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Abstract

We address single image super-resolution using a statistical prediction model based on sparse representations of low

and high resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a

common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained

via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To

further enhance performance we suggest data clustering and cascading several levels of the basic algorithm. We

suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its

advantages over existing methods based on a low and high resolution dictionary pair, in terms of computational

complexity, numerical criteria and visual appearance. The suggested approach offers a desirable compromise between

low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single

image super-resolution.

Index Terms

Dictionary learning, feedforward neural networks, MMSE estimation, nonlinear prediction, single image super-

resolution, sparse representations, statistical models, restricted Boltzmann machine, zooming deblurring

I. INTRODUCTION

Image super-resolution (SR) are techniques aiming at resolution enhancement of images acquired by low-

resolution (LR) sensors, while minimizing visual artifacts. These techniques offer the promise of overcoming the

inherent limitations of LR imaging (e.g. surveillance cameras) and better utilization of the growing capability of
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high-resolution (HR) displays (e.g. HD LCDs). The classical image SR problem is cast as fusing multiple LR

images of the same scene obtained at sub-pixel misalignments into one HR image (for a comprehensive review see

[1], [2]). However, this problem is typically severely ill-conditioned due to the insufficient number of observations

and the unknown registration parameters, limiting classical SR to small scale-up factors (less than 2). Recently,

the field of single image SR has drawn considerable attention [3]–[24]. In this setup, image recovery is cast as a

severely underdetermined inverse problem, regularized by utilizing an image model or prior.

The baseline method for approximating a solution to this problem is through conventional linear interpolators, of

which the bicubic interpolator is highly popularized. In recent years a wide range of approaches has been suggested

that outperform bicubic interpolation. Models that are commonly exploited in single image SR methods include

image smoothness and geometric regularity of image structures [3]), gradient profile priors [4], self-similarity of

image patches within and across different scales in the same image [6], [7], [24], and sparsity – either in the

wavelet domain [8], [11], through Gaussian mixture models [14] or through an analysis operator [20]. The methods

leading to the best performance incorporate a combination of several such ideas. Zhang et al. [18] take advantage

of sparsity of the reconstructed image through a multi-scale dictionary, along with local and non-local image priors,

while Dong et al. [12], [22] combine the ideas of data clustering, adaptive PCA-based sparse representations and

non-local self-similarity of image patches within a given image.

A different line of work, which will be most relevant to this paper, is based on sparse representation of low and

high resolution (LHR) patch-pairs over a dictionary pair Dl,Dh. The core idea underlying this approach is that each

LHR patch-pair is sparsely represented over the dictionaries Dl and Dh and the resulting representations αl,αh

are assumed to have a pre-specified correspondence. A common assumption in this context is sparse representation

invariance [9], [10], [15], where patches in a LHR pair have the same sparse representation over the LHR dictionary

pair, namely αh = αl. To allow for a meaningful recovery of the HR patch, this calls for joint learning of the

dictionary pair. The authors of [9], [10] suggest to first learn a dictionary Dl that best fits the LR patches, and then

learn a dictionary Dh that works best with the resulting coefficients αl in recovering the HR patches. Yang et al.

[15] suggest a fully-coupled learning approach for the dictionary pair via a bi-level optimization problem.

While sparse representation invariance is indeed a simplifying assumption, it suffers from two inherent drawbacks.

First, to ensure alignment of the dictionary pair, both dictionaries should have the same number of atoms. In order

to allow for a rich recovery model this number should be very large with respect to the patch dimension (typically

1, 000 atoms for patches of size 9×9). Second, since LR patches consist of low energy in coefficients corresponding

to edges and textures, a pre-processing stage in the form of high-pass filtering is required to allow for good recovery

of HR detail through sparse representation invariance.

Recently, several attempts have been made to go beyond the invariance assumption, aimed at improving the
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stability of the recovery. Wang et al. [17] learn linear mappings between αl and αh, combined with `1 sparsity.

Jia et al. [19] and He et al. [23] suggest restricting the invariance only to the supports1 and assume a linear map

between the non-zero representation coefficients. The latter addresses the joint dictionary learning task through

a Bayesian approach that utilizes a Beta process prior. This approach allows inferring the number of dictionary

atoms non-parametrically, which turns out to be smaller with respect to previous approaches. Note that two of

these methods [17], [19] utilize data clustering and learn a set of linear mappings – one for each cluster. While the

number of sets in [17] is small (32), it becomes huge (32, 104) in [19]. All three approaches overcome the need for

pre-processing. However, the two dictionaries are obliged to have the same number of atoms, which remains large

with respect to the patch dimension (the dictionaries are highly redundant). Thus, they involve a computationally

expensive sparse coding stage for the low-resolution patches.

Our work is also based on sparse representation of patch-pairs over a dictionary pair. However, we make no

invariance assumption. Instead we suggest a parametric model which captures the statistical dependencies between

the sparsity patterns of the LHR coefficients and between the corresponding nonzero coefficients. Prediction of αh

from αl is carried out by the MMSE estimator arising directly from the model, which is shown to have a closed

form formula. Our model does not require the dictionary pair Dl,Dh to be strictly aligned; in fact they do not even

have to be of the same size. Thus we have no restrictions on the LR dictionary Dl. More specifically, we utilize

very small orthogonal dictionaries for the LR patches, which lead to a low cost scale-up scheme. To further enhance

performance, we use data clustering and learn a set of prediction models. Furthermore, we design a multi-level

scale-up scheme and explain how to naturally extend the suggested approach so that it will exploit maximally

overlapping patches for image reconstruction. These extensions are shown to improve the outcome quality. Our

contribution is twofold. First, our model goes beyond linear prediction models and thus offers more representation

power. Second, the suggested single image SR scheme has the useful interpretation of a feedforward neural network

(NN), leading to a very efficient implementation.

The rest of the paper is organized as follows. In Section II we formalize the single image SR problem. Section III

presents the suggested model and the basic scale-up scheme. Training the parameters of the resulting neural net is

discussed in Section IV. In Section V we describe how to construct the final scale-up scheme by data clustering

and cascading several levels of the basic scheme. We evaluate the performance of our algorithm in Section VI,

demonstrating its advantages over existing methods based on a LHR dictionary pair, both in visual appearance and

numerical criteria, and comparing it with state-of-the-art methods for single image SR.

1The term ’support’ refers to the locations of the non-zeros in the representation vector.



4

Figure 1. Different image resolutions – an illustration for part of the image ‘Lena’, scale factor q = 3 and a bicubic filter. From left to
right: yh, zl, yl and |yhl| (the latter image is displayed in the dynamic range [0, 60]).

II. PROBLEM FORMULATION

To formulate the single image SR problem, we first present several notations. The LR and HR images are

represented as vectors zl ∈ RNl and yh ∈ RNh , where Nh = q2Nl and q > 1 is some integer scale-up factor. We

further denote by H ∈ RNh×Nh the blur operator and by Q ∈ RNl×Nh the decimation operator for a factor q in

each axis, which discards rows/columns from the input image. Two acquisition models are commonly used in the

literature to describe how a LR image is generated from a HR image, and each of them has a different rationale.

