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General Motivation

Today we discuss inverse problems

50 years of extensive activity
and there is still long way to go
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General Motivation

a

Is your IP ill-posed?

yes

no

Reqgularize

Solve! Is your

solution satisfactory?

Regularization=guess P(x) no

Is it safe? fair? possible?

yes

Reqgularize

You are one
happy (and rare)
engineer!

0 Today we describe this alternative and its potential, and show new experiments.
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Agenda

1. Regularization — Brief Review
Introducing Stability to Inverse Problems

2. Regularization via Examples
Using Examples? How?

3. Our Recent Experiments

Simple and general scheme
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Maximum-Likelihood (ML) Solution

\4
Degradation ‘

X - ¥ )y = HX + Vv

. 2
Assuming zero-mean Y — — I H _ H
white Gaussian noise AML Arg;nax P(X/X) Argxmm X HX 2

Compute H™H

singular I non-singular

Non-unj:: tion! 1
e o :( T T T
i.tP(O‘o\,‘ﬂcSS Xvo =\H'H] Ry
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Well-Posed? It’s Not Enough!

\4
Degradation ‘

X ) () Yy =X +V

H=I

. 2
Assuming zero-mean ¢ — — ' _
white Gaussian noise AML Arg max P(X/X) Arg min HX XHZ

Simple but

P a
useless result XML i X

Even if the problem is well-posed
(H"™H=I — it does not get better!),
It does not mean that the ML solution is actually good.
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Regularization — Algebraic View

If H™H is singular, “regularize” it
by a positive-definite matrix C and a small scalar A

1
RrEG = (HTH + xcf HTy

This is equivalent to solving
~ : 2
XRreg = Argmin HHX — XHz + AgTCX
X

Why would we want XTCX to be small? Why this
expression in particular? Which C should we use?
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Regularization — Bayesian View

3 ML estimation: X,y = Argmax P(X/g)
X

d Alternative: The Bayesian approach considers the posterior
PDF P(x/y) instead.

3 In exploring P(x/y) we consider the probable x, given that
y was measured. Thus, x is also considered random.

1 Why called Bayesian? Because of the Bayes formula:

ly/x)P(x)

P
P(X/X) = P(y)
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MAP & MMSE Estimators

How P(x/y) should be used?

s |

Maximum A-posteriori Minimum Mean Squared
Probability Estimation Error Estimation
Ruap = ArgmaxP(x/y)  Rywse =Elx/y|= _[XP(X/ y)dx
X
Pix/y)
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The MAP Estimator

0 While MMSE is considered as a better option, we most often use MAP
estimation, because it is much simpler:

Xmap = Argmax P(g/x) = Argmax P(X/X)P(g)

X X

 For our inverse problem we have:

Xpap = Argmin|Hx — XH; —log{P(x)} ' Gibbs distribution
X

- Argmin|Hx - y[; + f(x)  P) o expi=f(x);
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So, What Shall f(x) Be?

During the past several decades we have made all sort of
guesses about the functional f(x):

)=2pely =2} 1) =2y, 19

pr &

F)=afvx], fe)=nTxl,  fx)=afof, o
*{ﬁ ?f%? *@»
8 ;LL }ﬁ ~£ Ql.v
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What About Super—Resolution?

Super-Resolution (SR) is an Inverse Problem of
the form we have presented

Given: A set of degraded (warped, blurred, decimated, noisy) images:

Required: Fusion of the
measurements into a higher
resolution image/s
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SR Is a Regular Inverse Problem

Example-Based
Priors for
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Today we know from several works:
[Baker & Kanade 2001]
[Lin & Shum 2004]

[Milanfar & Robinson 2005]

that the SR problem is ill-posed, and
adding more measurements cannot
fix this fundamental flaw.

