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Background material: 

• D. L. Donoho and M. Elad, “Maximal Sparsity Representation via l1 Minimization”, to appear in Proceedings of the 
Naional Academy of Science.

• J.-L. Starck, M. Elad, and D. L. Donoho, “Image Decomposition: Separation of Texture from Piece-Wise Smooth 
Content”, SPIE annual meeting, 3–8 August 2003, San Diego, California, USA.

• J.-L. Starck, M. Elad, and D.L. Donoho, "Redundant Multiscale Transforms and their Application for Morphological 
Component Analysis", submitted to the Journal of Advances in Imaging and Electron Physics.

• J.-L. Starck, M. Elad, and D.L. Donoho, "Simultaneous PWS and Texture Image Inpainting using Sparse 
Representations", to be submitted to the IEEE Trans. On Image Processing.

These papers & slides can be found in: http://www.cs.technion.ac.il/~elad
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General

• Sparsity and over-completeness have important 
roles in analyzing and representing signals.

• Our efforts so far have been concentrated on 
analysis of the (basis/matching) pursuit 
algorithms, properties of sparse representations 
(uniqueness), and applications. 

• Today we discuss the image decomposition 
application (image=cartoon+texture). We present

Theoretical analysis serving this application, 

Practical considerations, and 

Application – filling holes in images (inpainting)
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Atom (De-) Composition

• Given a signal s , we are often interested in its 
representation (transform) as a linear combination of 
‘atoms’ from a given dictionary:

Nℜ∈

• If the dictionary is over-
complete (L>N), there are 
numerous ways to obtain 
the ‘atom-decomposition’.

• Among those possibilities, 
we consider the sparsest.
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• Greedy stepwise regression - Matching Pursuit (MP) 
algorithm [Zhang & Mallat. 93’] or orthonornal version of it 
(OMP) [Pati, Rezaiifar, & Krishnaprasad. 93’].

αΦ=α
α

s.t.sMin:P
00

• Searching for the sparsest representation, we 
have the following optimization task:

• Hard to solve – complexity grows exponentially with L.

Atom Decomposition?

αΦ=α
α

s.t.sMin:P
11

• Replace the l0 norm by an l1: Basis Pursuit (BP)
[Chen, Donoho, Saunders. 95’]



Sparse representations for 
Image Decomposition

7

Questions about Decomposition

•Interesting observation: In many cases the 
pursuit algorithms successfully find the sparsest 
representation.

•Why BP/MP/OMP should work well? Are there 
Conditions to this success? 

•Could there be several different sparse 
representations? What about uniqueness?

•How all this leads to image separation? Inpainting?
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Decomposition – Definition

{ } N
jjY ℜ∈

Family of Texture images

{ } N
kkX ℜ∈

Family of Cartoon images

λ

µ
jk YXs

thatsuch
,,j,ks

µ+λ=

µλ∃∀

Our 
Assumption

Our Inverse
Problem

Given s, find its 
building parts    

and the    
mixture weights  

jk Y,X,,µλ
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Use of Sparsity

N

L

Φx = kX

kα

Nk

X.t.sArgMin

0k

k
xk0k

<<α∀⇒






 αΦ=α=α

α

Φx is chosen such that the 
representation of            
are sparse: 

{ } N
kkX ℜ∈

Nj

Y.t.sArgMin

0j

k
xj0j

→β∀⇒









βΦ=β=β
β

=Φx jY

j
βΦx is chosen such that the 

representation of            
are non-sparse: 

{ } N
jjY ℜ∈

We similarly construct Φy to sparsify Y’s while being 
inefficient in representing the X’s.  
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Choice of Dictionaries

• Training, e.g. 

j

j0j
k

k0k

j 0j

k
0k

x

Y.t.sArgMin&X.t.sArgMin

toSubjectArgMin









βΦ=β=β






 αΦ=α=α

β

α
=Φ

βα

Φ ∑

∑

• Educated guess: texture could be represented by local 
overlapped DCT, and cartoon could be built by 
Curvelets/Ridgelets/Wavelets (depending on the content).

• Note that if we desire to enable partial support and/or 
different scale, the dictionaries must have multiscale and 
locality properties in them.
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Decomposition via Sparsity

[ ]








β
αΦΦ

=β+α=







β
α

βα

yx

00,
s.t.sArgMinˆ

ˆ

Φy

β

Φx

α

= s+

Why should this work? 
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Uniqueness via ‘Spark’

( ) 0s
2121
=γ−γΦ⇒γΦ=γΦ=

• Given a unit norm signal s, assume we hold two 
different representations for it using Φ

= 0

v

Φ
Definition: Given a matrix 
Φ, define σ=Spark{Φ} as 
the smallest number of 
columns from Φ that are 
linearly dependent.
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0201
γ+γ≤σ

Any two different representations of the                     
same signal using an arbitrary dictionary                     

cannot be jointly sparse [Donoho & E, 03`].

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

02
γ>

σTheorem 1

Uniqueness Rule
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Uniqueness Rule - Implications

[ ]








β
αΦΦ

=

β+α=







β
α

βα

yx

,

s.t.s

ArgMinˆ
ˆ

00 Φy

β

Φx

α

= s+

• If                                    , it is necessarily the sparsest 
one possible, and it will be found. 

