Shape from Moments An Estimation Perspective

Michael Elad*, Peyman Milanfar**, and Gene Golub*

SIAM 2002 Meeting
MS104 - Linear Algebra in Image Processing July 12th, 2002

[^0]
Chapter A

Background

A. 1 Davis Theorem

Theorem (Davis 1977):
For any closed 2D polygon, and for any analytic function $\mathrm{f}(\mathrm{z})$ the following holds

$$
\begin{gathered}
\iint_{P} f^{\prime \prime}(z) d x d y=\sum_{n=1}^{N} \frac{i}{2}\left[\frac{\bar{z}_{n-1}-\bar{z}_{n}}{z_{n-1}-z_{n}}+\frac{\bar{z}_{n+1}-\bar{z}_{n}}{z_{n+1}-z_{n}}\right] f\left(z_{n}\right), \\
>a_{n}
\end{gathered}
$$

A. 2 Complex Moments

If we use the analytic function $f(z)=z^{k}$, we get from
Davis Theorem that

$$
\iint_{P} f^{\prime \prime}(z) d x d y=k(k-1) \iint_{P} z^{k-2} d x d y=\sum_{n=1}^{N} a_{n} z_{n}^{k}=\tau_{k}
$$

where we define

$$
\longrightarrow=\mu \mathrm{k}-2
$$

$$
\tau_{\mathrm{k}}=\mathrm{k}(\mathrm{k}-1) \iint_{\mathrm{P}} \mathrm{z}^{\mathrm{k}-2} \mathrm{dxdy}=\mathrm{k}(\mathrm{k}-1) \mu_{\mathrm{k}-2}
$$

A. 3 Shape From Moments

$$
\left\{\tau_{k}=\sum_{n=1}^{N} \frac{i}{2}\left[\frac{\bar{z}_{n-1}-\bar{z}_{n}}{z_{n-1}-z_{n}}+\frac{\bar{z}_{n+1}-\bar{z}_{n}}{z_{n+1}-z_{n}}\right] z_{n}^{k}\right\}_{k=0}^{M}
$$

- Can we compute the vertices from these equations ?
- How many moments are required for exact recovery ?

A. 4 Previous Results

- Milanfar et. al. (1995):
- ($2 \mathrm{~N}-1$) moments are theoretically sufficient for computing the N vertices.
- Prony's method is proposed.
- Golub et. al. (1999):
- Pencil method replacing the Prony's - better numerical stability.
- Sensitivity analysis.
- Prony's and the Pencil approaches:
- Rely strongly on the linear algebra formulation of the problem.
- Both are sensitive to perturbations in the moments.
- Both will be presented briefly.

A. 5 To Recap

A. 6 Our Focus

- Noisy measurements: What if the moments are contaminated by additive noise ? How can re-pose our problem as an estimation task and solve it using traditional stochastic estimation tools ?
- More measurements: What if there are $M>2 N-1$ moments ? How can we exploit them to robustify the computation of the vertices ?

A. 7 Related Problems

- It appears that there are several very different applications where the same formulation is obtained
- Identifying an auto-regressive system from its output,
- Decomposing of a linear mixture of complex cissoids,
- Estimating the Direction Of Arrival (DOA) in array processing,
- and more ...
- Major difference - $\left\{a_{k} \mathbb{N}_{k=1}^{N}\right.$ are not functions of the unknowns but rather free parameters.
- Nevertheless, existing algorithms can be of use.

Chapter B

Prony and Pencil Based Methods

B. 1 Prony's Relation

$$
\left\{\tau_{k}=\sum_{n=1}^{N} a_{n} z_{n}^{k}\right\}_{k=0}^{M}
$$

$$
-\left[\begin{array}{c}
\tau_{\mathrm{N}} \\
\tau_{\mathrm{N}+1} \\
\tau_{\mathrm{N}+2} \\
\vdots \\
\tau_{\mathrm{M}}
\end{array}\right]=\left[\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{\mathrm{N}-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{\mathrm{N}} \\
\tau_{2} & \tau_{3} & \cdots & \tau_{\mathrm{N}+1} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{\mathrm{M}-\mathrm{N}} & \tau_{\mathrm{M}-\mathrm{N}+1} & \cdots & \tau_{\mathrm{M}-1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{P}_{\mathrm{N}} \\
\mathrm{P}_{\mathrm{N}-1} \\
\vdots \\
\mathrm{P}_{1}
\end{array}\right]
$$

