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This Talk Gives an Overview On ...

15 years of tremendous progress in the field of
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Agenda

— Theoretical &

— Denoising Numerical Foundations
by Sparse &
Redundant — Dictionary Learning
Representations & The K-SVD Algorithm
— — Back to Denoising ... and Beyond —
Summary & « handling stills and video denoising & inpainting,
Conclusions demosaicing, super-res., and compression

d Sparsity and Redundancy are valuable and
well-founded tools for modeling data.

d When used in image processing, they lead
to state-of-the-art results.
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Denoising by
Sparse & Redundant
Representations
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Noise Removal?

Our story begins with image denoising ...

Remove

Additive
Noise

d Important: (i) Practical application; (ii) A convenient platform
(the simplest) for testing basic ideas in image processing; (iii) Given a
good denoising algorithm, one could solve many other problems.

d Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, ...
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Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to the
minimization of an energy function of the form

y : Given measurements Relation to

Prior or regularization
x : Unknown to be recovered | Measurements

A This is in-fact a Bayesian point of view, adopting the
Maximum-A-posteriori Probability (MAP) estimation.

Q Clearly, the wisdom in such an approach is within the .
choice of the prior — modeling the images of interest. Thomas Bayes

1702 - 1761
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The Evolution of G(x)

During the past several decades we have made all sort of guesses
about the prior G(x) for images:

G(x) = k[, G(x)=*|ux]; G(X) =L, G(x)=2p{Lx]

‘ff Energy \g Smoothness Adapt+ "’3\‘ Robust
A 2’1 }* Smooth rﬁ Statistics

G X = A H|VK|H1 G (X) =N waul G(X) = }V”QC”z o Hidden Markov Models,

e Compression algorithms as priors,
for X = Da g J P

& Total- ?fk;\Wavelet [, Sparse &
» Variation }1\ Sparsity f‘é Redundant
g L 7\
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Sparse Modeling of Signals

d Every column in

D (dictionary) is
M a prototype signal
) K . (atom).

Y\ A

N O The vector a is
p— . generated
randomly with few

.!
| |
H
H
[ |
H
[ |
H
[ |
H
[ |
| |
E o). (say L) non-zeros

A sparse X at random
& random — locations and with
vector random values.

(X  We shall refer to
D this model as

Sparseland

A fixed Dictionary

D



Sparseland Signals are Special

Interesting Model:

a Every generated
signal is built as a linear
combination of few atoms

M

H from our dictionary D
oL E . ad A general model: the
= |k Multipl obtained signals are a union
- ‘ b [p)y ‘ of many low-dimensional
i y Gaussians.
E X — Dg a We have been

r
[ €

using this model in other
context for a while now
(wavelet, JPEG, ...).
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Sparse & Redundant Rep. Modeling?

£/l..\ ..D

Asp—» Oursignal y _py where o is sparse
get a cc model is thus:

of the non-zeros l:i 0 ||9||E
in the vector N IY p<1
= [,
J—J.

1 +1 X

X = Da where ngg <L
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Back to Our MAP Energy Function

Q We L, norm is effectively 1 2
counting the number of —H X —Y Hz

non-zeros in Q.. 2

O The vector o is the ¥
representation ( /

of the desired

)
signal x. Dg_y —

A The core idea: while few (L out of K) atoms can be merged
to form the true signal, the noise cannot be fitted well. Thus,
we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.
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Wait! There are Some Issues

d Numerical Problems: How should we solve or approximate the
solution of the problem

: 2 :
min Do - YHZ s.t. ||gc||8 <L or min ngg s.t. Do - XH; < g?

or min 2Jaf; + [Pe-y[; ?

d Theoretical Problems: Is there a unique sparse representation? If
we are to approximate the solution somehow, how close will we get?

A Practical Problems: What dictionary D should we use, such that all
this leads to effective denoising? Will all this work in applications?
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

There are some issues:
1. Theoretical

2. How to approximate?
3. What about D?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad
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Theoretical &
Numerical Foundations
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Lets Start with the Noiseless Problem

Suppose we build a signal
by the relation

Do =X

We aim to find the signal’s
representation:

& = Arg Mi”HQ‘HS s.t. X

Do,

-
INEEENEN EEEEN T EEEEEEEEEETE
| . J

B Known

Why should we necessarily get Q = QL7

Uniqueness

It might happen that eventually HQHE < HQLHE .

Sparse and Redundant
Signal Representation,
and Its Role in

h R T .
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Matrix “Spark”

Definition:

Donoho & E. (*02)

Example:

= O O O

* In tensor decomposition,
Kruskal defined something
similar already in 1989.
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Uniqueness Rule

Suppose this problem has been solved somehow

= ArgMin|a st. x =Da

Uniqueness If we found a representation that satisfy

A @)
l, <2

Then necessarily it is unique (the sparsest).