THUS: WE NEED REGULARIZATION

13



Our Experience with SR

For example, in our previous work on
0 robust SR [Farsiu, Elad, Robinson, Milanfar 2003],
0 demosaic+SR [Farsiu, Elad, Milanfar 2004], and
0 dynamic SR [Farsiu, Elad, Milanfar 2005]

we have used the bilateral prior (extension of the TV)
to reconstruct super-resolved outcomes

Super-
Resolution
Reconst.
Algorithm
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Regularization = Guessing P(x)!!

All these techniques boil down to the fact
that we choose f(x) and effectively

the prior of the images’ PDF:
1
P(x) =~ expi= ()]

We do remarkably well, compared to where we stood 30 years ago, but
IS IT THE BEST WE CAN DO?

. | Example-Based
¥ Priors for
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Agenda

Regularization Brief Review
Introducing Stability to Inverse Problems

Regularization via Examples
Using Examples? How?

Our Recent Experiments

Simple and general scheme
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Main Idea

O Instead of guessing what is P(x) — the PDF of images — why not

Learn it from image examples? or better yet,
Use examples to bypass the need for a prior?

O It turns out that these ideas are becoming increasingly appealing in
recent years — Here is a partial list of contributions along these lines:

O Note: when dealing with special & narrow family of images (text,

graphics, face images, etc.), this idea can be of much stronger effect.

d We now describe the main ideas behind some of these works.

. | Example-Based
¥ Priors for
Inverse Problems
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Examples? How?

How shall we use
the examples?

 —

Use directly in the
reconstruction
algorithm, i.e., bypass
the prior (and the
minimization all

together
[Zhu & Mumford, 1997] [Efros & Leung, 1999]
[Field & Olshausen 1997] [Wel & Levoy, 2000]
[Simoncelli 1997] [Engan et. al. 1999] [Freeman, Pasztor, & Carmichael, 2000]

[Baker & kanade, 2002] [Freeman, Pasztor, & Jones, 2002]

[Haber & Tenorio 2003] [Nakagaki & Katsaggelos, 2003] [Bishop
[Cotter et. al. 2003] [Aharon, Elad, and et. al. 2003] [Criminisi et. al. 2004]
Bruckstein, 2004] [Roth & Black, 2005] [Weissman et. al. 2005]

Example-Based 18
Priors for
Inverse Problems



Learning Parameters: MRF

Suppose we are very pleased Instead of choosing the
with the prior parameters, we can
N learn them
f(x’ Q) B nzz“l}‘npn {Lnl} using a set of good
quality images,

that employs N linear filters
and N robust functions to and thus get an overall
incorporate their contribution. better prior.

0 Two works suggested ideas along the above line:

O The methods vary in the way the training is done. In both, a
training phase is required. Once done, the prior is ready to be
deployed for any Inverse Problem and any data.
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Learning Parameters: MMSE
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Learning Parameters: Sparsity




Examples? How?

How shall we use
the examples?

 —

Choose a prior
function and train
its free parameters.
Once done, use it
and its parameters
in the inverse prob.

[Zhu & Mumford, 1997] [Efros & Leung, 1999]
[Field & Olshausen 1997] [Wel & Levoy, 2000]
[Simoncelli 1997] [Engan et. al. 1999] [Freeman, Pasztor, & Carmichael, 2000]
[Baker & kanade, 2002] [Freeman, Pasztor, & Jones, 2002]
[Haber & Tenorio 2003] [Nakagaki & Katsaggelos, 2003]
[Cotter et. al. 2003] [Aharon, Elad, and [Criminisi et. al. 2004]
Bruckstein, 2004] [Roth & Black, 2005] [Weissman et. al. 2005]
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Direct Use of Examples — General

Gather a set of examples that Use those pairs to perform
describe the relation between the reconstruction directly,
high-quality (result-like) and without going through an
low-quality (measurements- explicit stage of Prior

like) patches. evaluation

O Several works suggested algorithms along these lines:
e Texture/image synthesis using the corrupted data for examples

e Ziv-Lempel like Denoising
e Super-Res. with Bayesian-Belief-Prop.
e Deblurring by adding high-freq. content

O All these methods rely on extensive nearest-neighbor searches, and
thus the database needs to be efficiently pre-organized (VQ,PCA, ...).

