Shape from Moments An Estimation Perspective

Michael Elad*, Peyman Milanfar**, and Gene Golub*

SIAM 2002 Meeting MS104 - Linear Algebra in Image Processing July 12th, 2002

* The CS Department – SCCM Program Stanford University
** Peyman Milanfar is with the University of California Santa Cruz (UCSC).

Chapter A

Background

A.1 Davis Theorem

$\uparrow Y_{\text{The complex plane Z}}$ Ζ8 Theorem (Davis 1977): Zγ For any closed 2D polygon, z_1 and for any analytic Z۵ function f(z) the following Z6 holds Z3 Z_5

$$\iint_{P} f''(z) dx dy = \sum_{n=1}^{N} \frac{i}{2} \left[\frac{\overline{z}_{n-1} - \overline{z}_{n}}{z_{n-1} - z_{n}} + \frac{\overline{z}_{n+1} - \overline{z}_{n}}{z_{n+1} - z_{n}} \right] f(z_{n}),$$

$$= a_{n}$$

Х

A.2 Complex Moments

If we use the analytic function $f(z) = z^k$, we get from Davis Theorem that

$$\iint_{P} f''(z) dx dy = k(k-1) \iint_{P} z^{k-2} dx dy = \sum_{n=1}^{N} a_n z_n^k = \tau_k$$

here we define $\mu = \mu k - 2$

$$\tau_{k} = k(k-1) \iint_{P} z^{k-2} dx dy = k(k-1) \mu_{k-2}$$

Shape From Moments

M

A.3 Shape From Moments

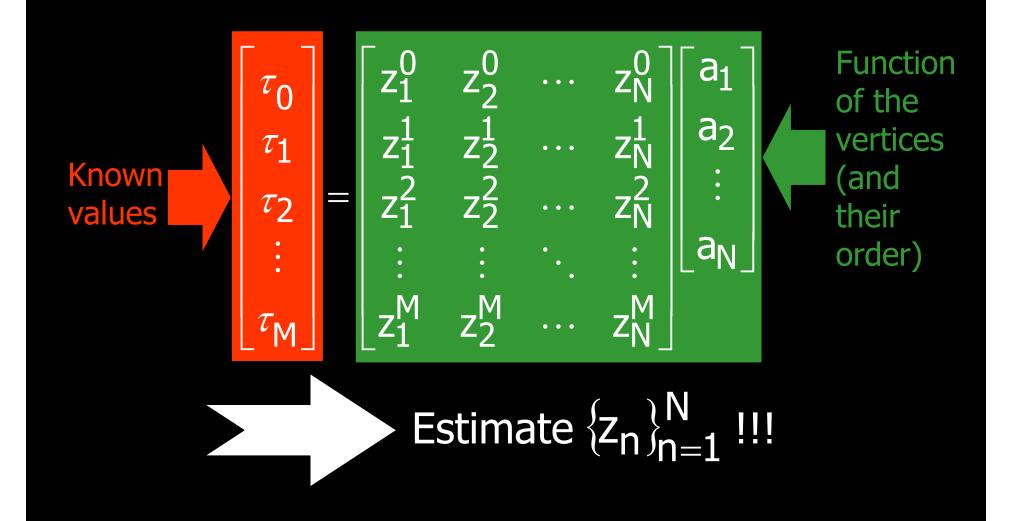
$$\left\{ \tau_{k} = \sum_{n=1}^{N} \frac{i}{2} \left[\frac{\overline{z_{n-1}} - \overline{z_{n}}}{z_{n-1} - z_{n}} + \frac{\overline{z_{n+1}} - \overline{z_{n}}}{z_{n+1} - z_{n}} \right] z_{n}^{k} \right\}_{k=0}^{M}$$

- Can we compute the vertices from these equations ?
- How many moments are required for exact recovery ?