The first assumes that prior to decimation, a known low-pass (anti-aliasing) filter is applied on the image,

zl = QHyh + v, (1)

where v is an additive noise/error in the acquisition process. The corresponding problem of reconstructing yh from

zl is also referred to in the literature as zooming deblurring [14]. The second acquisition model assumes that there is

no blur prior to decimation, namely zl = Qyh, so that image reconstruction is cast as a pure interpolation problem

– filling out the missing pixels between the original pixels in the input LR image, which remain unaltered in the

recovered HR image.

In this work we shall consider only the first acquisition model, leading to the zooming deblurring setup. Note

that various choices for the blur kernel (associated with the operator H) exist in the literature for this setup. The

two most popular choices are a bicubic low-pass filter2 and a Gaussian low-pass filter. In our experiments we will

focus on these two choices. Figure 1 illustrates the absolute difference image between yh and yl for this setup with

a bicubic filter. We can see that most of the energy in this image is concentrated at edges and textures.

Similar to previous approaches that work with sparse representations of patch-pairs, we would like to learn

the correspondence between LHR patches of the same dimensions. Thus we apply bicubic interpolation3 on the

2This is the filter used by the Matlab function imresize for down-scaling an image with the option ‘bicubic’.
3There is some ambiguity in the literature regarding the term bicubic interpolation. To be concise, for zooming deblurring the Matlab

function imresize is used, and for interpolation the function interp2 is used.
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input LR image and obtain an image yl ∈ RNh . Since we are addressing the zooming deblurring setup we aim at

recovering the difference image yhl = yh − yl and then apply ŷh = ŷhl + yl to obtain the final recovery, thus we

retain the LR detail and predict only the missing HR detail.

We now turn to describe the idea of patch-based image reconstruction. Let pk = Rky be an image patch of size
√
n×
√
n centered at location k and extracted from the image y of size Nh by the linear operator Rk. In the sequel

we shall suggest a local model which predicts a HR patch pk
h = Rkyh from a LR patch pk

l = Rkyl. Once we have

obtained all HR patch predictions, the HR image is recovered by averaging the overlapping recovered patches on

their overlaps. Note that there is an inherent tradeoff between run time and the quality of image reconstruction in

the choosing the size of overlap between adjacent patches. In image processing applications such as denoising and

deblurring, patch-based approaches typically work with maximally-overlapping patches (an overlap of
√
n×(
√
n−1)

pixels between adjacent patches in the horizontal and vertical directions) to achieve the best reconstruction quality.

However, the decimation operator taking part in the image degradation process calls for some additional attention.

Since decimation is invariant only to shifts of the form rq (in the horizontal or vertical directions), where r is

some integer4, patches corresponding to such shifts undergo the same degradation process, whereas other patches

are degraded in a different fashion. Therefore, we cannot expect one set of model parameters to predict the missing

HR detail in all overlapping patches, but only for a set of patches whose locations oblige to the shift requirement

mentioned above.

In light of this observation, it is assumed hereafter that we extract only patches for which the center pixel is

located on the sampling grid – this choice leads to a set of partially-overlapping patches (an overlap of
√
n×(
√
n−q)

pixels between adjacent patches in the horizontal and vertical directions). The corresponding set of locations {k}

is denoted by Ω. We shall revisit this point in Section V-C where we will explain how to extend the basic scheme

so that it will exploit maximally overlapping patches for image reconstruction.

Finally, we briefly mention the sparsity-based synthesis model (for a comprehensive review see [25]). The core

idea in this model is that a signal x ∈ Rn can be represented as a linear combination of a few atoms (signal

prototypes) taken from a dictionary D ∈ Rn×m, namely x = Dα + η, where α ∈ Rm is the sparse representation

vector and η is noise or model error. Similar to previous approaches, we assume that each LR patch can be

represented over a dictionary Dl ∈ Rn×ml by a sparse vector αl ∈ Rml , and similarly a HR patch is represented

over Dh ∈ Rn×mh by αh ∈ Rmh .

III. THE STATISTICAL MODEL AND THE BASIC SINGLE IMAGE SR SCHEME

The main motivation for the model we are about to suggest is the desire to predict for each LR patch the missing

HR detail via a pair of LR and HR dictionaries with different number of atoms. This is mainly for two reasons:

4This is in contrast to the blur operator, which is invariant to any integer shift (ignoring border affects).
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First, each dictionary aims at characterizing signals of different qualities, so it seems natural to use fewer atoms

for the lower quality content. Second, working with a small and orthogonal (possible only in the complete and

under-complete cases) dictionary for the LR patches allows for avoiding typical high-complexity sparse-coding

computations, utilized in previous work. We begin by describing the low-cost pursuit stage for obtaining the LR

coefficients αl. We then suggest utilizing a statistical parametric model for predicting the HR representation vector

αh of each patch from its corresponding LR coefficients αl, and explain how to perform inference with the model,

assuming its parameters are already known (through a training stage addressed in Section IV). Finally, we present

the basic single image SR scheme resulting from the suggested model and inference.

A. Low-Cost Pursuit

We begin with the basic observation that LR patches have few detail, so that even an undercomplete dictionary

(ml < n) suffices to sparsely represent these patches. In light of this observation and to allow for a low-cost scale-up

scheme, we assume hereafter that Dl is an undercomplete orthonormal dictionary. Therefore, the LR coefficients

are readily computed by the inner products of the LR patch with the dictionary atoms,

αl = (Dl)
T pl. (2)

Computing the LR coefficients for all overlapping patches
{

pk
l

}
can be implemented using a convolutional network

[26]. To enforce sparsity on these representations we perform hard-thresholding, so that the sparsity pattern sl ∈

{−1, 1}ml is computed as

sl,j =


1 , |αl,j | > λ

−1 , otherwise

, ∀j = 1, . . . ,ml, (3)

where λ is set adaptively for each LR patch based on a residual error criterion. Specifically, λ is the maximal

threshold satisfying
ml∑
j=1

|αl,j |2 1 (|αl,j | ≤ λ) ≤ nτ2, (4)

where τ is some pre-specified parameter indicating the desired accuracy of the LR sparse representation.

B. The Model

As mentioned in the previous subsection, the LR dictionary Dl is an undercomplete orthogonal dictionary. The

HR dictionary Dh however is assumed to be complete or overcomplete to allow for sufficient representation power.

Due to the different number of atoms in Dl and Dh, assuming the same sparsity pattern for the LR and HR

representations as in all previous work that consider a dictionary pair [9], [10], [15], [23] is no longer a valid
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option. Therefore, a model that captures the relations between the two different sparsity patterns – sl ∈ {−1, 1}ml

for the LR patch and sh ∈ {−1, 1}mh for the HR patch – is required.

