-art results. 1ation of L, with
tranSfOI III, 1T COVIULIVIL IDIYCID, Slight (S=0.01) SmOOthing

7:1 redundancy
p(oc) = ‘oc‘ -S- Iog(l + ‘O%j




So, The Results: The Function Value

f(g)_fmin

109

SSF
SSF-LS

— SSF-SESOP-5

15 20 25 30 35 40 45 50
Iterations/Computations




So, The Results: The Function Value

109

108

f(g)_fmin

SSF
SSF-LS
==se SSF-SESOP-5
s DCD-LS
s PCD-SESOP-5

15 20 25 30 35 40 45
Iterations/Computations

50

Comment:

Both SSF and PCD (and
their accelerated versions)
are provably converging
to the minima of f(a).




So, The Results: The Function Value

f(g)_fmin

109,

100 150 200
Iterations/Computations




So, The Results: ISNR

ISNR [dB]

SSF

6.41dB | &

2
ISNR = 10l0gyg Iy -%ol; .
| Dak —xo [

5 10 15 20 25 30 35 40 45 50
Iterations/Computations




So, The Results: ISNR

ISNR [dB]

SSF
SSF-LS
# SSF-SESOP-5
m— PCD-LS
i PCD-SESOP-5

15 20 25 30 35 40 45 50
Iterations/Computations




So, The Results: ISNR

ISNR [dB]

Comments:

StOMP is inferior in
speed and final quality
(ISNR=5.91dB) due to
to over-estimated
support.

PDCO is very slow due
to the numerous inner
Least-Squares iterations
done by CG. It is not
competitive with the
Iterated-Shrinkage
methods.

100 150 200
Iterations/Computations




Visual Results

PCD-SESOP-5 Results:

original (left), Measured (mmididlie)), amd Restored (rigt)) | Eettiond9 BYSRABIBRHRER

T | A Wide-Angle View Of
——> Iterated-Shrinkage Algorithms
| By: Michael Elad, Technion, Israel




5. Conclusions




Conclusions — The Bottom Line

If your work leads you to the 1 2
need to minimize the problem: f(a) :EH Da —X Hz +1p(at)

Then:
d We recommend you use an lterated-Shrinkage algorithm.

d SSF and PCD are Preferred: both are provably converging to
the (local) minima of f(a), and their performance is very good,
getting a reasonable result in few iterations.

Use SESOP Acceleration — it is very effective, and with hardly
any cost.

There is Room for more work on various aspects of these
algorithms — see the accompanying paper.




Thank You for Your Time & Attention

More information,
including these slides
and the accompanying
paper, can be found on
my web-page
http://www.cs.technion.ac.il/~elad

THE END !
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3. The IRLS-Based Algorithm

[ Use the following principles
(1) Iterative Reweighed Least-Squares (IRLS)

f(a) % [Da—x |5 +2pla) = pled) = Wik

 o(a)
2

4

L6),
s somippiy| Do o ka0 o3

This is the IRLS algorithm, used in FOtUSS




The IRLS-Based Algorithm

d Use the following principles
(2) Fixed-Point Iteration

~D"(x — Do)+ 22W(oy, Jat + Co — Co. = 0

- D" (Rneixe2Pditug Meration metpod: 0

Task: solve the systd « ®(x)—x =0

9‘k+1:(ﬁw(ak)+|)_1( DH(X DOLk)+ock) a0

111 aliludli GIHUIILIIIII — @V I\
houTc}

Notes: (1) For convergence, we s reqwre c>r(DHD)/2
(2) This algorithm cannot guarantee local-minimum.




4. Stagewise-OMP

S o
Tk Multiply e S M"m“f? =K
by DH A |Da-x|| 2

gk onS

Multiply
by D

QStOMP is originally ~~ dsolv int|Da-x 2 + el

and especially so 1 fid€x D (Compressed-Sensing).
A Nevertheless, it is used elsewhere (restoration)
A If S grows by one item at each iteration, this becomes OMP.

QLS uses K, CG steps, each equivalent to 1 iterated-shrinkage step.
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Results: The Function Value

SSF
SSF-LS

wsus SSF-SESOP-5

mmmm RLS

IRLS-LS

20 25 30 35 40 45 50
Iterations




So, The Results: ISNR

ISNR [dB]

SSF-LS
# SSF-SESOP-5

m—— RS
IRLS-LS

15 20 25 30 35 40 45 50
Iteration




