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ABSTRACT

The quality of video sequences (e.g. old movies, webcam, TV broadcast) is often reduced by noise, usually
assumed white and Gaussian, being superimposed on the sequence. When denoising image sequences, rather
than a single image, the temporal dimension can be used for gaining in better denoising performance, as well
as in the algorithms’ speed. This paper extends single image denoising method reported in1,2 to sequences.
This algorithm relies on sparse and redundant representations of small patches in the images. Three different
extensions are offered, and all are tested and found to lead to substantial benefits both in denoising quality and
algorithm complexity, compared to running the single image algorithm sequentially. After these modifications,
the proposed algorithm displays state-of-the-art denoising performance, while not relying on motion estimation.

1. INTRODUCTION

Inverse problems are a family of problems, whose target is recovering a high quality signal from a degraded
version of it. The simplest of these tasks is image denoising. Due to the vast wealth of image denoising methods,
a review would not be provided here; a comprehensive review can be found in3 and in4 .

The emergence of noisy image sequences, such as those captured by cellular phones, recorded by webcams,
and old archive movies, requires extending image denoising to video denoising. As in the image denoising setting,
the noise is assumed to be white, zero mean, iid, and Gaussian. It is therefore natural to consider the application
of image denoising methods to each frame of the noisy sequence independently. However, putting the temporal
dimension to use results both in improved denoising results and in reduced complexity. This improvement is
attributed to the high temporal redundancy in sequences. Due to the high capture rate, image sequences tend
to be noisier than images, stressing the need to efficiently use the temporal dimension.

Motion estimation between consecutive frames has been the basis for many video denoising algorithms in the
past decade, as in5–9 . However, several recent contributions10–14 suggest that explicit motion estimation is in
fact not necessary, whilst state-of-the-art results are obtained. These algorithms are described in section 5.

This paper describes a novel video denoising method that does not relay on motion estimation either. It relies
on the principles of sparse and redundant representations, described in.1,2 For a single image, the corrupted image
is used for training a sparsifying dictionary describing the image using the K-SVD algorithm.15,16 A relatively
simple state of the art algorithm emerges by incorporating this into a maximum a-posteriori probability (MAP)
framework.

The extension of this algorithm to video denoising is described in this paper. The described extensions stem
from rigourously modifying the penalty function so it best handles video sequences. One extension is considering
3D patches (spatio-temporal) instead of the original 2D patches. A second is the propagation of the trained
dictionary between successive images, followed by a much shorter training process. This is likely to succeed due
to the high similarity between consecutive images. The third extension is using patches from nearby images
to train a dictionary for a specific image. All these extensions are experimentally tested and are found to
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lead to substantial improvement in denoising performance, outperforming all recently published video denoising
methods.

The remainder of the paper is structured as follows. Section 2 is devoted to describing the single image
algorithm. Section 3 discusses the generalization to video, discussing various options of using the temporal
dimension with their expected benefits and drawbacks. Section 4 describes an experimental study designed to
test and compare the extensions. Section 5 surveys the existing literature, and compares the leading papers’
performance to the algorithm proposed here, demonstrating the superiority of this approach. Section 6 discusses
the role of motion in the algorithm’s performance. Section 7 summarizes the paper.

2. IMAGE DENOISING USING SPARSITY AND REDUNDANCY

This section provides a brief description of an image denoising method based on sparse and redundant represen-
tations, reported in1,2 . It serves as the foundation for the video denoising we develop in Section 3.

A noisy image Y results from noise V superimposed on an original image, X. The noise V is assumed to be
white, zero-mean Gaussian noise, with a known standard deviation σ,

Y = X + V, where V ∼ N {
0, σ2I

}
. (1)

The basic assumption of the denoising method developed in1,2 is that each image patch (of a fixed size) can
be represented as a linear combination of a small subset of patches (atoms), taken from a fixed dictionary. Noise,
due to it being random and unstructured, cannot be modeled this way. The way to denoise an image is therefore
to find an image which is both similar to the input image and can be sparsely constructed. Put formally,

X = Dα , α̂ = arg min
α
‖Dα−Y‖22 + µ‖α‖0 (2)