-
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Example for Such an Approach

OFE-LINE STAGE

O Accumulate pairs of image patches
related by the degradation operator:

iy, = Hxi - vf

L Pre-process the database to facilitate a
fast search, and better results:

s ign Kb g Jxk Low
q u al Ity IIIIIIIIIIIIIIIIIIIIIIIII==== q u al Ity

patches patches
 VVector quantization on &k}lllﬂzl
« PCA for dimensionality reduction. e

e Using informative features (derivatives,
high-frequency, multi-scale detalils, ...).
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Example for Such an Approach

ON-LINE STAGE

O Sweep through the given (low-quality)
Image, patch by patch (with overlaps).

Output canvas

g
d Per the patch y,, find its J-nearest g
neighbors in the DB. |
O Refer to these NN matching high-
uality part xi,x2 X) T e
quality part Xy, Xy, ..., X quality fiessa
O Use those to update the result by patches  Hiisaise
- (weighted) averaging, or
« Bayesian Belief Propagation. SRaNin: : Nearest
. . Neighbors
[Freeman, Pasztor, & Carmichael, 2000] HHHHH ’
[Freeman, Pasztor, & Jones, 2002] ;
[Nakagaki & Katsaggelos, 2003] Orgamzed DB
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Major Questions to Consider ...

Which examples How to use
to use? the examples?

[ —|

Train to set Use directly
Prior param. in the alg.

rn rm

MRF sparse Ave. BBP

Which estimator
to target?

Other important questions:
* 0 How to represent examples?
' ?
MMSE other MAP 0 How to organize the examples?
Q Which IP to target?
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Agenda

Regularization — Brief Review
Introducing Stability to Inverse Problems

Regularization via Examples
Using Examples? How?

Our Recent Experiments

Simple and general scheme

Example-Based
Priors for
Inverse Problems

geometric image
processing laboratory

<SP

"

27



Definition: The Influence Zone

O Given a degraded image Y, we
consider working with fully
overlapping patches of size NxN
pixels. Denote such patch as Y-

0 Knowing H, and assuming
locality, we can define a
corresponding patch x in X
(of size LxL, L>N) that contains
all the pixels that generate y, . A

O We define an N2xL? operator A that relates HAX —y
the two (T is a function of the noise): Kk

Example-Based
Priors for
Inverse Problems
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Examples for Y :3x3

Denoising Deblurring Up-Scaling

100 - 0

010 - 0 11100 10000
A=10 0 1 - 0f=Ig Aj={0 111 0,A=A;®A; A;=|0 01 0 0|,A=A;®A
o : 00111 00001

0 00 1

Example-Based 29
Priors for
Inverse Problems



The Basics: Off—Line

O Suppose that we have a database
containing many x, patches of
the desired (LxL) size.

Question 1: How to organize it?

But we will not do

that !!
£ Y\ Low
. . o quality
O This database (that has ONLY high :: : patches

guality image patches) will be used
in the reconstruction for any : :
known H. EeSIEEEIEEIESEEEIENEI Do

Example-Based 30
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The Basics: On—Line

 Given a low-quality image (with known
local degradation), we sweep through it
In overlapping blocks Y-

J Per eachy, we search the DB for its J,
(may vary) nearest-neighbors, satisfying

5wl =JAxe-y, o< T

_ -\ .
O We mark the found neighbors as {&J( }_k . These will be used for the
reconstruction. .
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How to Organize the DB?

Q The database {x, } ,
should be decomposed
hierarchically in a tree
structure (k-d-Tree for
box-like clusters or Tree-
K-Means for spheres). Its
leafs are the actual
examples.

D Every C|USteI’ hOldS ItS .......................
smallest bounding information:
Box: its corners; or
Sphere: center + radius,

O Instead of applying the operator A on all the DB, apply it only on the
bounding features (center or corners) upon need.
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2. How to Find the NN?

