Over-Complete & Sparse
Representations for Image
Decomposition and Inpainting

The Computer Science Department
The Technion — Israel Institute of Technology
Haifa 32000, Israel

Second International Conference on Computational Harmonic Analysis
The 19t Annual Shanks Lecture
May 24-29t, 2004

Joint work with: — CEA - Service d’Astrophysique, CEA-Saclay, France
— Statistics, Stanford.




Collaborators

Jean-Luc David L.
Starck Donoho
CEA - Service Statistics
d'Astrophysique Department
CEA-Saclay Stanford
France

s

Background material:

e D. L. Donoho and M. Elad, “"Maximal Sparsity Representation via I, Minimization”, to appear in Proceedings of the
Naional Academy of Science.

e J.-L. Starck, M. Elad, and D. L. Donoho, “Image Decomposition: Separation of Texture from Piece-Wise Smooth
Content”, SPIE annual meeting, 3-8 August 2003, San Diego, California, USA.

e J.-L. Starck, M. Elad, and D.L. Donoho, "Redundant Multiscale Transforms and their Application for Morphological
Component Analysis", submitted to the Journal of Advances in Imaging and Electron Physics.

e J.-L. Starck, M. Elad, and D.L. Donoho, "Simultaneous PWS and Texture Image Inpainting using Sparse
Representations"”, to be submitted to the IEEE Trans. On Image Processing.

These papers & slides can be found in: http://www.cs.technion.ac.il/~elad
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General

e Sparsity and over-completeness have important
roles in analyzing and representing signals.

e Our efforts so far have been concentrated on
analysis of the (basis/matching) pursuit
algorithms, properties of sparse representations
(uniqueness), and applications.

e Today we discuss the image decomposition
application (image=cartoon+texture). We present
= Theoretical analysis serving this application,
= Practical considerations, and

= Application — filling holes in images (inpainting)
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Agenda

1. Introduction
Sparsity and Over-completeness!?




Atom (De-) Composition

e Given a signal se R", we are often interested in its
representation (transform) as a linear combination of
‘atoms’ from a given dictionary:

L
e If the dictionary is N
(L>N), there are
numerous ways to obtain '

the ‘atom-decomposition’.

»

In

(04
e Among those possibilities,
we consider the
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Atom Decomposition?

e Searching for the sparsest representation, we
have the following optimization task:

Po: Min lof, st. s=oa
e Hard to solve — complexity grows exponentially with L.

e Replace the |, norm by an I;: Basis Pursuit (BP)

P Min |of st s=®a

e (Greedy stepwise regression - Matching Pursuit (MP)
algorithm or orthonornal version of it
(OMP)
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Questions about Decomposition

e Interesting observation: In many cases the
pursuit algorithms successfully find the sparsest
representation.

e Why BP/MP/OMP should work well? Are there
Conditions to this success?

e Could there be several different sparse
representations? What about uniqueness?

e How all this leads to image separation? Inpainting?
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2. Theory of Decomposition

Uniqueness and Equivalence




Decomposition — Definition

Family of Cartoon images

0]1] Our Inverse
{X } R Assumption Problem
Ak Sk € | . |
vs 3k, j,A, 1 Given s, find its
building parts
such that =——p nd the
s =AX, +1Y;  mixture weights
{Xj}j c R’ 2= M TR g

7\“l “’lelij

Family of Texture images




Use of Sparsity

) L
A = =
|
[ — N — .
N 0 - Xk . S X]
E B
\ 4 . .
. 5 o . =P
®, is chosen such that the =& =k ®, is chosen such that the =J
: y : Ny B
representation of {X,} e®" & representation of 1Y;} e ®" =
are sparse: E are non-sparse: -
[ | . |
{Qk = ArgMinfa, st X, :cpxg} 0 {[_sj :Ar%MmHQHO st. Y, :cpxg} i
[o! rk 1 £ k [ |
[ | [ |
= W Ja, <N : = vifp) N :

We similarly construct @, to sparsify Y’s while being
inefficient in representing the X’s.
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Choice of Dictionaries

e Training, e.q. D [l
® = ArgMin X Subject to
@

> B

]

0

{gk = ArgMin o, s.t. X, = (Dg} & {Bj = ArgMin HBHO st. Y, = CDB}
a Kk B B B B

]

e Educated guess: texture could be represented by local
overlapped DCT, and cartoon could be built by
Curvelets/Ridgelets/Wavelets (depending on the content).

e Note that if we desire to enable partial support and/or
different scale, the dictionaries must have multiscale and
locality properties in them.
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Decomposition via Sparsity

e o, o]
{ }_Argl;’lln Ja, + |B], st s= {E}

o> |R>

Why should this work?
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Uniqueness via ‘Spark’

e Given a unit norm signal s, assume we hold two
different representations for it using @

§:CDX1 :(I)Xz :> (D&1_X2):Q

Definition:

1<

jf'. { Sparse representations for

-
f'-\'\.-ll i

Rl
Le )

13




Uniqueness Rule

o < v, + .,

Any two different representations of the
same signal using an arbitrary dictionary
cannot be jointly sparse

If we found a representation that satisfy

Theorem 1 % > MO

Then necessarily it is unique (the sparsest).