The first term requires a proximity between the reconstructed image and the noisy image, and the second
term requires that the number of coefficients used in the representation is small. Unfortunately, images are too
big to be processed in this manner. Therefore, a patch-based approach has to be adopted instead. Rewriting
the penalty function to work on patches yields

fStill

(
{αij}i,j ,X

)
= λ‖X−Y‖22 +

∑

ij∈Ω

‖Dαij −RijX‖22 +
∑

ij∈Ω

µij‖αij‖0. (3)

In this formulation, each image patch (denoted by∗ RijX) is represented by a set of coefficients αij , which is
required to be small for every patch. Patches are weighted using the the values µij . Minimizing this functional
with respect to its unknown yields the denoising algorithm.

The choice of D is of high importance to the performance of the algorithm. In1,2 it is shown that training
can be done by minimizing (3) with respect to D as well (in addition to X and αij). The proposed algorithm
in1,2 is an iterative block-coordinate relaxation method, that fixes all the unknowns apart from the one to be
updated, and alternating between the following update stages:

1. Update of the sparse representations {αij}: Assuming that D and X are fixed, we solve a set of problems
of the form

α̂ij = arg min
α
‖Dα−RijX‖22 + µ‖α‖0 (4)

per each location [i, j]. This seeks for each patch the sparsest vector to describe it using atoms from D.
In,1,2 the orthogonal matching pursuit (OMP) algorithm is used for this task.17–19

∗The matrix Rij stands for an operator that extracts a patch of fixed size from the image in location [i, j].



2. Update the dictionary D: This stage assumes a fixed X. Atoms are updated one at a time in D, together
with the coefficients in {αij}ij that use it, using a rank-one approximation of a residual matrix15,16,20 .

3. Update the estimated image X: After several rounds of updates of {αij}ij and D, the final output image
is computed by fixing these unknowns and minimizing (3) with respect to X. This leads to the quadratic
problem

X̂ = arg min
X

λ‖X−Y‖22 +
∑

ij

‖Dαij −RijX‖22, (5)

which is solved by a simple weighting of the represented patches with overlaps, and the original image Y.

The improved results obtained by training a dictionary based on the noisy image itself stem from the dictionary
adapting to the content of the actual image to be denoised. An added benefit is that the K-SVD algorithm
has noise averaging built into it, by taking a large set of noisy patches and creating a small, relatively clean
representative set. More recently, the above described algorithm was generalized to handle color image denoising,
demosaicing, and inpainting, leading in all these applications to state-of-the-art results.21

3. EXTENSIONS TO VIDEO DENOISING

3.1 Mathematical Formulation

Considering the objective function in Equation (3), extending it to handle image sequences might seem to be
a simple task. By letting Y and X represent the noisy and clean videos respectively (instead of the noisy and
clean images), and adding an index t in the range [1, T ] to account for the time dimension, we arrive at a desired
penalty term that contains all the forces described in the previous section. This formulation forms one MAP
energy function for the entire sequence:

fAll
V ideo ({αijt}ijt,X,D) = λ‖X−Y‖22 + (6)

+
∑

ij∈Ω

T∑
t=1

µijt‖αijt‖0 +
∑

ij∈Ω

T∑
t=1

‖Dαijt −RijtX‖22.

Minimizing this functional with respect to its unknowns generates a single dictionary for the entire sequence,
and cleans all the images at once with it. The transition to three dimensions appears in the finer details of the
algorithm. The patches are transformed into 3D ones, in the sense that they can contain pixels from more than
one image. The sliding window operation (collecting the patches), used both for dictionary training and image
cleaning, is also three dimensional, as all the patches in the sequence are used in both these tasks.

However, the training of a single dictionary for the entire sequence is problematic. As the scene is expected
to change rapidly, objects move in and out of the scene. This means that for the dictionary to be able to suit all
images, it is required to change along the sequence.