B. 2 Prony's Methods

$$
\left[\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{\mathrm{N}-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{\mathrm{N}} \\
\tau_{2} & \tau_{3} & \cdots & \tau_{\mathrm{N}+1} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{\mathrm{M}-\mathrm{N}} & \tau_{\mathrm{M}-\mathrm{N}+1} & \cdots & \tau_{\mathrm{M}-1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{p}_{\mathrm{N}} \\
\mathrm{P}_{\mathrm{N}-1} \\
\vdots \\
\mathrm{P}_{1}
\end{array}\right]=-\left[\begin{array}{c}
\tau_{\mathrm{N}} \\
\tau_{\mathrm{N}+1} \\
\tau_{\mathrm{N}+2} \\
\vdots \\
\tau_{\mathrm{M}}
\end{array}\right]
$$

a. Regular Least-Squares, followed by root-finding,
b. Total-Least-Squares, followed by root-finding,
c. Hankel Constrained SVD, followed by root-finding,
d. IQML, Structuted-TLS, Modified Prony, and more.

B. 3 Pencil Relation

Define

$$
\mathrm{T}_{0}=\left[\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{\mathrm{N}-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{\mathrm{N}} \\
\tau_{2} & \tau_{3} & \cdots & \tau_{\mathrm{N}+1} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{\mathrm{M}-\mathrm{N}} & \tau_{\mathrm{M}-\mathrm{N}+1} & \cdots & \tau_{\mathrm{M}-1}
\end{array}\right] \quad \mathrm{T}_{1}=\left[\begin{array}{cccc}
\tau_{1} & \tau_{2} & \cdots & \tau_{\mathrm{N}} \\
\tau_{2} & \tau_{3} & \cdots & \tau_{\mathrm{N}+1} \\
\tau_{3} & \tau_{4} & \cdots & \tau_{\mathrm{N}+2} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{\mathrm{M}-\mathrm{N}+1} & \tau_{\mathrm{M}-\mathrm{N}+2} & \cdots & \tau_{\mathrm{M}}
\end{array}\right]
$$

After some (non-trivial) manipulation we obtain

$$
\left[T_{1}-z_{n} \cdot T_{0}\right] \underline{v}_{n}=0
$$

For some non zero vectors $\underline{\mathrm{V}}_{\mathrm{n}}$.

B. 4 Non-Square Pencil

B. 5 Pencil Methods

$$
\left[\mathrm{T}_{1}-\mathrm{z}_{\mathrm{n}} \cdot \mathrm{~T}_{0}\right] \underline{\mathrm{v}}_{\mathrm{n}}=0
$$

a. Take square portions, solve for the eigenvalues, and cluster the results,
b. Square by left multiplication with $\mathrm{T}_{0}^{\mathrm{H}}$ (closely related to LS-Prony),
c. Hua-Sarkar approach: different squaring methods which is more robust and related to ESPRIT.

Chapter C

ML and MAP
 Approaches

C. 1 What are we Missing ?

- We have seen a set of simple methods that give reasonable yet inaccurate results.
- In our specific problem we do not exploit the fact that $\left\{a_{k} \bigcup_{k=1}^{N}\right.$ are vertices-dependent.
- In all the existing methods there is no mechanism for introducing prior-knowledge about the unknowns.

C. 2 Recall ...

We have the following system of equations

Measured

Function of the unknowns

C. 3 Our Suggestion

- If we assume that the moments are contaminated by zero-mean white Gaussian noise, Direct-MaximumLikelihood (DML) solution is given by

$$
\text { Minimize }\|\underline{t}-\mathbf{V}(\underline{z}) \cdot \underline{\mathrm{a}}(\underline{z})\|_{2}^{2}
$$

$$
\underline{z}
$$

- Direct minimization is hard to workout, BUT
- We can use one of the above methods to obtain an initial solution, and then iterate to minimize the above function until getting to a local minima.