Recently, the Boltzmann machine (BM) prior,

Pr(s) =
1

Z
exp

(
bT s +

1

2
sTWs

)
, (5)

where b ∈ Rm is a bias vector and W ∈ Rm×m is an interaction matrix, has been used to capture statistical

dependencies within the sparsity pattern s ∈ {1,−1}m of a single representation vector [27]–[30]. In our setup we

would like to capture the dependencies between the sparsity patterns of the LHR pair, so we turn to a variant of

the BM, termed restricted Boltzmann machine (RBM) [31]–[33] and given by the conditional probability,

Pr(sh|sl) =
1

Z1
exp

(
bT
h sh + sTh Whlsl

)
=

mh∏
j=1

Φ
(
(bh,j + wT

hl,jsl)sh,j
)
, (6)

where bh ∈ Rmh is a bias vector for the HR sparsity pattern, Whl ∈ Rmh×ml is an interaction matrix connecting

between the LR and HR sparsity patterns, and Φ(z) = (1 + exp(−2z))−1 is the well-known sigmoid function. The

last equality in Eq. (6) holds since the entries of sh are statistically independent given sl.

The RBM is a simple exponential model relating two binary vectors5, and leading to tractable inference problems.

Specifically, this choice leads to a simple closed-form formula for the conditional marginal probability of each entry

in sh given sl,

Pr(sh,j = 1|sl) = Φ
(
bh,j + wT

hl,jsl
)
, ∀j = 1, . . . ,mh, (7)

which aligns with the well-known sigmoid unit in NNs. Next, we address the HR coefficients αh. Given the sparsity

pattern sh and the LR coefficients αl, we suggest the following model,

αh,j =


uj , sh,j = 1

0 , sh,j = −1

, ∀j = 1, . . . ,mh, (8)

where u ∈ Rmh is assumed to be Gaussian distributed given αl, so that u|αl ∼ N (Chlαl,Σhl) with Chl ∈ Rmh×ml

and Σhl ∈ Rmh×mh . Straightforward considerations lead to the following conditional expectation,

E [αh,j |sh,j = 1,αl] = cThl,jαl, ∀j = 1, . . . ,mh. (9)

Note that Eq. (8) and (9) imply a different mapping from αl to αh for each sparsity pattern sh. However, all 2mh

possible mappings are described through the same matrix – Chl. This is different from Jia et al. [19] which trains

a different linear mapping for each sparsity pattern under consideration (there are 32, 104 such patterns in their

5Since RBM works with binary vectors, it is most natural to harness it for the supports, rather than the representation coefficients.
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setup). Notice that the prediction implied by our model is linear only when the sparsity pattern sh is known, and

as we will see in the next subsection, the final estimator for αh,j given αl, sl is nonlinear.

C. Inference

Now that we have presented a statistical model for αh, sh given αl, sl, we are ready to perform inference. We

suggest using an MMSE estimator for predicting each entry in αh from sl and αl,

α̂h,j =E [αh,j |sl,αl] =
∑

sh∈Γj

E [αh,j |sh, sl,αl] Pr (sh|sl,αl) =
∑

sh∈Γj

E [αh,j |sh,j = 1,αl] Pr (sh|sl)

=E [αh,j |sh,j = 1,αl] Pr (sh,j = 1|sl) =
(
cThl,jαl

)
Φ
(
bh,j + wT

hl,jsl
)
, (10)

where Γj = {γ ∈ Rmh : gj = 1} and we have used two independence assumptions for deriving the third equality:

1) αh,j ⊥
(

sl, {sh,i}i 6=j

)
| (sh,j = 1,αl) , ∀j.

2) sh,j ⊥ αl | sl, ∀j.

Just as in other sparsity-based MMSE estimators [34], the resulting estimate for αh is not sparse. However, it

leads to a better signal recovery compared to any sparse estimator. Note that in contrast to previous works that

suggest linear mappings between the nonzeros in αh and αl [17], [19], [23], the estimator in Eq. (10) is constructed

as a product of a linear term with respect to αl and a nonlinear term with respect to sl – the sparsity pattern of

αl. This leads to a much richer family of predictors.

D. The Basic Scheme

The proposed scheme for single image SR is summarized in Algorithm 1. Figure 2 depicts a signal flow

diagram, demonstrating how this scheme can be interpreted as a feedforward NN, leading to a very fast and

simple implementation. Patch extraction in line 4 and the inner products with the dictionary atoms in line 6 can

be implemented using a convolutional network [26]. Turning to the local processing, line 7 can be implemented

by a layer of hard-thresholding decision units and line 8 by an inner product of two outputs – one comes from a

linear layer operating on αl and the second from a linear-then-sigmoid layers operating on sl. Line 9 constitutes

as additional linear layers. Finally, averaging the local patch predictions on their overlaps for image reconstruction

in line 11 is a close variant of the well-known average pooling layer. Note that the architecture of the suggested

neural network is well-reasoned as it follows directly from solid ideas such as efficient sparse coding of LR patches

and a statistical prediction model for the HR representations. This is quite different from the common trend for

determining the architecture of feedforward networks.
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Algorithm 1 BASIC SCHEME FOR SINGLE IMAGE SR
1: Input: LR image zl, scale-up factor q and model parameters Dl,Dh,Chl,bh,Whl

2: Output: Estimation for the HR image ŷh
3: Bicubic interpolation with a scale-up factor q to generate the image yl from zl
4: Extract overlapping patches

{
pk
l

}
centered at locations k ∈ Ω from the image yl

5: for k ∈ Ω do
6: Compute the LR representation αk

l from the LR patch pk
l using Eq. (2)

7: Compute the LR sparsity pattern skl from the LR representation αk
l using Eq. (3)

8: Compute the MMSE estimator for the HR representation α̂k
h using Eq. (10)

9: HR patch recovery: p̂k
h = Dhα̂

k
h

10: end for
11: Recover the LHR diff. image ŷhl from the patches

{
p̂k
h

}
k∈Ω

by averaging on their overlaps
12: HR image recovery: ŷh = ŷhl + yl

,
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Figure 2. The proposed single image SR basic scheme – interpretation as a feedforward NN: Top left – low-cost pursuit of LR representation
coefficients, Bottom left – prediction of HR representation coefficients, Bottom right – synthesis of HR patches, Top right – reconstruction
of the HR image.

IV. LEARNING THE MODEL PARAMETERS

In Section III-D we described the feedforward neural network resulting from the suggested model and inference.