Following this line, an approach defining a temporally local penalty term is proposed. On one hand, it allows
the dictionary to adapt to the scene. On the other hand, it exploits the benefits of the temporal redundancy. A
natural such attempt is rewriting the penalty in Equation (6) for each image separately,

f
(t)
V ideo ({αij}ij ,Xt,Dt) = λ‖Xt −Yt‖22 + (7)

+
∑

ij∈Ω

µij‖αij‖0 +
∑

ij∈Ω

‖Dtαij −RijtX‖22,

defined for t = 1, 2, . . . , T . Note that the term RijtX extract a patch of fixed size from the volume X in time t
and spatial location [i, j]. This patch may be 3D in general, this way exploiting the temporal axis to our benefit.

In this formulation, only patches centered in the current image are used for training the dictionary and
cleaning the image. In the global temporal term as in Equation (6), all the patches in the sequence were used
for these tasks. A compromise between temporal locality and exploiting the temporal redundancy is again called



for. This compromise is achieved by also using patches centered in a limited number of neighboring images of the
image currently denoised. Introducing this into the penalty term in Equation (7) leads to the modified version,

f
(t±∆t)
V ideo ({αijk}ijk,Xt,Dt) = λ‖Xt −Yt‖22 + (8)

+
∑

ij∈Ω

t+∆t∑

k=t−∆t

µijk‖αijk‖0 +
∑

ij∈Ω

t+∆t∑

k=t−∆t

‖Dtαijk −RijkX‖22,

defined for t = 1, 2, . . . , T . This is the penalty term we target in the algorithm that follows. The principles of
the algorithm to minimize this functional are similar to those described in Section 2, with obvious modifications
made to accommodate the 3D treatment done here. Parameters for the algorithm (such as spatial and temporal
patch size) were chosen experimentally. This automatic process is discussed in Section 4.

Minimizing f
(t±∆t)
V ideo as defined in Equation (8) offers one more way to exploit the repetitiveness of the video

sequence. As the images Xt and Xt−1 are similar, their corresponding dictionaries are also expected to be
similar. This temporal coherence can help speed-up the algorithm. Fewer training iterations are necessary if the
initialization for the dictionary Dt is the one trained for the previous image.

To summarize, minimizing the functional in Equation (8) offers three extensions compared to the naive
method of applying the single image algorithm to each image separately, as in:1,2

1. Dictionary propagation: The initial dictionary for each image is the one trained for the previous one. Fewer
training iterations are thus required.

2. 3D Atoms: Patches are constructed from more than one image, grasping both spatial and temporal common
behaviors.

3. Extended temporal set of patches: Patches in neighboring frames are also used for dictionary training and
image cleaning for each frame.

3.2 Complexity of the Algorithm

The described algorithm is very demanding computationally. This is because of the sparse coding stage (solving
equation 4), in which each patch is multiplied by the dictionary. This has to be repeated l times on average, for
every atom added to the representation of each patch. Furthermore, the sparse coding stage is repeated for J
training iterations. Denoting the patch size (the number of pixels in the patch) by n, and the number of atoms
in the dictionary by d, we arrive at the following amount of calculations per pixel:

Complexity = n · ` · J · d

In a nominal case, n = 180 pixels (a 6 × 6 × 5 patch) and the dictionary contains 300 atoms. The average
number of atoms in the representation is noise-level dependant, decreasing from 5 for noise level σ = 5 to 0− 1
for noise level of σ = 25. The number of training iterations is usually J = 2. Assigning these value results in over
200, 000 operations per pixel. This amount grows even larger if patches from neighboring images are also used.

This is a very substantial computational load. However, several ways to decrease this load substantially
(gaining 2− 3 orders of magnitude) are possible:

1. The core operation of matrix multiplication can be replaced by an approximation of it (e.g., using singular
value decomposition (SVD) on the dictionary20),

2. This core operation and the fact that OMP is done independently on each patch, lend this algorithm easily
to a parallel implementation, again leading to a substantial speedup.



3. The training of the dictionary is currently done on all image patches. Considering that the initial dictionary
is already a good approximation (if it is propagated), complexity can be greatly reduced by using only a
subset of the patches for training, with the hope that denoising performance is not sustantially degraded.

4. We have a direct control over the complexity of the algorithm versus its denoising performance by controlling
the amount of overlap between the patches to be processed.