Brute-force I Fast

|
TS

Example-Based
Priors for
Inverse Problems
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The Fast Search (1)

Core tool: Given a cluster C, with center X, and radius r,, and given
a candidate patch, Y, » Wwe should solve:

e Closed form solution using

Using z,,, we can make simple
tests to see if it falls inside the

_ 2
Zopt = Arg mlnHA; —~ Xng st |z—xof, <0 "
z e Similar structure for k-d-
yes I no
sub-clusters, and save
computations this way

tree, solved with LSQLIN.
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The Fast Search (2)

Assume that as part of the DB organization, we gather the cross
distances between the cluster-centers in each level

We can use a triangle inequality
dly . Ca}>dly,  Col - omax Ao - 1] +10 +1)

- Yet another rejection
. | Example-Based
¥ Priors for
Inverse Problems
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Role of Multi—Scale?

her, and others [J.l 1], the image is
O So far we assumed that the patches are of '
constant size (in x and y).

ing is done per edch image content a
A
mmace decorn

Q Varying the size can be of worth, both for - 1 TR el| oxtendin,
speed and for accuracy: : _

e Speed: Starting with small patch-size, the tests
are cheaper, and only on the non-rejected
results we should proceed with a larger patch-
size.

. ]
Selgnmnent to cartgon /texture content

her well.

e Accuracy: As the patch-size increases, the
number of candidate neighbors drops and
sharpens, reducing chances of multi-modal
posterior. In fact, a stopping rule to the patch-
size increase could be the number of examples
found.

. | Example-Based 36
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How to Reconstruct?

O Consider the output image ...
and refer to one specific pixel in it.

O Suppose we work with blocks of 3x3
in X (i.e., L=3) and see how they
contribute to the chosen pixel.

O Per every such location, we have a o060 'YX X
group (J,) of candidate NN
examples, with a distance attribute.

O Thus we have an array of the form:

X1 Xo X3 Xz Xg Xg X7 Xg -+ Xy | Values
& & & & & & & &g €, | Distances

. | Example-Based 37
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The Reconstruction

0 We have the array: [X; Xo X3 X4 X5 Xg X7 Xg - Xy| Values
Distances

&g & &3 & & & &7 &g €n

O Assumption: these points stand for sampling
from the scalar posterior, P(x/Y), where:
X: the pixel in question _
Y: the zone covered by all these patches * A histogram of these
examples leads to the

posterior: MAP and
P(x/Y) MMSE are within reach.

e The distances are helpful
In weighting those
samples, and robustifying

i L/ against the choice of T.
e N

. | Example-Based 38
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To Summarize

Example-Based
Priors for
Inverse Problems
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Few Text Experiments

O We will now present few reconstruction examples:
e Denoising,
e Deblurring, and
e Up-Scaling.

O These text experiments use training patches (—60,000) taken from:

i |

Witkin and Terzopoulos [34] and were originally boundary methods. Snakes [34], bal-
loons [1”]- or .‘_';l"lllll".‘-i-i' actlve contours [—l] are driven towards the e 1,211".‘- of an ilIl.;'l.,E;I"

through the minimization of a boundary integral of functions of features depending on

als have appeared later. Introduced by [11] and [43], they have been further developed

L These experiments are in line with those done by Baker & Kanade.

. | Example-Based
¥ Priors for
Inverse Problems

40



Results: Denoising

Original Image x

tracking. or classification. can be cast 1 the framework of optimization theory, e.g.,

as the minimization of some energy measure. The energy is often some combination
of regiom or boundary functionals. The minimization 1s usnally not trivial, and many

Measured image y: Additive Gaussian noise /V0,8:1)
tracking. or classification, can be cast 1 the framework of optimization theory, e.g.,
as the minimization of some energy measure. The energy 1s often some combination
of region or boundary functicnals. The minimization is nsnally not trivial, and many