Uniqueness Rule - Implications

o 1f 6], +[B] <0.50([®, @,]), it is necessarily the sparsest
one possib(ie, and it will be found.

0> |R>
L

Arngn HaH +HBH
[cD o, |

B

s.t. s= a

- B

e For dictionaries effective in describing the ‘cartoon’ and
‘texture’ contents, we could say that the decomposition
that leads to separation is the sparsest one possible.
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Lower bound on the "Spark”

e Define the as
H
0.<M= Max s <t
Z)

e We can show (based on Gersgorin disk theorem) that
a lower-bound on the spark is obtained by

GZ].-I—l.
\

e Since the Gersgorin theorem is non-tight, this lower
bound on the Spark is too pessimistic.
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Equivalence — The Result

We also have the following result

Given a signal s with a representation s = @y,
Theorem 2 Assuming that [y| <0.5(1+1/M), P, (BP) is

Guaranteed to find the sparsest solution.

e BP is expected to succeed if sparse solution exists.
e A similar result exists for the greedy algorithms

eIn practice, the MP & BP succeed far above the bound.
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Equivalence Beyond the Bound

fou | Probability of
e Dictionary ®=[I,H] of size robability of success

64x128.

e M=1/8 — Unique. And Equiv.
are guaranteed for

e Spark=16 — Uniqueness is
guaranteed for less than 8 non-
ZEeros.

L
£
o
=

-
)]

e
=
Q
£

L

Ll

¢ As can be seen, the results are
successful far above the
bounds (empirical test with 100
random experiments per

combination). 15 20 2
Elements from I
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To Summarize so far ...

Over-complete
linear transforms Can be used

representations

Design/choose proper
Dictionaries

Theoretical
Justification?

e We show an equivalence result,

implying - BP/MP successfully uniqueness result
separate the image if sparse guaranteeing
enough representation exists. Is it proper separation if

sparse enough

We show a

practical?

* We also show encouraging
empirical behavior beyond the

bounds
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3. Decomposition in Practice

Practical Considerations, Numerical algorithm

el
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Noise Considerations

; | D, D |
M = Arghin o, +[g], st 8 s ]M

Forcing exact representation is
sensitive to additive noise and
model mismatch

ot . 2
|- arabin [, 150,05

Recent results show that the noisy case
generally meets similar rules of uniqueness and equivalence
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Artifacts Removal

ot - 2
M = ArgMin o, + [B], +2Js @y~ B,

We want to add external forces to
help the separation succeed, even
if the dictionaries are not perfect

|

|- g ]+, 2[5 -0, i,

o> |R>




Complexity

ot . 2
|- prabin ko, 15~ 0.- 0,8, uvin,a

Instead of 2N unknowns (the two separated images),
we have 2L»2N ones.

Define two image unknowns to be
§x :(ng / §y :q)yE

and obtain ...
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Simplification

i, 2
M - Arghin [, + ], s - gl WY + TV )

o=>’'S +r
§X :(ng - ) = ¢ .
where @.r, =0
> | — ArgMin [@:s, || +]:s | +1]s-s, -s,[; +nTVis,}
§ I . X=X Y=Yl = = =Yl H =X
=y 2x 12y

Justifications
Heuristics: (1) Bounding function; (2) Relation to BCR; (3) Relation to MAP.

Theoretic: See recent results by D.L. Donoho.
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Algorithm

Hous, |+ rls-s-s, Vs

=

S .
.| = ArgMin |®;s,
Sy 1Sy
An algorithm was developed to solve the above problem:
e It iterates between an update of s, to update of s,.