4. AN EXPERIMENTAL STUDY

To test the various ideas described in the previous section, as well as coming up with a standard set of pa-
rameters, we select a set of four different image sequences - “Football”, “Tennis”, “Flower Garden”, and
“Mobile”. Each of the four test sets is superimposed with synthetic white Gaussian noise, using noise levels
σ = 5, 10, 15, 20, 25, 30, 35, 40, and 50. The measure of quality of the denoising result X̂ versus the original video
X is the Peak-Signal-to-Noise-Ratio (PSNR), which is an objective quality measure:

PSNR = 10 log10

(
2552 · p
‖X̂−X‖22

)
[dB],

where both volumes use the scale 0− 255. The translation between noise level and PSNR of the noisy sequence
appears in Table 1, as the clipping of out-of-range gray-values causes some variation, especially noticed in the
strong noise cases.

Noise Sigma 5 10 15 20 25 30 35 40 50

Football 34.1446 28.1398 24.6191 22.1287 20.2348 18.6824 17.3685 16.2616 14.4705

Tennis 34.1596 28.1263 24.6201 22.1398 20.2096 18.6517 17.3242 16.2014 14.3856

Garden 34.1623 28.1567 24.7063 22.2673 20.3964 18.8939 17.6543 16.5809 14.8762

Mobile 34.1785 28.1715 24.6875 22.2590 20.4008 18.9238 17.6862 16.6440 14.9481

Table 1. PSNR of noisy sequences for each sequence and noise level combination. The difference is because of the
out-of-range values.

We next describe the tests designed to evaluate the effect of each of the extensions on the denoising perfor-
mance. Two visual examples of the denoising results can be seen in Figures 1 and 2.

4.1 Three-Dimensional Atoms

A 3D patch is created by taking a block around the pixel (i, j, t) that extends in all axes and is symmetrical
around the centeral image. It is therefore not causal†. Creating an initial dictionary also has to be addressed.
We chose to simply replicate each atom in the overcomplete DCT dictionary, for 2∆t + 1 times to create a three
dimensional atom of the wanted width.

In Figure 3 a comparison between the performance of 3D atoms and 2D atoms is shown. For the 3D case,
one set of parameters (noise-level dependent) is used for all movies (all patches are 5 images wide). For the 2D
case, it is difficult to find one set of parameters that does justice to all movies. We therefore use the optimal set
found for each movie, as this does not change the conclusions drawn from this comparison.

A better understanding of the reasons the 3D atoms greatly outperform the 2D ones can be gained by looking
at the content of the dictionary. Figure 4 shows several atoms from the trained 3D dictionary, for image #10 of
the “garden” sequence. This sequence has a camera motion to the right, so the entire scene moves to the left.
The described motion can be seen clearly in the atoms. The central part of the atom (coming from the current
image) has moved to the left compared to the top part (coming from the previous image). In the same manner,
the bottom part (coming from the next image) has moved to the left relative to the center part.

The question of what happens to the dictionary when the motion is not global naturally arises. In such cases,
the dictionary has several atoms reflecting each of the objects and motions.

†Causality can be enforced, but was found to lead to slightly inferior performance.



Figure 1. Garden Sequence (1 every 30 frames) with σ = 50. Left: Original Frame; Middle: Noisy Frame; Right: Cleaned
frame.

Complexity-wise, the improved performance seems to come at a high price - five times the computations. In
practice, this is not true, as the optimal spatial size of the patches become smaller when turning to use three
dimensional patches. This partially compensates for the temporal width.

4.2 Dictionary Propagation

As explained above, propagation of the dictionary can be accompanied by fewer training iterations to assist
in reducing computation. We test how many iterations are required for obtaining similar results to the none-
propagation option (using 15 training iterations per image). Figure 5 presents the results of this experiment.

The clear conclusion from these results is that propagation is crucial and leads to improved denoising perfor-
mance. More insight to the reasons for such an improvement can be seen in Figure 6, that shows the dictionaries
trained for frame #30 of the “garden” sequence. The left dictionary is the one trained after propagating the
dictionary (from image #10), using 4 training iterations for each image. The right part of the figure shows the
trained dictionary from the DCT using 15 training iterations. This comparison shows that propagation of the
dictionary leads to a cleaner version with clearer and sharper texture atoms. These benefits are attributed to
the memory induced by the propagation.