A.4 Previous Results

- Milanfar et. al. (1995):
 - (2N-1) moments are theoretically sufficient for computing the N vertices.
 - Prony's method is proposed.
- Golub et. al. (1999):
 - Pencil method replacing the Prony's better numerical stability.
 - Sensitivity analysis.
- Prony's and the Pencil approaches:
 - Rely strongly on the linear algebra formulation of the problem.
 - Both are sensitive to perturbations in the moments.
 - Both will be presented briefly.

A.5 To Recap



- 7 -

A.6 Our Focus

 Noisy measurements: What if the moments are contaminated by additive noise ? How can re-pose our problem as an estimation task and solve it using traditional stochastic estimation tools ?

 More measurements: What if there are M>2N-1 moments ? How can we exploit them to robustify the computation of the vertices ?

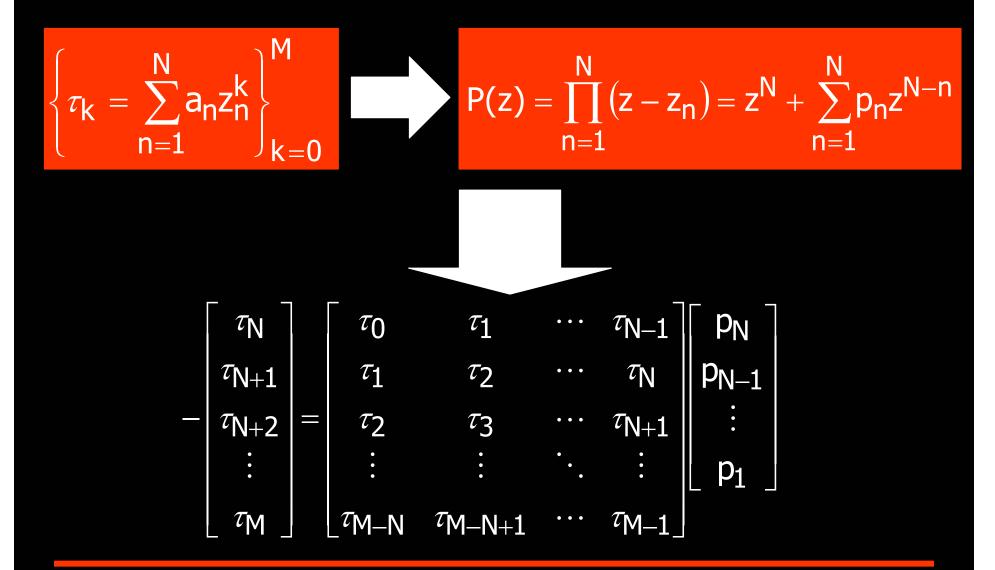
A.7 Related Problems

- It appears that there are several very different applications where the same formulation is obtained
 - Identifying an auto-regressive system from its output,
 - Decomposing of a linear mixture of complex cissoids,
 - Estimating the Direction Of Arrival (DOA) in array processing,
 - and more …
- Major difference $\{a_k\}_{k=1}^N$ are not functions of the unknowns but rather free parameters.
- Nevertheless, existing algorithms can be of use.