In this section our goal is to find the network parameters leading to the best prediction from the LR patches to

the corresponding HR ones, in terms of the squared error with respect to the HR patches. The suggested network

consists of the following parameters,

Θ = {Dl,Dh,Chl,bh,Whl} . (11)

As in previous work on sparsity-based single image SR [9], [10], [15], [17], [19], we suggest learning the model

parameters offline, using a set of LHR image pairs. Image patches are extracted at the same locations (indexed in

the set Ω) from each image pair yl, yhl, resulting in a training set consisting of N paired LHR patches
{

pk
l ,p

k
h

}
.
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Algorithm 2 LEARNING THE PARAMETERS OF THE BASIC SCHEME

1: Input: A training set of paired LHR patches
{

pk
l ,p

k
h

}
and an orthogonal dictionary U

2: Output: Learned model parameters Dl,Dh,Chl,bh,Whl

3: Set the LR dictionary Dl as a subset of atoms from the given orthogonal dictionary U, covering most of the
energy of the LR patches

{
pk
l

}
.

4: Set the LR representations and their sparsity patterns
{
αk

l , s
k
l

}
from the LR patches

{
pk
l

}
and the estimate

for Dl using Eq. (2)-(3).
5: Initialize the HR dictionary Dh from the HR patches

{
pk
h

}
using the K-SVD algorithm.

6: Compute the HR representations and their sparsity patterns
{
αk

h, s
k
h

}
from

{
pk
h

}
and the current estimate

for Dh using the OMP algorithm.
7: Initialize the low-to-high prediction matrix Chl from

{
αk

l ,α
k
h, s

k
h

}
using Eq. (14).

8: Update the HR dictionary and low-to-high prediction matrix Dh,Chl from
{
αk

l , s
k
h,p

k
h

}
using Eq. (18).

9: Initialize the RBM parameters bh,Whl from
{

skh
}

using Eq. (21).
10: Update the RBM parameters bh,Whl from

{
αk

l , s
k
l ,p

k
h

}
and the current estimates for Dh,Chl using the

conjugate gradient descent algorithm to approximate the solutions to Eq. (19).
11: Compute the MMSE estimator for the HR representations

{
α̂k

h

}
from

{
αk

l , s
k
l

}
and the current estimates

for Dh,Chl,bh,Whl using Eq. (10).
12: Update the HR dictionary Dh from

{
α̂k

h,pk
h

}
using Eq. (22).

Training the model parameters Θ can be formulated through the following optimization problem,

Argmin
Θ

N∑
k=1

∥∥∥Dh

([
Φ
(

bh + Whlskl
)]
◦
[
Chl(Dl)

Tpk
l

])
− pk

h

∥∥∥2

2
, (12)

where ◦ is the Hadamard product.

Learning all the model parameters together by solving the joint optimization problem of (12) seems to be very

challenging; and thus, we looked for a way around it. To remove some of the complexity we start from both

ends, setting initial estimates for the dictionaries Dl, Dh using well-known approaches – directional PCAs [14]

and K-SVD [35]. Given these two estimates and knowing the true sparsity patterns for each LR and HR patch

pair over these dictionaries, setting an initial estimate for the covariance matrix Chl is quite straightforward by

solving a least-squares problem. After these initial estimates have been made, we can update Dh and Chl together,

so that they we be well-tuned. At this point we reach the innermost layer of the network and we update the RBM

parameters Whl,bh, while the rest of the parameters remain fixed to their current estimates. Finally, we perform

another last tuning of the dictionary Dh so that it will work best (in terms of HR patch error) with the predicted

representation vectors that are generated from the all the previous layers of the network. The overall learning

algorithm is summarized in Algorithm 2. In the rest of this section we provide the justification and details for each

of the steps in this algorithm.

We begin with the LR dictionary Dl, assumed to be undercomplete and orthonormal. Note that there are two main

practical reasons for working with undercomplete orthogonal dictionaries rather than complete ones: (i) reducing

the overall amount of computations; and (ii) reducing the number of parameters in the matrices Whl, Chl and thus
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avoiding possible over-fitting issues. We suggest choosing an orthogonal transform that is known to perform well

on natural image patches, such as DCT or directional PCAs [14], and setting Dl to be a subset of atoms from the

given unitary dictionary, covering most of the energy of the LR patches.

Next, we set initial estimates for Dh and Chl. The first is learned via the K-SVD algorithm [35], which finds a

dictionary to sparsely represent the HR patches. Using the learned dictionary, we apply the OMP algorithm [36]

to evaluate the target HR representations
{
αk

h

}
and their corresponding sparsity patterns

{
skh
}

. Then Chl is set as

the matrix describing best the linear mappings between the LHR nonzero coefficients,

Ĉhl = Argmin
Chl

N∑
k=1

∥∥∥Λk
h

(
Chlα

k
l −αk

h

)∥∥∥2

2
, (13)

where Λk
h = diag

[
1
2

(
skh + 1

)]
. This is a least-square (LS) problem with a closed-form solution,

(
Ĉhl

)cs
=

[
N∑
k=1

(
αk

l (αk
l )T
)
⊗Λk

h

]−1( N∑
k=1

Λk
hα

k
h(αk

l )T

)cs

, (14)

where ⊗ is the Kronecker product and Fcs is the column stacked version of a matrix F. Note that the matrix

inversion in Eq. (14) can be computed efficiently despite its large dimensions (this is a mlmh×mlmh matrix) due

to its strong sparsity.

Next, we update the estimates for Dh and Chl to work best together in terms of patch recovery,

D̂h, Ĉhl = Argmin
Dh,Chl

N∑
k=1

∥∥∥DhΛk
hChlα

k
l − pk

h

∥∥∥2

2
. (15)

Taking a similar approach as in the atom update rule of the K-SVD algorithm, we update one column in Dh and

one row in Chl at a time, using only ‘relevant’ examples,

d̂h,j , ĉThl,j = Argmin
dh,j ,cThl,j

∥∥dh,jcThl,jA
J
l − EJ

h

∥∥2

F
Subject To ‖dh,j‖2 = 1, ∀j = 1, . . . ,mh, (16)

where Al and Eh are matrices consisting of the vectors
{
αk

l

}
and

{
ekh
}

respectively in their columns,

ekh = pk
h −

∑
i 6=j, skh,i=1

d̂h,i

(
ĉThl,iα

k
l

)
(17)

is the residual vector for the kth patch example, and J = {k ∈ {1, . . . , N} : skh,j = 1} is the index set of ‘relevant’

examples. Each column in Dh is constrained to have a unit norm to avoid ambiguity and ensure uniqueness of the

solution. Eq. (16) admits a closed-form solution,

d̂h,j = maximal eigenvector of EJ
h(AJ

l )†AJ
l (EJ

h)T ,

ĉThl,j = d̂
T

h,jE
J
h(AJ

l )†, ∀j = 1, . . . ,mh. (18)
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Note that the matrix Eh consisting of the residual vectors is re-computed at each iteration, based on the most recent

updates of Dh and Chl (at the first iteration the initial estimates are utilized).