This result implies that if M generates

signhals using “sparse enough” o, the
solution of the above will find it exactly.
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Our Goal

Here is a recipe for solving this problem:

[SetL=1~
There are (})

such supports 1 -

Nol Yes

Done
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Lets Approximate

: 0 » 2 9
min uly st. [Pa-yf;, <

P AN

Relaxation methods

Smooth the L, and use Build the solution
continuous optimization one non-zero
techniques element at a time
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Relaxation — The Basis Pursuit (BP)

Wl e

A This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (95)].

d The newly defined problem is convex (quad. programming).

Q Very efficient solvers can be deployed:

= Interior point methods [Chen, Donoho, & Saunders ('95)] [Kim, Koh, Lustig, Boyd, &
D. Gorinevsky (" 07)].

= Sequential shrinkage for union of ortho-bases [Bruce et.al. (*98)].

= Jterative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole ('04)]
[E. (05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (*09)] ...
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Go Greedy: Matching Pursuit (MP)

algorithms that finds one atom T el
0 Step 1: find the one atom that | SEmSSssmsssEsssmmsmemmsmess | | B
the signal.
O Next steps: given the previously

found atoms, find the next one to
the rsidual.

Q The algorithm stops when the error [Da- sz is below the destination
threshold.

d The Orthogonal MP (OMP) is an improved version that re-evaluates the
coefficients by Least-Squares after each round.
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Pursuit Algorithms

: 0 » 2 p)
min oy st Do XHz <g

There are various algorithms designed for approximating the

solution of

‘ot Why should
(OMP), L y S Ou ng
Pursuit [:

O Relaxatio th k ctor
& numer ey WO r u

Q Hybrid Al lard-

Thresholaing [zuu/-toaay]|.
[
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The Mutual Coherence

Q Compute | ‘ b ]:

DT Assume

normalized T
columns D'D

A The Mutual Coherence p is the largest off-diagonal
entry in absolute value.

d The Mutual Coherence is a property of the dictionary
(just like the “Spark”). In fact, the following relation

can be shown:
c>1+—
u
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BP and MP Equivalence (No Noise)

Equivalence  Gjyen a signal x with a representation x = Do,
assuming that || <0.5(1+1/u), BP and MP

are guaranteed to find the sparsest solution.

A . 0
d MP and &a% dﬁel;gtl\iﬂglgjlgnu% uh)ard%tséy \r)«gicfis?e%r).

A The above result corresponds to the worst-case, and as such, it is
too pessimistic.

[ Average performance results are available too, showing much
better bounds [Donoho (704)] [Candes et.al. ('04)] [Tanner et.al. ('05)]
[E. (06)] [Tropp et.al. ("06)] ... [Candes et. al. ("09)].
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BP Stability for the Noisy Case

» Given a signal y =Da + Vv with a representation
Stability =

satisfying HQLHS <1/3p and a white Gaussian
noise v ~ N(0, o°I), BP will show* stability, i.e.,
|Giep — chi < Const()) - logk - ngg . o°
* With very high

probability
A For 6=0 we ge¢

EIThlsresuItlstmln 7\,H(1H —I—||DOL Y|

d Similar results
Orthogonal Mz —_

-
25
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

The
Dictionary D
should be
found
somehow !!!

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen that there are
approximation methods to
find the sparsest solution,

and there are theoretical
results that guarantee their
success.
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Dictionary Learning:
The K-SVD Algorithm

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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What Should D Be?

& = arg mianug s.t. %H Do -y Hz < &2 X =D&

a

Our Assumption: Good-behaved Images
have a sparse representation

A

D should be chosen such that it sparsifies the representations

\ 4 )\ 4

One approach to choose D is from The approach we will take for
a known set of transforms building D is training it,
(Steerable wavelet, Curvelet, based on Learning from

Contourlets, Bandlets, Shearlets ...) Image Examples
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Dictionary Learning: Problem Setting

A

~

flll..l..l..l..l. ,

Y

Given these P examples and a
fixed size [NxK] dictionary D:

1. Is D unique?

2. How would we find D?

29
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[Cotter et. al. ('03)]
[Gribonval et. al. ('04)]
[Aharon, E. & Bruckstein ('04)]

[Engan et. al. ('99)]
[Aharon, E. & Bruckstein ('05)]

[Field & Olshausen (*96)]
[Lewicki & Sejnowski ('00)]
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Measure of Quality for D
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K—Means For Clustering