 Every update (for either s, or s ) is done by a forward and backward
transforms — this is the dominant computational part of the
algorithm.

e The update is performed using diminishing soft-thresholding (similar
to BCR but sub-optimal due to the non unitary dictionaries).

e The TV part is taken-care-of by simple gradient descent.

e Convergence is obtained after 10-15 iterations.
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Results 1 — Synthetic Case

The very low
freq. content —
removed prior to
the use of the
separation

Original image
composed as a
combination of
texture and
cartoon

The separated
cartoon (spanned
by 5 layer
Curvelets
functions+LPF)

The separated
texture (spanned
by Global DCT ¢
functions) g
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Results 3 — Edge Detection

X /N
E o | _-‘ h z :'1}-"._ L% |

= o | _
L4 { s I \
8 o e / - 4
Edge detection on the

Edge detection on the
original image

cartoon part of the image
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Results 4 — Good old '‘Barbara’

Original ‘Barbara’ image Separated texture using Separated Cartoon using
local overlapped DCT Curvelets (5 resolution
(32x32 blocks) layers)
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Results 4 — Zoom In

Zoom in on the
result shown in
the previous
slide (the
texture part)

| The same part
taken from
Vese’s et. al.

The same part
taken from
Vese's et. al.

Zoom in on the
results shown in
the previous
slide (the
cartoon part)

| r’munnllfl’I"l I




Results 5 — Gemini

The original
image - Galaxy &
SBS 0335-052 as [#
photographed by g
Gemini [Fas e

The Cartoon part
spanned by
wavelets

The texture part
spanned by
global DCT
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The residual

i being additive

noise
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Side Story - Inpainting

For
separation

B

a - j
|- ot o, <[, 25~ 0.0,

What if some values in s are unknown
(with known locations!!!)?

d . 2
M = Arghtin [al, +[p], +#[Wls - @0 @, ],

The image @,a+® B will be the inpainted outcome.
Interesting comparison to |
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Results 6 - Inpainting

Texture

e — o — — L —

- E— o — S —— pa— — i .
= .
- d— ™ ey

— - —— ., S gl . G

i el e -t | T

i p— g A

— | — ——

i —  —— i i
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Results 7 - Inpainting

nage inpainting [2, 10, 20, 38] is the proces
ing data in a designated region of a still or
lications range firot ¥ing ohjects fio
uching damaged pi 8 and photogrs
produce a revised image in which
i seamlessly merged inio the imag
etectable by a typical viewet: Tradit
een done by professional artistd? Fo
inpainting is vsed to revert deterio
tographs or scratches and dust spot:
ove elements {e.g., removal of star
an photographs, the infameous “air
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Results 8 - Inpainting

i

Source Outcome

There are still artifacts —
these are just preliminary results
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4. Discussion




Summary

Over-complete and

Sparsity are powerful Decompose an image
in representations  [a\slelllec elo]sks to Cartoon+Texture
of signals <UD

Theoretical
Justification?

We present ways to robustify
the process, and apply it to

image inpainting deleilecll  \We show theoretical

ESIEEES  results explaining how
could this lead to

Choice of dictionaries, successful separation.
performance beyond the bounds, Also, we show that

Other applications? More ... pursuit algorithms are
expected to succeed
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These slides and related papers can be found in:
http://www.cs.technion.ac.il/~elad
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Why Over-Completeness?

0.1
0.05

o

-0.05
-0.1

0.1
0.05

: 0}
-0.05
0.1

1

0.5

03

0
1

0.5

‘SIM

0o 64 128
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|
IT{0,+030,}1

DCT Coefficients
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Desired Decomposition

In this trivial example we have planted the

seeds to signal decomposition via sparse &
over-complete representations

40 80 160 200 240

DCT Coefficients Spike (Identity) Coefficients
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Example — Basis Pursuit

e The same problem can be
addressed using the (greedy
stepwise regression)
Matching Pursuit (MP)
algorithm

e Why BP/MP should work
well? Are there Conditions to
this success?

e Could there be a different
sparse representation? What

Dictionary Coefficients about uniqueness?

£ ., Sparse representations for
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Appendix A — Relation to Vese's

If @ is one resolution
layer of the non-decimated
Haar — we get TV

Vese & Osher’s Formulation
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Results 0 — Zoom In

An oscillating
function is added
to a function with
bumps, and this
addition is
contaminated with
noise.

The separation is
done with local-
DCT (blocks of
256) and isotropic
wavelet.

=
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Why Over-Completeness?

e Many available square linear transforms — sinusoids,
wavelets, packets, ...

o Definition: Successful transform is one which leads to
sparse (sparse=simple) representations.

e (Observation: Lack of universality - Different bases
good for different purposes.
=  Sound = harmonic music (Fourier) + click noise (Wavelet),
= Image = lines (Ridgelets) + points (Wavelets).

e Proposed solution: Over-Complete dictionaries, and
possibly

&”. Sparse representations for
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To Summarize so far ...

Over-complete and
Sparse
representations

How can we
practically use

those?

(Basis/Matching)
Pursuit algorithms
can be used with

promising empirical

behavior.

In the next part we show how
sparsity and over-
completeness can drive the Theory?
image separation application | /alaalleciElelEx
and how we can theoretically
guarantee performance.
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