Chapter B

Prony and Pencil Based Methods

B.1 Prony's Relation

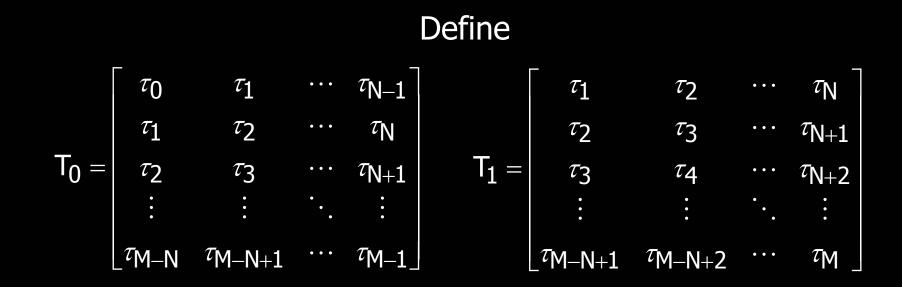


B.2 Prony's Methods

τ_0	$ au_1$	• • •	τ_{N-1}	p _N		$ au_{N}$
τ_1	$ au_2$	•••	$ au_{N}$	p_{N-1}		τ_{N+1}
τ_2	$ au_3$	• • •	τ_{N+1}	•	= -	τ_{N+2}
•	• •	•	:	_ p ₁ _		•
$_{\tau_{M-N}}$	τ_{M-N+1}	• • •	τ_{M-1}			_ <i>τ</i> ϻ _

- a. Regular Least-Squares, followed by root-finding,
- b. Total-Least-Squares, followed by root-finding,
- c. Hankel Constrained SVD, followed by root-finding,
- d. IQML, Structuted-TLS, Modified Prony, and more.

B.3 Pencil Relation

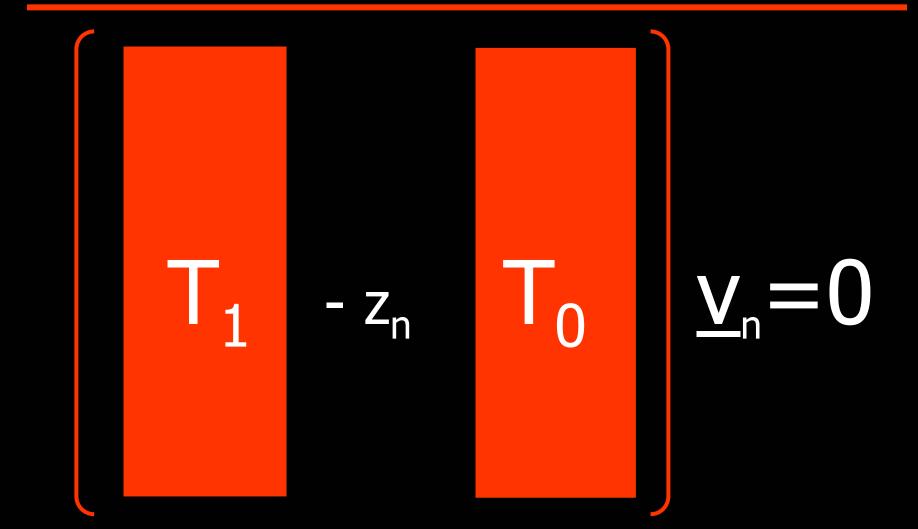


After some (non-trivial) manipulation we obtain

$$\begin{bmatrix} T_1 - z_n \cdot T_0 \end{bmatrix} \underline{v}_n = 0$$

For some non zero vectors \underline{V}_n .

B.4 Non-Square Pencil



B.5 Pencil Methods

 $\left[T_{1} - z_{n} \cdot T_{0} \right] \underline{v}_{n} = 0$

- a. Take square portions, solve for the eigenvalues, and cluster the results,
- b. Square by left multiplication with T_0^H (closely related to LS-Prony),
- c. Hua-Sarkar approach: different squaring methods which is more robust and related to ESPRIT.

Chapter C

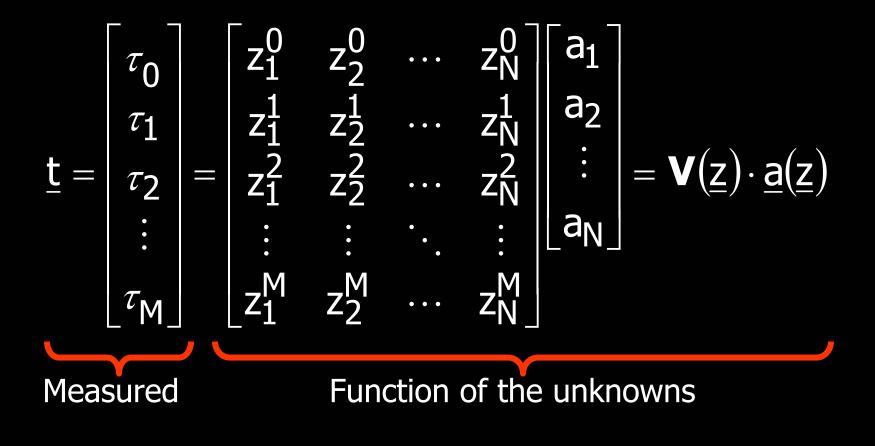
ML and MAP Approaches

C.1 What are we Missing ?