A second conclusion is that the number of training iterations should depend on the noise level. It appears
that the less noisy the sequence, the more training iterations are needed for each image. In higher noise levels,
adding more iterations hardly results in any denoising improvement.

Based on this finding, all of the following experiments were run with propagation of the dictionary. The
number of training iterations is adapted to the noise level, in accordance with these results. In a real system,



Figure 2. Mobile Sequence (1 in 30 frames) with σ = 40. Left: Original Frame; Middle: Noisy Frame; Right: Cleaned
frame.
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Figure 3. PSNR gain (difference in dB relative to the 2D atoms’ method) achieved by using 3D atoms versus 2D atoms.
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Figure 4. Several (8) 3D atoms (each of size 8 × 8× 5, but only the temporal center is shown) trained for image #10 of
the garden sequence. Each vertical column is one atom.
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Figure 5. PSNR gain (average over all sequences) by propagating the dictionary and using the specified number of training
iterations for each image. The reference option is with no propagation, and 15 K-SVD iterations.

some scene-cut detection algorithm to reset the dictionary when the scene changes at once is required.

4.3 Extended Temporal Training Set

As described above, it is possible to use patches centered in neighboring images both for dictionary training and
image cleaning. We have experimentally that using patches centered one image away (i.e. taken from 3 images)
leads to an average improvement of 0.2− 0.4 dB in denoising performance. Using patches centered further away
did not lead to any further improvement.

This idea is parallel, but inverse to the one presented above, of using less patches for training, aimed at
reducing the computational complexity.

4.4 Other Parameters

We have also experimented with the other parameters of the algorithm for their effect on denoising results. We
found, for example, that the blocks should be slightly smaller spatially when the noise level increases.

We have also found that at high noise levels, the redundancy factor (the ratio between the number of atoms
in the dictionary to the size of an atom) should be smaller. At high noise levels, obtaining a clean dictionary
requires averaging of a large number of patches for each atom. This is why only a relatively small number of
atoms is used. At low noise levels, many details in the image need to be represented by the dictionary. Noise
averaging takes a more minor role in this case. This calls for a large number of atoms, so they can represent the
wealth of details in the image.

4.5 Summary: Extensions to Video Results

The described tests were used for selecting a single set of parameters (as a function of the noise level). This
set includes propagation of the dictionary, three-dimensional atoms that are five images wide, and an extended
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Figure 6. Dictionaries trained by propagating (left) and not propagating (right) the dictionary between images. Top:
Central part (time-wise) of each dictionary. Bottom: Several enlarged atoms, showing the three center temporal layers.

patches set that extends one image in every direction. A comparison between the final 3D algorithm and the
original single image algorithm can be seen in table 3, which appears in the following section.

5. COMPARISON TO STATE-OF-THE-ART

5.1 Overview of other methods

Traditional video denoising techniques rely on motion estimation for noise suppression. Indeed, it has been
assumed for a long time that motion estimation is the foundation of any inter-frame video denoising algorithm.
A variety of such works are described in5–10 . However, several recently published papers are disproving this
belief. The first of these is the Non-Local Means (NL-Means) algorithm reported in.3,11 Instead of an explicit
motion estimation for each patch, all the patches in its three dimensional neighborhood are considered and their
center pixels are averaged. Each patch is weighted according to its similarity to the center patch, making the
motion-estimation a fuzzy and implicit one.

While this approach is very simple, its denoising results were better than any method previously published,
leading the authors to justifiably claim “Image sequence denoising does not require motion estimation”. Later
published methods, such as13,14 continue to avoid explicit motion estimation. These three methods11,13,14 have
been shown to be the leading in video denoising performance, and therefore we concentrate on their performance
when comparing our results to the state-of-the-art.