C. 4 Things to Consider

- Even (complex) coordinate descent with effective linesearch can be useful and successful (in order to avoid derivatives).
- Per each candidate solution we HAVE TO solve the ordering problem !!!! Treatment of this problem is discussed in Durocher (2001).
- If the initial guess is relatively good, the ordering problem becomes easier, and the chances of the algorithm to yield improvement are increased.

C. 5 Relation to VarPro

- VarPro (Golub \& Pereyra 1973)
- Proposed for minimizing $\|\underline{t}-\mathbf{V}(\underline{z}) \cdot \underline{a}\|_{2}^{2}$
- The basic idea: Represents the \underline{a} as $\underline{a}=\mathbf{V}^{+}(\underline{z}) \underline{t}$ and use derivatives of the Pseudo-Inverse matrix.
- Later work (1978) by Kaufman and Pereyra covered the case where $\underline{a}=\underline{a}(\underline{z})$ (linear constraints).
- We propose to exploit this or similar method, and choose a good initial solution for our iterative procedure.

C. 6 Regularization

- Since we are minimizing (numerically) the DML function, we can add a regularization - a penalty term for directing the solution towards desired properties.

$$
\underset{\underline{z}}{\operatorname{Minimize}}\|\underline{t}-\mathbf{v}(\underline{z}) \cdot \underline{a}(\underline{z})\|_{2}^{2}+g\{\underline{z}\}
$$

- The minimization process is just as easy.
- This concept is actually an application of the Maximum A-posteriori-Probability (MAP) estimator.

C. 7 MAP Possibilities

Kind of Prior	Expression for $g(*)$
Promoting 90° angles	$\sum_{n=1}^{N}\left(\frac{1}{2}\left\|\frac{z_{n-1}-\bar{z}_{n}}{z_{n-1}-z_{n}}+\frac{\bar{z}_{n+1}-z_{n}}{z_{n+1}-z_{n}}\right\|-1\right)^{2}$
Promoting smoothness (1)	$\sum_{n=1}^{N}\left\|z_{n-1}-z_{n}\right\|^{2}$
Promoting smoothness (2)	$\sum_{n=1}^{N}\left\|z_{n-1}+z_{n+1}-2 z_{n}\right\|^{2}$
Promoting regularity	$\left(\sum_{n=1}^{N}\left\|z_{n-1}-z_{n}\right\|\right)^{2} / \operatorname{Im}\left(\sum_{n=1}^{N} z_{n+1} \bar{z}_{n}\right)$
Promoting small area	$\operatorname{Im}\left(\sum_{n=1}^{N} z_{n+1} \bar{z}_{n}\right)$

Chapter D

Results

D. 1 Experiment \#1

- Compose the following star-shaped polygon ($\mathrm{N}=10$ vertices),
- Compute its exact moments ($\mathrm{M}=100$),
- add noise ($\sigma=1 \mathrm{e}-4$),
- Estimate the vertices using various methods.

D. 1 Experiment \#1

Mean Squared Error averaged over 100 trials

D. 2 Experiment \#2

- For the star-shape polygon with noise variance $\sigma=1 \mathrm{e}$ 4, initialize using HuaSarkar algorithm.
- Then, show the DML function per each vertex, assuming all other vertices fixed.
+ Hua-Sarkar result
- New local minimum

D. 3 Experiment \#3

- For the E-shape polygon with noise variance $\sigma=1 e-3$, initialize using LS-Prony algorithm.
- Then, show the DML function per each vertex, assuming all other vertices fixed.
+ LS-Prony result
- New local minimum

D. 4 Experiment \#4

- For the E-shape polygon with noise variance $\sigma=1 e-3$, initialize using LS-Prony algorithm.
- Then, show the MAP function per each vertex, assuming all other vertices fixed.
- Regularization - promote 90° angles.

D. 5 Experiment \#5

Error as a function of the iteration number*

D. 6 To Conclude

- The shape-from-moments problem is formulated, showing a close resemblance to other problems in array processing, signal processing, and antenna theory.
- The existing literature offers many algorithms for estimating the "vertices" - some of them are relatively simple but also quite sensitive.
- In this work we propose methods to use these simple algorithms as initialization, followed by a refining stage based on the Direct Maximum Likelihood and the MAP estimator.

[^0]: * The CS Department - SCCM Program Stanford University
 ** Peyman Milanfar is with the University of California Santa Cruz (UCSC).