Clustering: An extreme sparse representation

Initialize
D

i

Sparse Coding

Nearest Neighbor T

] | X
Dictionary
E Update

Column-by-Column by
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The K=SVD Algorithm — General

[Aharon, E. & Bruckstein ('04,'05)]

Initialize
D

D

i

Sparse Coding

Use Matching Pursuit T

] | X
Dictionary
E Update

Column-by-Column by
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K=SVD: Sparse Coding Stage

Min ZHDJ —JH st V], JH <L

Min HDgc—xjuz st. Joff <L

Solved by EEEEREEEEEeE | HENEREmEREREREREEEEEERERS
A Pursuit Algorithm
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K=SVD: Dictionary Update Stage

We should solve:

Min
Elkl

\
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We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kt" column,
and seek both d, and
the kth column in A to
better fit the residual!
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A Synthetic Experiment

Create A 20x30 random dictionary ~ Generate 2000 signal examples with Train a dictionary using the KSVD
with normalized columns 3 atoms per each and add noise and MOD and compare

-

D = - ™ D

o
=)

I
IS

k=]
c
>3
[S)
s
1%}
=
2 05
<
o
=
8
9]
o

o
w

o
N

MOD performance
K-SVD performance
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Will it all
work in
applications?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen approximation
methods that find the
sparsest solution, and
theoretical results that

guarantee their success. We

also saw a way to learn D
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Back to Denoising ...
and Beyond —
Combining it All

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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From Local to Global Treatment

Q The K-SVD algorithm is reasonable for low- ) K R
dimension signals (N in the range 10-400). $
As N grows, the complexity and the memory
requirements of the K-SVD become N D
prohibitive.

d So, how should large images be handled?
a Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps.

A 1 5
X = Arngn —x-y
Z,{gij }U 2 H —HZ

Our prior
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What Data to Train On?

Option 1:
d Use a database of images,

d We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:
d Use the corrupted image itself !

d Simply sweep through all patches of size
N-by-N (overlapping blocks),

A Image of size 10002 pixels == ~ 106
examples to use — more than enough.

L This works much better!

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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K-SVD Image Denoising

x=y and D known x and a;; known D and a;; known

: 4 4 : 4
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Image Denoising (Gray) (k. & anaron (06)]

L % Source

W REERNEREE R
L B o B I
o 0 A R PO T ) O

2\ B P e 5 D I R
d The results of this algorlthm compete favorably with  =3'S#e

the state-of-the-art. R T

O This algorithm can be extended by using joint sparse '%%ﬂ.'rﬂ

representation on the patches, introducing a non-local M #Z (Il

force in the denoising, thus leading to improved EE%.IF};
results [Mairal, Bach, Ponce, Sapiro & Zisserman (‘09)]. T A

2 AT

O What about EPLL I 11 [ [
F i ZTINNZ NN

] LS TR e TH T | M

- Noisy image The obtained dictionary after
s =20 10 iterations
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Denoising (Color) rmvairal, e. & sapiro 08)1

d When turning to handle color |mages the

Orlglnal NOISy (20. 43C|B)
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Denoising (Color) rmvairal, e. & sapiro 08)1

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [Mcauley et. al. (06)]
which implements a learned MRF model (Field-of-Experts)

Original Noisy (12.77dB)  Result (29.87dB)
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Video Denoising rerotter & E. (09)]

average compared to [Boades, Coll & Morel (05)] @and
comparable tO [Rusanovskyy, Dabov, & Egiazarian (‘06)]

orignal - avoided (uat 405 borel (open0'sed (PONR=23.95)
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Low-Dosage Tomography (shiok, zibulevsky & E. ¢10)3

d In Computer-Tomography (CT) reconstruction, an
image is recovered from a set of its projections.

A In medicine, CT projections are obtained by X-ray,
and it typically requires a high dosage of radiation in
order to obtain a good quality reconstruction.

A A lower-dosage projection implies a stronger noise
(Poisson distributed) in data to work with.

A Armed with sparse and redundant representation
modeling, we can denoise the data and the final
reconstruction ... enabling CT with lower dosage.

# | Image Denoising & Beyond Via Learned 45
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Image Inpainting — The Basics

d Assume: the signal x has been created
by x=Dg, with very sparse a,.

d Missing values in x imply
missing rows in this linear
system.

d By removing these rows, we get

Do = X

d Now solve

Min[jaf, st. X =Da

Q If o, was sparse enough, it will be the solution of the
above problem! Thus, computing Da,, recovers x perfectly.