Both methods reported in13,14 use statistical approaches to select optimal filtering window size and neighbor-
hood search area. The method described in13 proceeds with a weighted averaging of the patches in the selected
neighborhood. This method uses motion estimation only when the expected motion is large. The method in14

operates differently, by concatenating the found similar patches to a 3D volume, and transforming it using a



unitary transform. The obtained transform coefficients are hard thresholded for noise attenuation. The center
pixel in the reconstructed patches in the volume is averaged and represents the denoised outcome.

We now turn to present a comprehensive comparison of these three methods and ours. Note that since the
above papers chose different video sequences to test on, we provide several groups of tests, to address each.

5.2 Comparison Results
We first compare the proposed method to the work reported in,13 which displayed superior denoising results
relative to other methods it was compared to. We synthesized the same experiments as those in,13 and report
the results in Table 2. It is clear that our proposed method performs better in these tests.

Test Input 13 Results Our Results Difference
Sequence PSNR [dB] [dB] [dB] [dB]

Salesman 28 35.13 37.68 +2.55
24 32.60 35.41 +2.81

Garden 28 31.33 31.93 +0.60

Miss America 1 28 39.39 40.21 +0.82

Suzie 28 37.07 37.45 +0.38
24 35.11 35.42 +0.31

Trevor 28 36.68 37.77 +1.09
24 34.79 35.72 +0.93

Foreman 28 34.94 37.44 +2.50
24 32.90 35.42 +2.52

Table 2. Results of the proposed algorithm compared to those reported in.13 The chosen sequences and noise powers are
those reported in.13

The proposed method was also compared to the results of the classic NL-Means3,11 and to the current
benchmark in video denoising, the SW3D.14 The NL-means’ parameters were varied so they best fit each test,
since no one common set of parameters was found for all tests. This optimization gives the NL-means an
advantage, compared to using a fixed set of parameters as in the proposed algorithm and the SW3D. For the
SW3D, the authors of14 were very kind to provide us with an improved implementation of their algorithm. We
note that the results reported here for their algorithm are better than those reported in.14 The results of these
three methods, along with the original K-SVD denoising applied on single images,1 are compared in Table 3.

It is evident from the comparison that the proposed algorithm and the SW3D obtain the best results. At
low noise levels, the SW3D slightly outperforms the proposed algorithm on most tests, but under-performs on
the rest. At higher noise levels, the proposed algorithm clearly displays the best denoising results. Averaging
the above results, we get that an average performance (from the best downwards) of 29.01dB for our method,
28.12dB for the SW3D, 27.92dB for the NL-Means, and finally, 26.95dB for the single-frame K-SVD algorithm.
We note that these results mean that the proposed extension of1,2 to handle video yields about 2 dB better
results on average than the single image method.

6. WHO NEEDS MOTION ESTIMATION?

There is no need for motion estimation in the proposed algorithm, as the noise averaging is not based on simple
temporal proximity. Instead, the dictionary encodes the temporal structure for the sequence. Avoiding the need
to estimate motion is very beneficial, as accurate motion estimation in a noisy setting is very hard to obtain.
A second benefit, shared with the NL-Means and the SW3D, is that many patches are used for driving out the
noise, instead of the just one “true” patch. This allows better denoising, as more patches are averaged.

Having said all the above, we should also add that the motion-estimation-free algorithm proposed here, and
the competitive ones mentioned above, all lean on several core assumptions about the motion in the sequence:

1. Image content is preserved: The assumption that most of the content in one image also exists in the next
is standard in the video denoising field. Otherwise, the task is essentially a series of image denoising tasks.



σ Football Tennis Garden Mobile MeanPSNR

5 37.2357 35.9529 38.3428 37.1241 36.6256 36.0330 37.0691 36.2199 37.3183 36.3325
36.0284 37.1901 35.4216 38.0578 35.6874 36.3532 35.4926 38.0878 35.6575 37.4222

10 33.2386 31.8212 34.7098 32.0496 32.1844 31.4657 32.9308 31.7220 33.2659 31.7646
31.7345 33.0584 30.8462 34.2097 30.6805 31.9738 30.4723 34.0107 30.9334 33.3132