- We have seen a set of simple methods that give reasonable yet inaccurate results.
- In our specific problem we do not exploit the fact that $\{a_k\}_{k=1}^N$ are vertices-dependent.
- In all the existing methods there is no mechanism for introducing prior-knowledge about the unknowns.

C.2 Recall ...

We have the following system of equations



C.3 Our Suggestion

 If we assume that the moments are contaminated by zero-mean white Gaussian noise, Direct-Maximum-Likelihood (DML) solution is given by

$$\begin{array}{c} \text{Minimize} \quad \left\| \underline{t} - \mathbf{V}(\underline{z}) \cdot \underline{a}(\underline{z}) \right\|_2^2 \\ \underline{z} \end{array}$$

- Direct minimization is hard to workout, BUT
- We can use one of the above methods to obtain an initial solution, and then iterate to minimize the above function until getting to a local minima.

C.4 Things to Consider

- Even (complex) coordinate descent with effective linesearch can be useful and successful (in order to avoid derivatives).
- Per each candidate solution we HAVE TO solve the ordering problem !!!! Treatment of this problem is discussed in Durocher (2001).
- If the initial guess is relatively good, the ordering problem becomes easier, and the chances of the algorithm to yield improvement are increased.

C.5 Relation to VarPro

- VarPro (Golub & Pereyra 1973)
 - Proposed for minimizing $\|\underline{t} \mathbf{V}(\underline{z}) \cdot \underline{a}\|_2^2$
 - The basic idea: Represents the <u>a</u> as $\underline{a} = \mathbf{V}^+(\underline{z})\underline{t}$ and use derivatives of the Pseudo-Inverse matrix.
- Later work (1978) by Kaufman and Pereyra covered the case where <u>a=a(z)</u> (linear constraints).
- We propose to exploit this or similar method, and choose a good initial solution for our iterative procedure.

C.6 Regularization

 Since we are minimizing (numerically) the DML function, we can add a regularization – a penalty term for directing the solution towards desired properties.

$$\begin{array}{ll} \text{Minimize} & \left\|\underline{t} - \mathbf{V}(\underline{z}) \cdot \underline{a}(\underline{z})\right\|_{2}^{2} + g\{\underline{z}\}\\ \underline{z} \end{array}$$

- The minimization process is just as easy.
- This concept is actually an application of the Maximum A-posteriori-Probability (MAP) estimator.

