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Chapter A

Background
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A.1  Davis Theorem
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Theorem (Davis 1977) :
For any closed 2D polygon, 

and for any analytic 

function f(z) the following 

holds
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A.2  Complex Moments

If we use the analytic function            , we get from   

Davis Theorem that
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A.3  Shape From Moments
M

0k

N

1n

k
n

n1n

n1n

n1n

n1n
k z

zz
zz

zz
zz

2
i

== +

+

−

−





















−
−

+
−
−

= ∑τ

• Can we compute the vertices from these equations ? 

• How many moments are required for exact recovery ?  

Shape From 
Moments
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A.4 Previous Results

• Golub et. al. (1999): 
– Pencil method replacing the Prony’s - better numerical stability.

– Sensitivity analysis. 

• Milanfar et. al. (1995): 
– (2N-1) moments are theoretically sufficient for computing the N vertices. 

– Prony’s method is proposed.

• Prony’s and the Pencil approaches:
– Rely strongly on the linear algebra formulation of the problem.

– Both are sensitive to perturbations in the moments.

– Both will be presented briefly.



Shape From Moments - 7 -

Function 
of the 
vertices 
(and 
their 
order)

A.5  To Recap
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A.6  Our Focus

• Noisy measurements: What if the moments are 

contaminated by additive noise ? How can re-pose our 

problem as an estimation task and solve it using 

traditional stochastic estimation tools ? 

• More measurements: What if there are M>2N-1 

moments ? How can we exploit them to robustify the 

computation of the vertices ?
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A.7  Related Problems

• It appears that there are several very different 

applications where the same formulation is obtained
– Identifying an auto-regressive system from its output,

– Decomposing of a linear mixture of complex cissoids, 

– Estimating the Direction Of Arrival (DOA) in array processing,

– and more ... 

{ }N 1kka =• Major difference – are not functions of the 

unknowns but rather free parameters. 

• Nevertheless, existing algorithms can be of use.
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Chapter B

Prony and Pencil  
Based Methods
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B.1 Prony’s Relation
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B.2 Prony’s Methods
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d. IQML, Structuted-TLS, Modified Prony, and more.

c. Hankel Constrained SVD, followed by root-finding,

b. Total-Least-Squares, followed by root-finding,

a. Regular Least-Squares, followed by root-finding,
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B.3 Pencil Relation
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[ ] 0vTzT n0n1 =⋅−
After some (non-trivial) manipulation we obtain

For some non zero vectors Vn.  
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B.4 Non-Square Pencil

T1 - zn T0      vn=0
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B.5 Pencil Methods

[ ] 0vTzT n0n1 =⋅−

a. Take square portions, solve for the eigenvalues, 

and cluster the results,
H
0Tb. Square by left multiplication with     (closely 

related to LS-Prony),

c. Hua-Sarkar approach: different squaring methods 

which is more robust and related to ESPRIT.
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Chapter C

ML and MAP 
Approaches
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C.1 What are we Missing ?

• We have seen a set of simple methods that 

give reasonable yet inaccurate results.

{ }N 1kka =

• In our specific problem we do not exploit the 

fact that            are vertices-dependent. 

• In all the existing methods there is no 

mechanism for introducing prior-knowledge 

about the unknowns.
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C.2  Recall …

We have the following system of equations

Measured               Function of the unknowns
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C.3 Our Suggestion
• If we assume that the moments are contaminated by 

zero-mean white Gaussian noise, Direct-Maximum-

Likelihood (DML) solution is given by

( ) ( ) 2
2

z
zaztMinimize ⋅− V

• Direct minimization is hard to workout, BUT

• We can use one of the above methods to obtain an initial 

solution, and then iterate to minimize the above function 

until getting to a local minima.
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C.4 Things to Consider
• Even (complex) coordinate descent with effective line-

search can be useful and successful (in order to avoid 

derivatives).

• Per each candidate solution we HAVE TO solve the 

ordering problem !!!! Treatment of this problem is 

discussed in Durocher (2001). 

• If the initial guess is relatively good, the ordering 

problem becomes easier, and the chances of the 

algorithm to yield improvement are increased. 
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C.5 Relation to VarPro
• VarPro (Golub & Pereyra 1973)

– Proposed for minimizing 

– The basic idea: Represents the a as                and    

use derivatives of the Pseudo-Inverse matrix.

( ) 2
2azt ⋅− V

( )tza += V

• Later work (1978) by Kaufman and Pereyra covered the 

case where a=a(z) (linear constraints).

• We propose to exploit this or similar method, and choose 

a good initial solution for our iterative procedure.



Shape From Moments - 22 -

C.6 Regularization

• Since we are minimizing (numerically) the DML function, 

we can add a regularization – a penalty term for 

directing the solution towards desired properties. 

( ) ( ) { }zgzaztMinimize 2
2

z
+⋅− V

• The minimization process is just as easy.

• This concept is actually an application of the Maximum     

A-posteriori-Probability (MAP) estimator.
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C.7 MAP Possibilities
Expression for g(*)Kind of Prior

Promoting 90° angles

Promoting small area
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Promoting smoothness (2)
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Chapter D

Results
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D.1 Experiment #1

• Compose the following 

star-shaped polygon 

(N=10 vertices), 

• Compute its exact 

moments (M=100), 

• add noise (σ=1e-4), 

• Estimate the vertices 

using various methods. 
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D.1 Experiment #1

LS-Prony method Squared Pencil method   Hua-Sarkar method
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D.2 Experiment #2

• For the star-shape polygon 

with noise variance σ=1e-

4, initialize using Hua-

Sarkar algorithm.

• Then, show the DML 

function per each vertex, 

assuming all other vertices 

fixed.

+ Hua-Sarkar result

• New local minimum -1 -0.5 0 0.5 1
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D.3 Experiment #3

• For the E-shape polygon with 

noise variance σ=1e-3, 

initialize using LS-Prony

algorithm.

• Then, show the DML function 

per each vertex, assuming all 

other vertices fixed.

+ LS-Prony result

• New local minimum 
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D.4 Experiment #4

• For the E-shape polygon with 

noise variance σ=1e-3, initialize 

using LS-Prony algorithm.

• Then, show the MAP function 

per each vertex, assuming all 

other vertices fixed.

• Regularization – promote 90°

angles. 

+ LS-Prony result
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D.5 Experiment #5

Error as a function of the iteration number* 

DML
MAP

* Using a 
derivative 
free 
coordinate-
descent 
procedure 
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D.6 To Conclude

• The shape-from-moments problem is formulated, 
showing a close resemblance to other problems in array 
processing, signal processing, and antenna theory.

• The existing literature offers many algorithms for 
estimating the “vertices” – some of them are relatively 
simple but also quite sensitive.

• In this work we propose methods to use these simple 
algorithms as initialization, followed by a refining stage 
based on the Direct Maximum Likelihood and the MAP 
estimator. 