15 31.1099 29.6079 32.5621 29.5608 29.7780 29.0423 30.6341 29.4250 31.0210 29.4090
29.5922 30.7114 28.7770 31.9739 27.9585 29.4284 27.7225 31.3976 28.5125 30.8778

20 29.4733 28.1421 30.6886 28.1434 28.0680 27.5580 28.8675 27.7251 29.2743 27.8922
28.1345 29.1450 27.5933 30.4767 26.1474 27.9057 25.8322 29.5829 26.9269 29.2776

25 28.1599 27.1243 28.7156 27.3494 26.4882 26.3790 27.1189 26.3689 27.6206 26.8054
27.0807 27.9121 26.7759 29.1991 24.7780 26.6054 24.3940 28.0947 25.7572 27.9528

30 26.9412 26.5247 27.1787 26.6819 24.5829 25.3323 24.8755 25.3558 25.8946 25.9737
26.2691 26.9307 26.1996 28.2695 23.7193 25.6505 23.2735 26.9042 24.8654 26.9387

35 25.6763 25.8011 25.8921 26.2920 22.6928 24.4250 22.4002 24.4399 24.1654 25.2395
25.5697 26.1496 25.7180 27.5211 22.8490 24.5586 22.2319 25.7132 24.0922 25.9856

40 24.5183 24.9666 24.6714 25.9348 21.4826 23.5144 20.9477 23.6005 22.9050 24.5041
24.9585 25.4672 25.3091 26.9225 22.1057 23.8031 21.4587 24.8941 23.4580 25.2717

50 23.2540 24.1070 23.5034 25.3388 20.1516 22.1568 19.5466 21.9327 21.6139 23.3838
23.9200 24.2172 24.6424 25.9818 20.9143 22.5327 20.0299 23.3265 22.3766 24.0145

Table 3. Comparison of the denoising results of several methods on a number of test sequences and noise levels. Top Left:
SW3D; Top Right: NL-Means; Bottom Left: K-SVD single image; and Bottom Right: The proposed algorithm. Best
result for each set is written in bold. Results are for images 10-20 of each set, using other images (for temporal filtering)
as necessary.

2. Motion pattern is preserved: When using 3D atoms, it is assumed that similar objects undergo similar
motion. Furthermore, it is also assumed that this motion is roughly preserved (or changes slowly) between
one image to the next. This assumption is usually true in video sequences with high capture rate.

3. Motion is mainly translational: This assumption stems from the way the patches are used. Handling more
complex motion patterns is possible, but we have not explored this option in this work.

Note that there is no assumption that the motion is small, nor is there is a search area parameter in the proposed
algorithm. A strong indication that all these assumptions are generally true and are not limiting is the very
good performance of the algorithm on the above described tests.

7. CONCLUSIONS

In this paper we propose an image sequence denoising algorithm based on sparse and redundant representations.
This algorithm is based on the single image denoising algorithm introduced in.1,2 The extension of this basic
algorithm to handle image sequences is discussed both on the mathematical level and in practical terms. Three
extensions are proposed: the use of spatio-temporal (3D) atoms, dictionary propagation coupled with fewer
training iterations, and an extended patch-set for dictionary training and image cleaning. All these extensions
are thoroughly tested on an extensive set of image sequences and noise levels, and found to dramatically improve
denoising performance. The proposed algorithm is also compared to other state of the art methods, and shown to
produce comparable or favorable results. Finally, the need, or rather no-need, for motion estimation, is discussed.

Acknowledgements

The authors would like to thank the authors of,14 D. Rusanovskyy, K. Dabov, and Prof. K. Egiazarian, for their
willingness to provide us with a working implementation of the SW3D algorithm. A special thanks goes to K.
Dabov, who provided us with the source code of the improved SW3D and the test sequences used to test it on.
The authors would also like to thank the authors of13 , J. Boulanger, C. Kervrann, and P. Bouthemy, for their
willingness to help in comparing the denoising methods.



REFERENCES
1. M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representation”, Proc. of the

International Conference on Computer Vision and Pattern Recognition (CVPR), New-York, June 17-22,
2006.

2. M. Elad and M. Aharon, “Image denoising via sparse and redundant representation over learned dictionar-
ies”, IEEE Trans. on Image Processing, Vol. 15, No. 12, pp. 3736–3745, December 2006.