C.7 MAP Possibilities

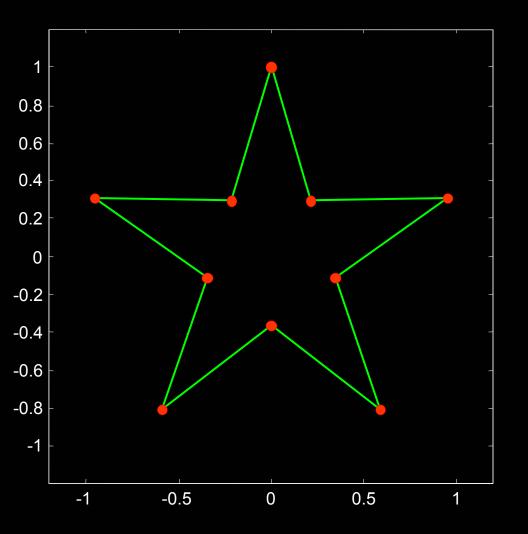
Kind of Prior	Expression for g(*)		
Promoting 90° angles	$\sum_{n=1}^{N} \left(\frac{1}{2} \left \frac{\overline{z}_{n-1} - \overline{z}_n}{z_{n-1} - z_n} + \frac{\overline{z}_{n+1} - \overline{z}_n}{z_{n+1} - z_n} \right - 1 \right)^2$		
Promoting smoothness (1)	$\sum_{n=1}^{N} \bigl z_{n-1} - z_n \bigr ^2$		
Promoting smoothness (2)	$\sum_{n=1}^{N} \bigl z_{n-1} + z_{n+1} - 2 z_n \bigr ^2$		
Promoting regularity	$\left(\sum_{n=1}^{N} \lvert z_{n-1} - z_n \rvert \right)^2 \middle/ Im \! \left(\sum_{n=1}^{N} \! z_{n+1} \overline{z}_n \right)$		
Promoting small area	$Im \left(\sum_{n=1}^{N} z_{n+1} \overline{z}_{n} \right)$		

Chapter D

Results

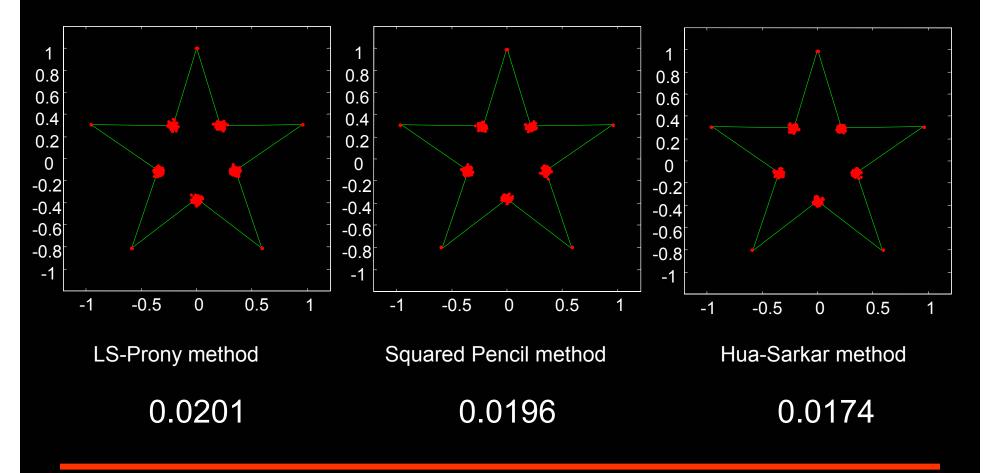
D.1 Experiment #1

- Compose the following star-shaped polygon (N=10 vertices),
- Compute its exact moments (M=100),
- add noise (σ=1e-4),
- Estimate the vertices using various methods.