Reconstructed [5x5 patches] RMSE=2.45

tracking. or classification, can be cast in the framework of optimization theory. e.g.,

as the minimization of some energy measure. The energy 1s often some combination
of region or boundary functionals. The minimization 1s usually not trivial, and many

Example-Based
Priors for
Inverse Problems
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Result: Deblurring

Original Image x

tracking. or classification. can be cast 1 the framework of optimization theory, e.g.,

as the minimization of some energy measure. The energy 1s often some combination

of region or boundary functionals. The minimization 15 nsnally not trivial, and many

Measured image y: 3x3 uniform blur & Gaussian noise MNO0,8-1)

tracking, or classification. can be east in the framework of optimization theory. e.g.
ax the minimizaton of some energy messaire. The energy s often some combina on

of region or boundary unctionals. The munmmization = wsually not trivial, and many

Reconstructed [5x5 patches] RMSE=6.4
tracking. or classification. can be cast in the framework of optimization theory, e g,
as the minimization of some energy measure. The energy i=s often some combination

of region or boundary functionals. The minimization is nsnally not trivial, and many

Example-Based
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Result: Up—Scaling

Original Image x

tracking. or classification. can be cast 1 the framework of optimization theory, e.g.,

as the minimization of some energy measure. The energy 1s often some combination
of regiom or boundary functionals. The minimization 1s usnally not trivial, and many

Measured image V: é{f ‘ ﬂ blur, 2:1 decimation & noise MO0,8:1)
Lk, F cbucalicalea, capm bo casl iy B [Faswivar K ol o oo pcetsi ey, oo
i the mminEmizstion of some eergy measure. The cnergy B often soane oom bemast om

]

il reyEsm A b i i T fcommle. "B E mpimiioeesd wnik i3 osieallly el Prveam]. o] somody

Reconstructed [8x8 patches] RMSE=10.01

11'.;||']'Zi115:- or classification. can be cast in the framework of « 1 imization the iy, e &,
as the mimmzation of some energy measure. The energy 15 often =ome combination

of region or bourdary functionals. The minimization s usnally not erivial. and many

Example-Based
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Few Face Experiments

O We now present few preliminary reconstruction examples for 4:1
scaled-up faces.

L The faces (training and testing) are taken from the ORL database.

O These experiments use training patches (—50,000) taken from 7 faces
(different people!) from the ORL DB, and allowing offset and scale:

 These experiments are in line with those done by Baker & Kanade.
O Results CAN BE IMPROVED — We are working on this.

. | Example-Based 44
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Result: Up—Scaling

Original Measured Bilinear Inter. Reconstructed

L.

Blurred by ;6{5 : } Block size 26x 26

1

4:1 decimation

& noise MO0,8-1)
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Result: Up—Scaling

1 ] [
Original Measured Bilinear Inter. Reconstructed
Blurred by fe;k ‘ ﬂ Block size 26x 26

4:1 decimation

& noise MO0,8-1)
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Changing the Training Set?

Conclusions:

e Both results are “correct” in the sense that
they fit the measurements well, while each
draws different information in order to
complete the picture.

e Use as many examples as possible and the
result will be more reliable.

e Using too many examples complicates the
reconstruction algorithm. How much Is
enough?

a7



Conclusion

Regularization is
an extremely
important tool in
iInverse problems

The Bayesian

approach gives But this
us a constructive means that

answer we have to
guess P(x)?

Today we have
seen some of the
recent activity on Yes! WE

this front CAN USE Can we do

| EXAMPLES thi For 00 years we
| shsd have been guessing
differently? P(x) based on

This idea has huge potential: intuition: varying
Relation to learning theory, probability degrees of success
sampling, efficient DB search, sensitivity to
model errors, ...
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Warning: Examples May Mislead

Have you found your true love?
Are you about to pop the
guestion?

Ever wondered how wiill
she look like and behave
40 years from now?

Should we use
examples? How about
looking at her mom?

[Kimmel, 2005]
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