3. A. Buades, B. Coll, and J.M. Morel, “A review of image denoising algorithms with a new one”, Multiscale
Modeling and Simulation, Vol. 4(2), pp. 490–530, 2005.

4. J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli, “Image denoising using scale mixtures of
gaussians in the wavelet domain”, IEEE Trans. On Image Processing, Vol. 12, No. 11, pp. 1338–1351,
November 2003.

5. V. Zlokolica, A. Pizurica, and W. Philips, “Recursive temporal denoising and motion estimation of video”,
Proc. of the International Conference on Image Processing (ICIP), Singapore, October 2004.

6. F. Jin, P. Fieguth, and L. Winger, “Wavelet video denoising with regularized multiresolution motion esti-
mation”, EURASIP Journal on Applied Signal Processing, Vol. 2006, pp. 01–11, 2006.

7. I. Selesnick and K.Y. Li, “Video denoising using 2d and 3D dual-tree complex wavelet transforms”, Wavelet
Applications in Signal and Image Processing X (SPIE), San-Diego, August 2003.

8. R. Dugad and N. Ahuja, “Video denoising by combining Kalman and Wiener estimates”, Proc. of the
International Conference on Image Processing(ICIP), Kobe, Japan, October 1999.

9. N.M. Rajpoot, Z. Yao, and R.G. Wilson, “Adaptive wavelet restoration of noisy video sequences”, Proc. of
the International Conference on Image Processing (ICIP), Singapore, October 2004.

10. R.G. Wilson, and N.M. Rajpoot, “Image volume denoising using a fourier-wavelet basis”, Proc. of the 6th
Baiona Workshop on Signal Processing in Communications (Baiona SPC’03), Baiona, Spain, September
2003.

11. A. Buades, B. Coll, and J.M. Morel, “Denoising image sequences does not require motion estimation”, Proc.
of the IEEE Conf. on Advanced Video and Signal Based Surveillance September (AVSS), pp. 70–74, 2005.

12. V. Zlokolica, M.D. Geyer, S. Schulte, A. Pizurica, W. Philips, and E. Kerre, “Fuzzy logic recursive change
detection for tracking and denoising of video sequences”, Image and Video Communications and Processing
2005 (SPIE), Vol. 5685, pp. 771–782, March 2005.

13. J. Boulanger, C. Kervrann, and P. Bouthemy, “Adaptive space-time patch-based method for image sequence
denoising”, Proc. of the International Workshop on Statistical Methods in Multi-Image and Video Processing
(SMVP), Graz, Austria, May 2006.

14. D. Rusanovskyy, K. Dabov, and K. Egiazarian, “Moving-window varying size 3D transform-based video
denoising”, Proc. of the International Workshop on Video Processing and Quality Metrics (VPQM), Scotts-
dale, USA, 2006.

15. M. Aharon, M. Elad, and A.M. Bruckstein, “On the uniqueness of overcomplete dictionaries, and a practical
way to retrieve them”, Journal of Linear Algebra and Applications, Vol. 416, pp. 48-67, July 2006.

16. M. Aharon, M. Elad, and A.M. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete
dictionaries for sparse representation”, IEEE Trans. On Signal Processing, Vol. 54, No. 11, pp. 4311–4322,
November 2006.

17. S. Mallat and Z. Zhang,“Matching pursuit in a time-frequency dictionary”, IEEE Trans. Signal Processing,
Vol.41, No. 12, pp. 3397–3415, December 1993.

18. J.A. Tropp,“Greed is good: algorithmic results for sparse approximation”, IEEE Trans. Information Theory,
Vol. 50, No. 10, pp. 2231–2242, October 2004.

19. D.L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete representations in the
presence of noise”, IEEE Trans. On Information Theory, Vol. 52, pp. 6–18, January 2006.

20. G.H. Golub and C.F.Van-Loan, Matrix Computations, third ed., John Hopkins University Press, Baltimor,
1996.

21. J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for Color Image Restoration”, submitted to
IEEE Trans. on Image Processing.