[ ]( )yx00
5.0ˆˆ ΦΦσ<β+α

• For dictionaries effective in describing the ‘cartoon’ and 
‘texture’ contents, we could say that the decomposition 
that leads to separation is the sparsest one possible.



Sparse representations for 
Image Decomposition

16

Lower bound on the “Spark”

.
M
1

1 +≥σ

• We can show (based on Gerśgorin disk theorem) that 
a lower-bound on the spark is obtained by

• Define the Mutual Incoherence as 

{ } 1MaxM0
j

H

k
jk

Lj,k1
≤φφ=<

≠
≤≤

• Since the Gerśgorin theorem is non-tight, this lower 
bound on the Spark is too pessimistic.
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Equivalence – The Result 

Theorem 2

Given a signal s with a representation           ,

Assuming that                        , P1 (BP) is 

Guaranteed to find the sparsest solution. 

γΦ=s

( )M115.0
0

+<γ

We also have the following result [Donoho & E 02’,Gribonval & Nielsen 03`] :

•BP is expected to succeed if sparse solution exists. 

•A similar result exists for the greedy algorithms [Tropp 03’]. 

•In practice, the MP & BP succeed far above the bound. 
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Equivalence Beyond the Bound 

• Dictionary Φ=[I,H] of size 
64×128.

• M=1/8 – Unique. And Equiv.  
are guaranteed for 4 non-zeros 
and below. 

• Spark=16 – Uniqueness is 
guaranteed for less than 8 non-
zeros.

• As can be seen, the results are 
successful far above the 
bounds (empirical test with 100 
random experiments per 
combination). Number of elements in the  H part

N
um

be
r 

of
 e

le
m

en
ts

 in
 th

e 
 I 

pa
rt

Empirical probability of success

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of success

Elements from I

El
em

en
ts

 f
ro

m
 H



Sparse representations for 
Image Decomposition

19

To Summarize so far …

Over-complete 
linear transforms 
– great for sparse 
representations

Design/choose proper 
Dictionaries

Can be used 
to separate 

images?

We show a 
uniqueness result 

guaranteeing 
proper separation if 

sparse enough

Theoretical 
Justification?

Is it   
practical?

• We show an equivalence result, 
implying - BP/MP successfully 
separate the image if sparse 
enough representation exists. 

• We also show encouraging 
empirical behavior beyond the 
bounds
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Noise Considerations

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=








β
α

βα

[ ]








β
αΦΦ

=β+α=







β
α

βα

yx

11,
s.t.sArgMinˆ

ˆ

Forcing exact representation is 
sensitive to additive noise and 

model mismatch

Recent results [Tropp 04’, Donoho et.al. 04’] show that the noisy case 
generally meets similar rules of uniqueness and equivalence
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Artifacts Removal

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=








β
α

βα

We want to add external forces to 
help the separation succeed, even 
if the dictionaries are not perfect

{ }αΦµ+βΦ−αΦ−λ+β+α=







β
α

βα
x

2

2yx11,
TVsArgMinˆ

ˆ
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Complexity

{ }αΦµ+βΦ−αΦ−λ+β+α=







β
α

βα
x

2

2yx11,
TVsArgMinˆ

ˆ

Instead of 2N unknowns (the two separated images), 
we have 2L»2N ones.

βΦ=αΦ= yyxx s,s

Define two image unknowns to be

and obtain …
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0rwhere
rs

s
xx

xxx
xx =Φ

+Φ=α
αΦ=

+

{ }αΦµ+βΦ−αΦ−λ+β+α=







β
α

βα
x

2

2yx11,
TVsArgMinˆ

ˆ

Justifications

Heuristics:(1) Bounding function; (2) Relation to BCR; (3) Relation to MAP.

Theoretic: See recent results by D.L. Donoho. 

Simplification

{ }xyxyyyxxx
r,r,s,sy

x sTVsssrsrsArgMin
ŝ
ŝ

yxyx

µ+−−λ++Φ++Φ=






 ++ 2

211
{ }xyxyyxx

s,sy

x sTVsssssArgMin
ŝ
ŝ

yx

µ+−−λ+Φ+Φ=






 ++ 2

211
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Algorithm

{ }x

2

2yx1yy1xx
s,sy

x sTVsssssArgMin
ŝ
ŝ

yx

µ+−−λ+Φ+Φ=






 ++

An algorithm was developed to solve the above problem:

• It iterates between an update of sx to update of sy. 

• Every update (for either sx or sy) is done by a forward and backward 
fast transforms – this is the dominant computational part of the 
algorithm. 

• The update is performed using diminishing soft-thresholding (similar 
to BCR but sub-optimal due to the non unitary dictionaries).

• The TV part is taken-care-of by simple gradient descent.