We now turn to estimate the parameters bh,Whl, which play their role in patch recovery through the MMSE

formula of Eq. (10). Our goal is to find the parameters bh,Whl that lead to the best performance in terms of patch

recovery from the LR coefficients using the MMSE formula and the already estimated parameters Dh and Chl. As

the MMSE estimator of the jth coefficient in αh depends only on bh,j ,wT
hl,j , we estimate bh,Whl one element

and one row at a time, respectively,

b̂h,j , ŵT
hl,j = Argmin

bh,j ,wT
hl,j

∥∥∥dh,j

(
Φ
(
bh,j + wT

hl,jSl

))
◦
(
cThl,jAl

)
− Ẽh

∥∥∥2

F
, ∀j = 1, . . . ,mh, (19)

where

ẽkh = pk
h −

∑
i 6=j

d̂h,iΦ
(
bh,i + wT

hl,is
k
l

)(
ĉThl,iα

k
l

)
(20)

is the residual vector for the kth patch example. The optimization problem in Eq. (19) is convex and we approximate

its solution using 20 iterations of the conjugate gradient descent algorithm, using the following initialization,

b̂h,j =
1

2
ln

(
|J |

N − |J |

)
, ŵT

hl,j = 0, ∀j = 1, . . . ,mh. (21)

As before, the matrix Ẽh, consisting of the vectors
{

ẽkh
}

in its columns, is updated at each iteration.

Now that the parameters bh,Whl,Chl have been estimated, we can predict the HR coefficients from
{
αk

l , s
k
l

}
using the MMSE formula in Eq. (10). Finally, we update Dh as the dictionary working best (in terms of patch

recovery) with the predicted HR coefficients, using the same dictionary update rule as in [10],

D̂h = Argmin
Dh

∥∥∥DhÂh − Ph

∥∥∥2

F
= Ph(Âh)†, (22)

where Âh,Ph are matrices consisting of the vectors
{
α̂k

h

}
,
{

pk
h

}
respectively in their columns.

V. IMPROVEMENTS TO THE BASIC SCHEME

To further enhance the performance of the suggested scheme, we suggest incorporating three additional principles

which have been found to be useful in previous work. First, to allow for better representation capability, the single

prediction model is replaced by a union of models and each LR patch is assigned to the model that fits it best,

similar to previous work [14], [17], [19]. Second, to stabilize the reconstruction process and reduce hallucination

artifacts, we suggest a gradual increase in resolution. This is achieved through a multi-level scale-up scheme, where

each level takes as input the output of the previous one and further improves its resolution. A methodology of the

same spirit was practiced in [6]. However, as we explain in the sequel, our implementation is very different. Finally,
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Figure 3. One level of the enhanced single image SR scheme. Each local prediction block applies lines 6-9 of Algorithm 1 on a different
set of patches with a different set of model parameters that were trained using Algorithm 2.

Figure 4. Clustering the LR patches according to a union of L = 9 orthogonal dictionaries. Left - each column shows the 12 leading atoms
in each of these dictionaries, Right - the cluster labels assigned to the center pixel of each LR patch for part of the image ‘Lena’ shown in
Figure 1.

we explain how to extend the suggested approach so that it will benefit from image reconstruction with maximally

overlapping patches. Figure 3 shows one level of the enhanced single image SR scheme. The multi-level scheme

is constructed by cascading M such levels where the output of each level serves as an input to the next level.

A. Using a Union of Prediction Models

So far we have addressed both prediction and learning with a single model. To extend our work to a union

of models, data clustering is essential. Once the data has been clustered, we can treat each cluster separately,

thus we return to the single model setup. Instead of achieving the clustering through the widely used Gaussian

Mixture Model (GMM), we suggest a union of sparsity-based models for the LR patches, based on orthogonal

dictionaries. This model is closely related to the GMM, and generalizes it by incorporating sparsity directly into

the representations. Specifically, we utilize a union of L orthogonal dictionaries
{

Uj
}

, learned offline on a set of
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HR image patches, using an iterative algorithm like the one suggested by Yu et al. [14], which is initialized with

a union of directional PCAs and a DCT dictionary.

Then for each LR patch pk
l and each dictionary Uj we compute the following representation error,

εkj =
∑
i∈Ij

∣∣∣αj,k
l,i

∣∣∣2 , (23)

where αj,k
l =

(
Uj
)T pk

l and Ij is the index set of the 3 largest absolute values in αj,k
l . Finally, we choose for

each LR patch pk
l the dictionary Uj with the lowest error εkj , namely the one that best represents the patch pk

l

using only 3 atoms (with the largest coefficients). Note that Uj is also used for setting the LR dictionary Dl in the

jth prediction model – as explained in Section IV the LR dictionary will consist of a subset of atoms from Uj .

Figure 4 shows on the left the leading atoms in each of the L orthogonal dictionaries and demonstrates on the right

the clustering of LR patches according to this union of dictionaries.

B. Constructing a Multi-Level Scheme

Due to the great loss of detail resulting from the LR acquisition process, our suggested prediction model is prone

to numerical instabilities. Therefore, we expect that using a multi-level scheme, each responsible for only part of

the scale-up and taking into account the previous levels, will offer a more stable recovery. Glasner et al. [6] suggest

constructing a cascade of M images corresponding to scale factors 1<q1<q2<. . .< qM = q with respect to the

input LR image zl, namely the jth image has q2
j more pixels than zl. Similarly, we consider an M -level scale-up

scheme aimed at generating a cascade of images at increasing resolution. However, the images in our cascade are

all of the same size in terms of pixel count, and the increase in resolution is essentially an increase in quality.

We suggest an M -level feedforward cascade taking as input the interpolated LR image yl, where each level is

designed with the same form as our basic scale-up scheme, but trained to achieve a different goal. Specifically, in

the training stage we generate from each HR image a cascade of images in increasing quality (the specific details

depend on the blur kernel under consideration and will be provided in the sequel). The jth level takes as input

the output of the previous one and is trained to minimize the patch recovery error with respect to the patches of

the jth image in the aforementioned image cascade. As the level j increases (and so does the quality of the target

patches), we use higher values for both mh (the number of atoms in Dh) and τ (determines the threshold λ in

Eq. (3)), since more atoms are required to sparsely represent the patches at the output of the level and a higher

threshold λ is required to obtain a sparse representation for the patches at the input of the level.

We now provide the details for generating a cascade of images in increasing quality. For the setup with a bicubic

filter, we generate from the HR image an image pyramid consisting of M resolutions by downsampling it with

scale factors q/q1 > q/q2 > . . . > q/qM = 1. All these images are then scaled-up again to the original size (HR)
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by bicubic interpolation6. For the setup with a Gaussian filter with standard deviation σ, we generate from the

HR image a set of blurred images (no downsampling) using Gaussian filters with decreasing standard deviations

σ1 = σ/q1>σ2 = σ/q2>. . .>σM−1 = σ/qM>σM = 0. Specifically, a scale-up factor of q = 2 is achieved by the

sequence q1 = 4/3, q2 = 2 and a scale-up factor of q = 3 is achieved by q1 = 1.5, q2 = 2, q3 = 2.5, q4 = 3.