* | Sparse and Redundant Representation Modeling
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By: Michael Elad
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Side Note: Compressed-Sensing

A is leaning on the very same principal, leading
to alternative sampling theorems.

0 Assume: the signal x has been created by x=Da, with very sparse q,.

O Multiply this set of equations by the matrix Q which reduces
the number of rows.

A The new, smaller, system of equations is ~
QDo = Qx == Do =X X

Q If a, was sparse enough, it will be the sparsest solution of the
new system, thus, computing Da,, recovers x perfectly.

d Compressed sensing focuses on conditions for this to happen,
guaranteeing such recovery.
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Inpainting (mairal, E. & sapiro (08)]
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Inpainting (mairal, E. & sapiro (08)]

The same can be done for video, very much like the
denoising treatment: (i) 3D patches, (ii) no need to
compute the dictionary from scratch for each frame, and
(iii) no need for explicit motion estimation

Sparse and Redundant Representation Modeling 49
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Demosaicing (mairal, E. & sapiro (08)]

ur erlments lead to state-o the art de

e
Qo 5 SRR HRE mpag e e
color peI’ éﬂ% ﬁﬂ@zﬁﬁcﬁanq &ehan (06)]

mterpolated
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Image Compression (et and . (08))

d The problem: Compressing photo-ID images.

d General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

d By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

d For these techniques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

A In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

d Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. ('05)].

* | Sparse and Redundant Representation Modeling
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Image Compression

Detect main features and warp
the images to a common
reference (20 parameters)

¥

Divide the image into disjoint
15-by-15 patches. For each
compute and

v

Per each patch find the
operating parameters (number
of atoms L, quantization Q)

v

Warp, remove the mean from
each patch, sparse code using L
atoms, apply Q, and dewarp

* | Sparse and Redundant Representation Modeling
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Training set (2500 images)
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Deblocking the Results (st and e (- 09);

g

K-SVD (6.60)  K-SVD (5.49)  K-SVD (6.45)  K-SVD (11.67)

Deblock (6.24) Deblock (5.27) Deblock (6.03) Deblock (11.32)
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Poisson Denoising

et

peak =100

J

peak = rqi_lx{xi,.}
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PO'SSO” DenO|S|ng [Salmon et. al., 2011] [Giryes et. al., 2013]

O Anscombe transform converts Poisson distributed noise into an
approximately Gaussian one, with variance 1 using the following

formula [Anscombe, 1948]: 3
1:Anscombe (y) =2 Yy + g

d However, this is of reasonable accuracy only if peak>4.

A For lower peaks (poor illumination), we use the patch-based
approach with dictionary learning, BUT ... in the exponent domain:

4 N 4

x =D x=exp{Da}
were [of, <L ™ lunere Jul <L

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Poisson Denoising — Results (1)

- .'t.t.t'ﬁ.;

LR I N B
. rarasiane
- ..'...'..'1
=S ————
==
e

Original Noisy (peak=1) Result (PSNR=22.59dB)

Dictionary learned atoms:
* ' ‘ . -
i
[ -
‘ —e A I
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Poisson Denoising — Results (2)

Original

Original

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Other Applications?

O Poisson Inpainting

Q Super-Resolution

A Blind deblurring

d Audio inpainting

0 Dynamic MRI reconstruction
a Clutter reduction in Ultrasound
O Single image interpolation

O Anomaly detection

d

* | Sparse and Redundant Representation Modeling
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Yes! We have seen a group of
applications where this model is
showing very good results:
denoising of bw/color stills/video,
CT improvement, inpainting,
super-resolution, and
compression

Well, many
more things ...

Image Denoising & Beyond Via Learned 62
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Summary and
Conclusion

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Today We Have Seen that ...

4 4

and the use of

are important ideas that

can be used in designing
better tools in

signal/image processing

In our work on we
cover theoretical,
numerical, and
applicative issues
related to this model
and its use in practice.

applications
a ..

We keep working on:

d Improving the model

O Improving the dictionaries
1 Demonstrating on other

Sparse and Redundant Representation Modeling

of Signals — Theory and Applications
By: Michael Elad
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Thank You

All this Work is Made Possible Due to

G. Sapird J.L. Starck I. Yavneh M. Ziblevsky

-

M. Aharon O. Bryt
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If you are Interested ...

More on this topic (including the
slides, the papers, and Matlab
toolboxes) can be found in my
webpage:
http://www.cs.technion.ac.il/~elad

A book on these topics was
published in August 2010.

# | Image Denoising & Beyond Via Learned
¥ Dictionaries and Sparse representations
By: Michael Elad
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Thank You all !

Questions?

More on these (including the slides and the relevant papers) can be found in
http://www.cs.technion.ac.il/~elad




Dictionary Learning: Unigueness?