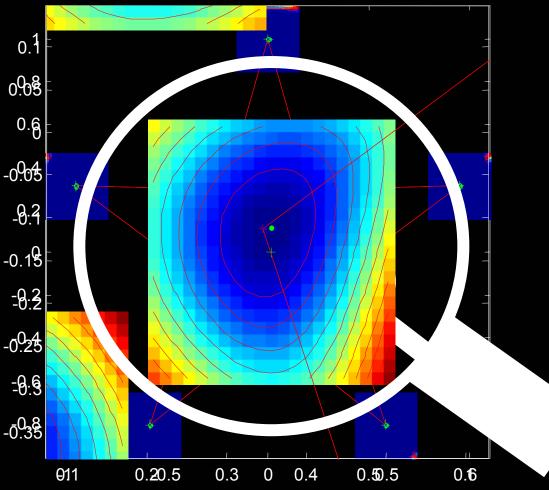
D.1 Experiment #1

Mean Squared Error averaged over 100 trials



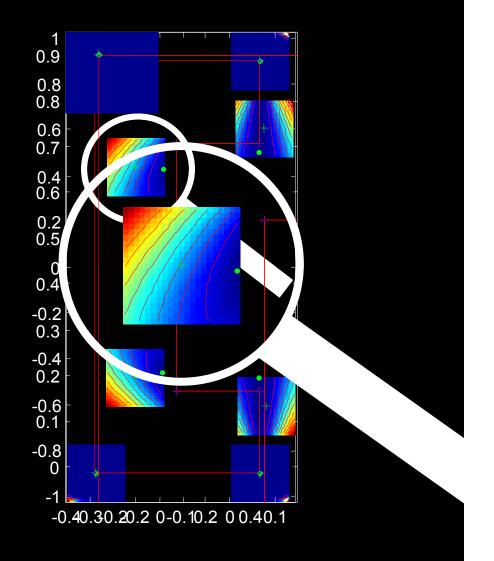
D.2 Experiment #2

- For the star-shape polygon with noise variance σ=1e 4, initialize using Hua Sarkar algorithm.
- Then, show the DML function per each vertex, assuming all other vertices fixed.
 - + Hua-Sarkar result
 - New local minimum



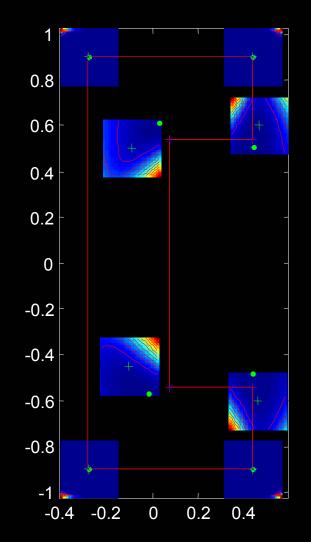
D.3 Experiment #3

- For the E-shape polygon with noise variance σ=1e-3, initialize using LS-Prony algorithm.
- Then, show the DML function per each vertex, assuming all other vertices fixed.
 - + LS-Prony result
 - New local minimum



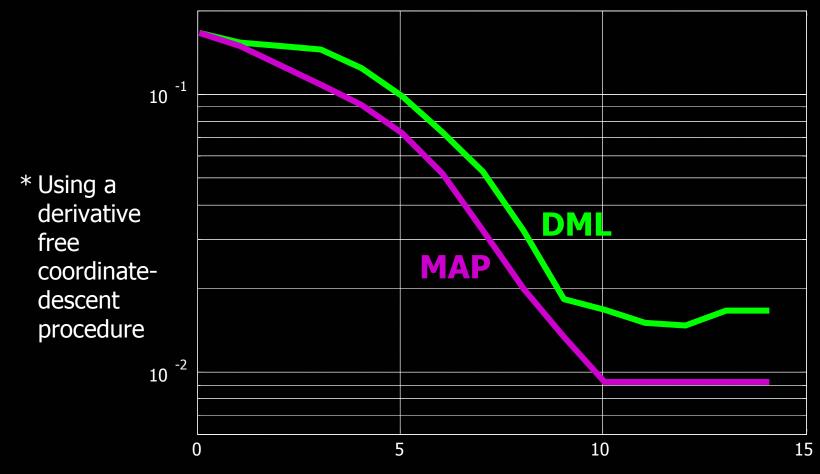
D.4 Experiment #4

- For the E-shape polygon with noise variance $\sigma=1e-3$, initialize using LS-Prony algorithm.
- Then, show the MAP function per each vertex, assuming all other vertices fixed.
- Regularization promote 90° angles.
 - + LS-Prony result
 - New local minimum



D.5 Experiment #5

Error as a function of the iteration number*



D.6 To Conclude

- The shape-from-moments problem is formulated, showing a close resemblance to other problems in array processing, signal processing, and antenna theory.
- The existing literature offers many algorithms for estimating the "vertices" – some of them are relatively simple but also quite sensitive.
- In this work we propose methods to use these simple algorithms as initialization, followed by a refining stage based on the Direct Maximum Likelihood and the MAP estimator.