C. Exploiting Maximally Overlapping Patches

So far image reconstruction is performed by averaging the predictions for a set of partially overlapping patches on

their overlaps. Specifically, there is an overlap of
√
n× (

√
n−q) pixels between adjacent patches (in the horizontal

and vertical directions) in this set, so that we have at most n/q2 estimates for a given pixel in the HR image.

Working with maximally overlapping patches is much desired as it increases the number of estimates per pixel

to n and thus allows for a more reliable reconstruction with fewer artifacts. Note however that such an extension

evidently increases the computational complexity by a factor of q2 as the number of patches to process is increased

by the same factor.

In light of the discussion appearing in Section II we can deduce that working with maximally overlapping patches

is possible as long as we train and apply the prediction model for patches undergoing a similar degradation model,

namely patches with center pixels located at a given shift with respect to the sampling grid. Specifically, this means

that for each level in our scheme we treat separately q2 groups, each consisting of partially overlapping patches.

Combining the patch predictions from all these groups yields a set of maximally overlapping patches, which in

turn are utilized to generate the output image of the current level (see the rightmost block in Figure 3).

Note that treating separately patches at different shifts with respect to the sampling grid has indeed been considered

in previous work (see for example [7]). However, to the best of our knowledge, training a different sparsity-based

prediction model for each of q2 groups of LR patches, each undergoing a different degradation model, has not been

considered before.

VI. EXPERIMENTS

We consider 3 typical single image SR scenarios, all corresponding to a zooming deblurring setup with a known

blur kernel:

1) A bicubic filter followed by downsampling by a scale factor of q = 2.

2) A bicubic filter followed by downsampling by a scale factor of q = 3.

3) A Gaussian filter of size 7 × 7 with standard deviation 1.6 followed by downsampling by a scale factor of

q = 3.

6For down-scaling or bicubic interpolation with non-integer scale factors we use the Matlab function imresize.
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Table I
SINGLE IMAGE SR, DESIGN PARAMETERS FOR THE DIFFERENT SCENARIOS

Scenario n M mh τ

1) Bicubic filter, 64 1 200 2
q = 2 64 2 [100, 200] [2, 3]

2) Bicubic filter, 81 1 200 2
q = 3 81 4 [81, 120, 160, 200] [2, 2.5, 3, 3.5]

3) Gaussian filter, 81 1 200 2
σ = 1.6, q = 3 81 5 [81, 81, 120, 160, 200] [2, 2, 2.5, 3, 3.5]

For each scenario we train offline (on a set of natural images provided in [9]) both a single-level scheme and

an M -level scheme, where each level corresponds to a union of L = 9 prediction models. The multi-level scheme

is trained separately for reconstruction with partially and maximally overlapping patches (for the latter see Section

V-C). Table I provides the design parameters used for each scenario: the patch dimension n, the number of levels

M , the number of atoms mh in Dh, and the parameter τ for determining the threshold λ (the two latter parameters

are given for a single level scheme and for each level of the multi-level scheme).

For each scenario the trained scale-up schemes are applied on a set of 10 distinct test images and their performance

is compared with bicubic interpolation and with leading previous single image SR algorithms. For color images

we apply the single image SR algorithm only on the luminance channel, so that the performance is evaluated

only on that channel. The results of previous algorithms were obtained using the corresponding software packages

that are publicly available7. All experiments were performed on an Intel Core i5-460M 2.53GHz laptop PC under

Matlab R2012a environment. This work does not address the pure interpolation setup, thus we cannot compare our

approach with previous work that considered such a setup [3], [8], [14], [17], [21] since they consider only that

setup.

We begin by comparing the average run times (seconds per 104 input LR pixels) for all the methods considered

throughout this section – these are summarized in Table II. This table shows that our single level scheme is clearly

the fastest method. Note that it runs at least 100 times faster than all previous methods apart from [10]. We can

also see that the run time of our method increases linearly with the number of levels and with the number of

overlapping patches taking part in the image reconstruction (this is determined by the size of the overlap).

Let us first focus on the two first scenarios, corresponding to zooming deblurring with a bicubic blur kernel.

All previous work that considered this setup are based on sparse representations of LHR patch-pairs, assume full

sparse representation invariance [9], [10], [15] or sparsity pattern invariance [23], and suggest to learn offline a

local prediction model. Note that in most of these works [9], [15], [23] a global post-processing stage in the form

of back-projection is performed on the intermediate result obtained via the local prediction model. To allow for a

proper assessment of the contribution of the different local prediction models and the suggested post-processing

7We would like to thank the authors of [9], [10], [12], [15], [22], [23] for sharing their codes.
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Table II
SINGLE IMAGE SR, AVERAGE RUN TIMES (SECONDS PER 104 INPUT LR PIXELS)

Ours p/o Ours p/o Zeyde Ours p/o Ours p/o
1-level 2-level et al. [10] 4-level 5-level

0.8 1.4 1.9 2.8 3.4

Ours m/o Ours m/o Ours m/o Yang et al. Yang et al.
2-level 4-level 5-level [9], q = 3 [15], q = 2

5.5 30.3 34.5 72.6 164.2

He et al. ASDS-AR ASDS-AR NCSR He et al.
[23], q = 2 -NL [12] [12] [22] [23], q = 3

322.6 511.4 580.5 855.1 1498.3

Table III
SINGLE IMAGE SR, SCENARIO NUMBER 1 – NUMERICAL RESULTS

Image Butterfly Comic Flowers Foreman Girl Lena Man Pepper Starfish Zebra Avg.
Bicubic 27.44 26.01 30.37 35.55 34.77 34.09 29.25 34.98 30.17 30.64 31.33
interp. 0.916 0.850 0.899 0.950 0.865 0.991 0.981 0.993 0.908 0.987 0.934

He et al. 29.87 27.43 31.96 37.39 35.15 35.11 30.21 35.88 32.05 31.90 32.70
[23], no BP 0.946 0.893 0.922 0.958 0.880 0.991 0.986 0.992 0.933 0.990 0.949

Zeyde et 30.06 27.44 32.02 37.79 35.46 35.77 30.30 36.46 31.81 32.98 33.01
al. [10] 0.949 0.893 0.924 0.962 0.883 0.996 0.992 0.997 0.932 0.996 0.952

Yang et al. 30.54 27.38 32.16 38.39 35.33 35.51 30.33 36.42 32.09 32.48 33.06
[15], no BP 0.955 0.891 0.924 0.963 0.880 0.994 0.989 0.995 0.935 0.993 0.952

Ours p/o 30.22 27.68 32.16 37.73 35.53 35.95 30.41 36.40 32.23 32.89 33.12
1-level 0.949 0.899 0.927 0.961 0.883 0.997 0.994 0.997 0.937 0.997 0.954
Zeyde et 30.42 27.76 32.34 38.04 35.66 36.09 30.50 36.56 32.21 33.35 33.29

al. [10] + BP 0.950 0.902 0.930 0.964 0.890 0.998 0.995 0.998 0.938 0.998 0.956
Ours p/o 30.64 27.92 32.43 38.08 35.58 36.19 30.57 36.65 32.60 33.16 33.38
2-level 0.953 0.904 0.929 0.963 0.884 0.997 0.994 0.997 0.940 0.997 0.956