If {gj }le is rich enough* and if

Uniqueness
_ Spark{D}
2

then D is unique.

L

Comments:
K

e “Rich Enough”: The signals from M could be clustered to [Lj groups that
share the same support. At least L+1 examples per each are needed.
More recent results (see Schnass and Wright's work) improve this
dramatically.

e This result is proved constructively, but the number of examples needed
to pull this off is huge — we will show a far better method next.

e A parallel result that takes into account noise is yet to be constructed.
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Improved Dictionary Learning

i 2
Min 3 |Daj - ;) st. v,

DA 3

MOD Algorithm

Fix D and
update A

Fix A and
update D

0
gJ'Ho <L

K-SVD Algorithm
Fix D and update A

for j=1:1:K
- Fix A & D apart from the

j-th atom its coefficients
- Update d; and its coef. in A

end
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Improved Dictionary Learning

This can be done in two ways:
: 1. Apply several rounds of the atoms’
_ update in the K-SVD, or
NON-Z€ros 2. Extend the MOD to update the
non-zero elements in A
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EPLL Improvement [Sulam and E. ('15)]

A .1 2 2 0
X= ArgMin Z|x-Yy RiiX —Doi;|l . S.t. |loyill <L
X,{@ij}ij,D ZH _Hz +“izj:H ! al]Hz H%HO
A The algorithm we proposed
updates x only once at the

end. Up_da_tes the
Dictionary
d Why not repeat the whole Updates
process several times? the
d The rationale: The sparse Output
representation model should Updates the image

be imposed on the patches of
the FINAL image. After
averaging, this is ruined.

sparse repr.
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EPLL Improvement [Sulam and E. ('15)]

O Expected Patch Log Likelihood (EPLL) is an algorithm that came to fix
this problem [Zoran and Weiss, ('11)] in the context of a GMM prior.

A An extension of EPLL to Spars-Land is proposed in [Sulam and E. (‘15)].
The core idea is:

= After the image has been computed, we proceed the iterative process,
and apply several such overall rounds of updates.

= Sparse coding must be done with a new threshold, based on the
remaining noise in the image. This is done by evaluating the noise level
based on the linear projections (disregarding the support detection by the
OMP).

= This algorithm leads to state-of-the-art results, with 0.5-1dB improvement
over the regular K-SVD algorithm shown before.
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EPLL Improvement [Sulam and E. ('15)]

Noisy Image. PSNR = 18.59 dB K-SVD. PSNR = 34.45 dB

L

Noisy image
has 0=25

KSVD PSNR
31.42 dB

EPLL PSNR |
31.83dB | ¥

Sparse and Redundant epesntatioﬁ IVTodeIing
of Signals — Theory and Applications
By: Michael Elad
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Inpainting Formulation (wairal, £. & sapiro (083 S

The matrix M is a mask
matrix, obtained by the
identity matrix with
some of its rows
omitted, corresponding
to the missing samples

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Inpainting Formulation (wairal, £. & sapiro (083 S

x=y and D known X and a;; known D and a;; known

: 4 : 4 4
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Inpainting [vairal, £. & sapiro (08))

For the Peppers image

Alg. RMSE for | RMSE RMSE for
25% for 50% | 75%
missing missing | missing

No-overlap 14.55 | 19.61 29.70
Overlap 9.00| 11.55 18.18
K-SVD 8.1 10.05 17.74

This is @ more challenging case,
where the DCT is not a suitable
dictionary.
« For Redundant DCT we get

RMSE=16.13, and
« For K-SVD (15 iterations) we

get RMSE=12.74

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad

Original Image Masked Image
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DCT Result K-SVD Result
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Su PEr- Resolution [Zeyde, Protter, & E. (*11)]

A Given a low-resolution image, we desire to enlarge it
while producing a sharp looking result. This problem is
referred to as “Single-Image Super-Resolution”.

d Image scale-up using bicubic interpolation is far from
being satisfactory for this task.

A Recently, a sparse and redundant representation
technique was proposed [Yang, Wright, Huang, and Ma ('08)]
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images.

d We extended and improved their algorithms and
results.
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Super-Resolution — Results (1)

Ideal
Image

, supply

ations is st

The trainip

89 training
h-pairs.

Given Image
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Super-Resolution — Results (2)

|5
|
\#»

M4 44 N R g ;’/
Given image 4 |/
° p A
bk
rg f g | \

b0 BN Rl A\
Scaled-Up (factor 2:1) using the proposed algorithm,
PSNR=29.32dB (3.32dB improvement over bicubic)
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result
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