• Convergence is obtained after 10-15 iterations. 
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Results 1 – Synthetic Case
Original image 
composed as a 
combination of 

texture and 
cartoon

The separated 
texture (spanned 

by Global DCT 
functions)

The very low 
freq. content –
removed prior to 
the use of the 
separation

The separated 
cartoon (spanned 
by 5 layer 
Curvelets
functions+LPF)
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Results 2 – Synthetic + Noise
Original image 
composed as a 
combination of 

texture, cartoon, 
and additive 

noise (Gaussian,   
) 

The separated 
texture (spanned 

by Global DCT 
functions)

The separated 
cartoon 
(spanned by 5 
layer Curvelets
functions+LPF)

The residual, 
being the 
identified noise

10=σ
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Results 3 – Edge Detection

Edge detection on the        
original image

Edge detection on the        
cartoon part of the image
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Original ‘Barbara’ image Separated texture using 
local overlapped DCT 

(32×32 blocks) 

Separated Cartoon using 
Curvelets (5 resolution 

layers)

Results 4 – Good old ‘Barbara’
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Results 4 – Zoom in
Zoom in on the 
result shown in 

the previous 
slide  (the 

texture part) 

Zoom in on the 
results shown in 

the previous 
slide (the 

cartoon part)

The same part 
taken from 
Vese’s et. al.

The same part 
taken from 
Vese’s et. al. 
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Results 5 – Gemini
The original 

image - Galaxy 
SBS 0335-052 as 
photographed by 

Gemini

The texture part 
spanned by 
global DCT

The residual 
being additive 
noise

The Cartoon part 
spanned by 
wavelets 
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Side Story - Inpainting

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=








β
α

βα

For 
separation

What if some values in s are unknown 
(with known locations!!!) ?

( ) 2

2yx11,
sWArgMinˆ

ˆ
βΦαΦλβα

β
α

βα
−−++=









The image                 will be the inpainted outcome. 
Interesting comparison to [Bertalmio et.al. ’02]

βΦαΦ yx +
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Results 6 - Inpainting

Source

Cartoon 
Part

Texture 
Part

Outcome



Sparse representations for 
Image Decomposition

34

Results 7 - Inpainting

Source

Cartoon 
Part

Texture 
Part

Outcome
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Results 8 - Inpainting

Source Outcome

There are still artifacts –
these are just preliminary results
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Agenda

1.  Introduction
Sparsity and Over-completeness!? 

2. Theory of Decomposition
Uniqueness and Equivalence

3. Decomposition in Practice

Practical Considerations, Numerical algorithm

4.  Discussion
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Summary

Over-complete and 
Sparsity are powerful 

in representations    
of signals

Decompose an image 
to Cartoon+TextureApplication?

We show theoretical 
results explaining how 

could this lead to 
successful separation. 

Also, we show that 
pursuit algorithms are 
expected to succeed

Theoretical 
Justification?

Practical 
issues? 

We present ways to robustify
the process, and apply it to 

image inpainting

Choice of dictionaries, 
performance beyond the bounds, 

Other applications? More ...

Where next?
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These slides and related papers can be found in: 
http://www.cs.technion.ac.il/~elad
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Why Over-Completeness? 
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Desired Decomposition
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DCT Coefficients Spike (Identity) Coefficients

In this trivial example we have planted the 
seeds to signal decomposition via sparse & 

over-complete representations



Sparse representations for 
Image Decomposition

41

Example – Basis Pursuit

0 50 100 150 200 250
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10
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10
-4

10
-2

10
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Dictionary Coefficients

• The same problem can be 
addressed using the (greedy 
stepwise regression) 
Matching Pursuit (MP) 
algorithm [Zhang & Mallat. 
93’].

• Why BP/MP should work 
well? Are there Conditions to 
this success? 

• Could there be a different 
sparse representation? What 
about uniqueness?
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+ΦxIf       is the local DCT,  
then requiring sparsity
parallels the requirement 
for oscilatory behavior

+ΦxIf       is one resolution 
layer of the non-decimated 
Haar – we get TV

Appendix A – Relation to Vese’s
2

2yx1yy1xxs,s
sssssMin

yx

−−λ+Φ+Φ ++

2

2yx*BVyBVxs,s
sssssMin

yx

−−λ++

Vese & Osher’s Formulation
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Results 0 – Zoom in

An oscillating 
function is added 
to a function with 
bumps, and this 
addition is 
contaminated with 
noise. 

The separation is 
done with local-
DCT (blocks of 
256) and isotropic 
wavelet. 
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• Many available square linear transforms – sinusoids, 
wavelets, packets, …

• Definition: Successful transform is one which leads to 
sparse (sparse=simple) representations.

• Observation: Lack of universality - Different bases 
good for different purposes. 

Sound = harmonic music (Fourier) + click noise (Wavelet),

Image = lines (Ridgelets) + points (Wavelets).

• Proposed solution: Over-Complete dictionaries, and 
possibly combination of bases. 

Why Over-Completeness? 
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To Summarize so far …

Over-complete and 
Sparse 

representations

(Basis/Matching) 
Pursuit algorithms 
can be used with 

promising empirical 
behavior.

How can we 
practically use 

those? 

Theory? 
Applications?

In the next part we show how 
sparsity and over-
completeness can drive the 
image separation application 
and how we can theoretically 
guarantee performance. 