Ours m/o 30.87 28.03 32.52 38.10 35.59 36.24 30.60 36.71 32.81 33.24 33.47
2-level 0.956 0.906 0.930 0.963 0.884 0.997 0.994 0.997 0.942 0.997 0.957

Ours m/o 31.00 28.10 32.64 38.31 35.72 36.37 30.67 36.76 32.99 33.35 33.59
2-level + BP 0.957 0.909 0.933 0.965 0.891 0.998 0.996 0.998 0.945 0.998 0.959

Yang et 31.31 27.99 32.70 38.90 35.63 36.12 30.68 36.70 32.73 33.35 33.61
al. [15] 0.960 0.908 0.933 0.966 0.889 0.997 0.995 0.997 0.943 0.998 0.959

He at 31.51 28.27 32.92 38.71 35.69 36.30 30.78 36.68 33.17 33.55 33.76
al. [23] 0.959 0.912 0.934 0.965 0.890 0.997 0.995 0.997 0.945 0.997 0.959

In each cell 2 results are reported: Top – image PSNR [dB], Bottom – SSIM index. The methods are organized
according to their average image PSNR (from the worse to the best). Note that BP stands for back-projection, p/o
stands for partial overlaps, and m/o for maximal overlaps. PSNR/SSIM results that are less than 0.2[dB]/0.003
(respectively) away from the best result for each image are highlighted.

we run two versions of these algorithms – with and without the back-projection. We also test the effect of this

post-processing on our most elaborate method (multi-level, maximal overlaps) and on the method by Zeyde et al.

We noticed that for the second scenario back-projection is not useful for these two methods. Thus, we show the

effect of this post-processing on the two methods mentioned above only for the first scenario.

Tables III and IV compare the image reconstruction performance (image PSNR and SSIM index) of the various

methods for these scenarios. We can see that when we do not allow any post-processing stages for all methods,
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Table IV
SINGLE IMAGE SR, SCENARIO NUMBER 2 – NUMERICAL RESULTS

Image Butterfly Comic Flowers Foreman Girl Lena Man Pepper Starfish Zebra Avg.
Bicubic 24.04 23.12 27.23 32.62 32.67 30.75 27.01 32.40 26.90 26.64 28.34
interp. 0.822 0.699 0.802 0.910 0.800 0.952 0.909 0.969 0.811 0.912 0.859

He et al. 25.73 23.90 28.15 34.01 32.88 31.48 27.69 33.04 27.74 27.67 29.23
[23], no BP 0.881 0.759 0.836 0.922 0.818 0.959 0.928 0.969 0.844 0.928 0.884
Yang et al. 25.59 23.90 28.27 34.33 33.30 31.94 27.79 33.54 27.83 27.97 29.45
[9], no BP 0.862 0.758 0.836 0.924 0.822 0.965 0.934 0.975 0.847 0.939 0.886

Ours p/o 25.89 24.04 28.49 34.58 33.41 32.31 27.91 33.85 28.09 28.42 29.70
1-level 0.871 0.761 0.839 0.929 0.821 0.967 0.935 0.978 0.849 0.942 0.889
Zeyde et 25.97 23.97 28.44 34.68 33.40 32.21 27.91 34.08 27.95 28.52 29.71
al. [10] 0.878 0.756 0.839 0.930 0.822 0.967 0.934 0.978 0.847 0.941 0.889
Yang et 26.05 24.11 28.54 34.77 33.49 32.33 27.99 33.92 28.16 28.45 29.78
al. [9] 0.868 0.764 0.841 0.927 0.826 0.968 0.938 0.978 0.852 0.944 0.891

Ours p/o 26.38 24.13 28.67 35.00 33.51 32.55 28.08 34.13 28.32 28.52 29.93
4-level 0.885 0.767 0.844 0.931 0.824 0.969 0.937 0.978 0.855 0.943 0.893

Ours m/o 26.74 24.31 28.83 35.52 33.52 32.66 28.19 34.36 28.64 28.67 30.14
4-level 0.900 0.776 0.847 0.936 0.823 0.969 0.939 0.979 0.863 0.943 0.898
He et 27.04 24.45 29.04 35.75 33.59 32.76 28.30 34.53 28.65 29.03 30.31

al. [23] 0.903 0.782 0.853 0.936 0.829 0.970 0.941 0.979 0.864 0.945 0.900

In each cell 2 results are reported: Top – image PSNR [dB], Bottom – SSIM index. The methods are organized
according to their average image PSNR (from the worse to the best). Note that BP stands for back-projection, p/o
stands for partial overlaps, and m/o for maximal overlaps. PSNR/SSIM results that are less than 0.2[dB]/0.003
(respectively) away from the best result for each image are highlighted.

our single-level scheme leads to superior or comparable performance with respect to previous methods based on a

LHR dictionary pair with some sparsity invariance assumption [9], [10], [15], [23]. When performing the scale-up

gradually via the suggested multi-level scheme we achieve an average gain of 0.25[dB] with respect to the single-

level scheme. Exploiting maximal overlapping patches for image reconstruction in each of these levels leads to an

additional average gain of 0.1[dB] for q = 2 and 0.2[dB] for q = 3. When including the post-processing stage,

our best method outperforms Yang et al. [9] (for q = 3) by an average gain of 0.36[dB] and Zeyde et al. [10]

by 0.45dB. Our best method achieves comparable performance to Yang et al. [15] (for q = 2) and it is slightly

inferior to He et al. [23] by an average loss of 0.17[dB], at a lower computational cost – it reduces the run time

by a factor of 5.4 compared to [15] and by 10.6-49.4 compared to [23] (for q = 2 and q = 3 respectively).

Figures 5-6 demonstrate that our multi-level scheme achieves results that are visually more pleasing compared

to Zeyde et al. [10], Yang et al. [9] and the suggested single-level scheme. Specifically, we obtain sharper edges –

see for example the diagonal lines at the background of the image ‘Foreman’ (Figure 5) and the stripes at the hat

of the image ‘Lena’ (Figure 6). When comparing our best visual result with that of He et al. [23], we can see that

we obtain sharper edges, but this comes at the price of having more artifacts due to larger prediction errors at the

vicinity of some edges.
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Figure 5. Single image SR – visual results for the second scenario with part of the image ‘Foreman’. Top (from left to right): reconstructed
HR image by bicubic interpolation, Zeyde et al. [10], Yang et al. [9] and our single-level scheme. Bottom (from left to right): reconstructed
HR image by our 4-level scheme with partially and maximally overlapping patches, and by He et al. [23], and ground truth HR.

Figure 6. Single image SR – visual results for the second scenario with part of the image ‘Foreman’. Top (from left to right): reconstructed
HR image by bicubic interpolation, Zeyde et al. [10], Yang et al. [9] and our single-level scheme. Bottom (from left to right): reconstructed
HR image by our 4-level scheme with partially and maximally overlapping patches, and by He et al. [23], and ground truth HR.
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Turning to the third scenario, we compare our single and multi-level schemes to the method by Zeyde et al. [10],

where we re-learned the dictionary pair to allow for adequate behavior for this specific scenario. We also compare

to several methods by Dong et al. – ASDS-AR, ASDS-AR-NL [12] and NCSR [22]. All these three methods

utilize sparse representations over PCAs adapted to the given image; the two latter methods also exploit non-local

self-similarities between patches within the image to allow for better image recovery. The NCSR method leads to

state-of-the-art performance in this scenario. Table V compares the image reconstruction performance (image PSNR

and SSIM index) of the various methods for this scenario. We can see that our single-level scheme outperforms

Zeyde et al. [10] by an average gain of 0.23[dB], and the multi-level scheme with partial overlaps obtains an

additional average gain of 0.44[dB]. When exploiting maximal overlaps for image recovery we obtain a further

average improvement of 0.18[dB], leading to an overall average gain of 0.85[dB] with respect to Zeyde et al. [10].

We now focus on our best result – multi-level, maximally overlapping patches, which will be referred to as “our

approach” from this point on. Our approach is comparable in PSNR performance to ASDS-AR, while reducing the

run time by a factor of 14.8. However, it is still 0.26[dB] (on average) away from ASDS-AR-NL and 0.54[dB]

away from the state-of-the-art results of Dong et al. [22]. Note that our approach is much faster than the two leading

methods mentioned above – it reduces the run time by a factor of 16.8 compared to ASDS-AR-NL and by 24.8

compared to NCSR. We can conclude that our suggested approach leads to a reconstruction quality that is as good as

the leading method that does not exploit non-local self-similarities (ASDS-AR) and offers a desirable compromise

between low computational complexity and reconstruction quality, when comparing it to the state-of-the-art method

in this scenario (NCSR).

Figure 7 shows a visual comparison between the various methods for this scenario. We can see that the

reconstructed HR images obtained by our approach are of higher visual quality compared to Zeyde et al. [10] and

comparable to the one achieved by the ASDS-AR method. The NCSR method [22] offers yet another improvement

in reconstruction quality, enjoying the benefits of non-local self-similarities. Nevertheless, the visual quality of our

results is very pleasing – the reconstructed edges are sharp and there are few artifacts.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have suggested a statistical prediction model based on sparse representations of LR and HR

image patches for single image SR, which goes beyond the standard assumption of sparse representation invariance

over a low and high resolution dictionary pair. Inference with our model leads to a low-complexity scale-up scheme

that has the useful interpretation of a feedforward neural network. We have found it constructive to utilize a union

of prediction models and to perform the image scale-up gradually by a multi-level scheme. Our algorithm operates

locally on overlapping image patches and outperforms previous methods based on local predictions with sparse

representation invariance over a dictionary pair.
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Table V
SINGLE IMAGE SR, SCENARIO NUMBER 3 – NUMERICAL RESULTS

Image Butterfly Comic Flowers Foreman Girl Lena Man Pepper Starfish Zebra Avg.
Bicubic 22.41 22.10 25.92 31.05 31.65 29.16 26.04 30.92 25.52 24.71 26.95
interp. 0.771 0.622 0.749 0.887 0.767 0.924 0.865 0.952 0.754 0.852 0.814

Zeyde et 25.41 23.59 27.97 33.81 33.02 31.68 27.62 33.59 27.48 27.93 29.21
al. [10] 0.862 0.730 0.821 0.923 0.810 0.961 0.926 0.975 0.829 0.931 0.877
Ours p/o 25.58 23.91 28.32 33.86 33.21 32.15 27.80 33.49 27.90 28.19 29.44
1-level 0.858 0.751 0.834 0.924 0.820 0.967 0.934 0.977 0.843 0.940 0.885
Ours p/o 26.31 24.19 28.72 34.70 33.44 32.46 28.06 34.11 28.31 28.46 29.88
5-level 0.883 0.768 0.842 0.930 0.822 0.968 0.937 0.978 0.854 0.942 0.892

ASDS-AR 26.54 24.22 28.78 35.21 33.32 32.79 28.10 34.13 28.45 28.72 30.03
[12] 0.887 0.769 0.843 0.932 0.816 0.969 0.936 0.976 0.857 0.943 0.893

Ours m/o 26.73 24.26 28.81 35.24 33.42 32.54 28.16 34.23 28.56 28.65 30.06
5-level 0.897 0.772 0.845 0.934 0.821 0.969 0.938 0.979 0.860 0.942 0.896

ASDS-AR 27.17 24.51 29.04 35.27 33.45 32.99 28.30 34.39 29.02 29.09 30.32
-NL [12] 0.901 0.782 0.849 0.933 0.818 0.970 0.939 0.977 0.870 0.946 0.899

NCSR 28.15 24.53 29.18 35.94 33.60 33.11 28.39 34.60 29.12 29.39 30.60
[22] 0.917 0.785 0.855 0.940 0.827 0.973 0.941 0.977 0.872 0.948 0.904

In each cell 2 results are reported: Top – image PSNR [dB], Bottom – SSIM index. The methods are organized
according to their average image PSNR (from the worse to the best). Note that p/o stands for partial overlaps and
m/o for maximal overlaps. PSNR/SSIM results that are less than 0.2[dB]/0.003 (respectively) away from the best
result for each image are highlighted.

Figure 7. Single image SR – visual results for the third scenario with part of the image ‘Butterfly’. Top (from left to right): reconstructed
HR image by bicubic interpolation, Zeyde et al. [10] and ASDS-AR [12]. Bottom (from left to right): reconstructed HR image by our 5-level
scheme with maximally overlapping patches and NCSR [22], and ground truth HR.
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Neural networks have recently shown remarkable performance in image classification and object recognition

applications. This is mainly due to the concept of deep learning [32], [33]. However, a similar impact of neural

networks on image processing applications is yet to be seen. Recently, a neural network has been suggested for the

problem of image denoising [37], showing excellent performance, even though deep learning was not utilized there.

The desirable compromise between run time and recovery quality for our approach implies that neural networks

can be the right choice for treating very challenging image processing applications, such as single image SR, and

are not limited to denoising.

We believe that exploiting self-similarities within the image by incorporating a non-local term into our single

image SR scheme can further enhance performance. The proposed approach for training the network does not exploit

the full capabilities of current learning strategies in the machine learning community, and there is much room for

improvement in this aspect. One immediate step would be utilizing the suggested approach as an initialization for

the network and then performing a cross training of the different levels by standard back-propagation. Two other

directions left for future research are taking into account prediction errors and applying a post-processing stage to

further reduce ringing artifacts.
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