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This Talk Gives and Overview On ...

A decade of tremendous progress in the field of
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Agenda

— Theoretical &

— Denoising Numerical Foundations
by Sparse &
Redundant — Dictionary Learning
Representations & The K-SVD Algorithm
— — Back to Denoising ... and Beyond —
Summary & « handling stills and video denoising & inpainting,
Conclusions demosaicing, super-res., and compression

d Sparsity and Redundancy are valuable and
well-founded tools for modeling data.

d When used in image processing, they lead
to state-of-the-art results.
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Denoising by
Sparse & Redundant
Representations
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Noise Removal?

Our story begins with image denoising ...

Remove
Additive
Noise

d Important: (i) Practical application; (ii) A convenient platform
(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

d Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, ...
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Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to the
minimization of an energy function of the form

y : Given measurements Relation to

Prior or regularization
x : Unknown to be recovered | Measurements

A This is in-fact a Bayesian point of view, adopting the
Maximum-A-posteriori Probability (MAP) estimation.

O Clearly, the wisdom in such an approach is within the b hinh
choice of the prior — modeling the images of interest. Thomas Bayes

1702 - 1761
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The Evolution of G(x)

During the past several decades we have made all sort of guesses

about the prior G(x) for images:

G(x)=2lxl; G(x)=2|Lxl; G(x)="2[Lx],
“S:f Energy {F Smoothness ﬁi—: Is\:1aor::t-ll;
G(x)=2]al
6 =H7a, 6(x)= W), ) el
or X =Da
" Total- 7~ Wavelet f:; Sparse &

sf‘ Variation }% Sparsity ,'/&?’\\ Redundant
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Sparse Modeling of Signals

d Every column in

D (dictionary) is
M a prototype signal
) K . (atom).

Y\ 4

N O The vector a is
— . generated
randomly with few

.!
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H -
: )y (say L) non-zeros

A sparse X at random
& random — locations and with
vector random values.

(X Q We shall refer to
D this model as

Sparseland

A fixed Dictionary
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Sparseland Signals are Special

Interesting Model:

a Every generated
signal is built as a linear
combination of few atoms

M

H from our dictionary D
oL E . ad A general model: the
= |k Multipl obtained signals are a union
- ‘ H By ‘ of many low-dimensional
i y Gaussians.
E X — Dg a We have been

r
[ €

using this model in other
context for a while now
(wavelet, JPEG, ...).
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Sparse & Redundant Rep. Modeling?

yf(x) = o,

X = Do where ngg <L
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Sparse & Redundant Rep. Modeling?

£/l..\ ..D

Asp—» oursignal y _py where o is sparse
get a cc model is thus:

of the non-zeros l:i 0 ||9||E
in the vector N IY p<1
= [,
J—J.

-1 +1 X

X = Da where ngg <L
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Back to Our MAP Energy Function

Q We L, norm is effectively 1 2
counting the number of —H X —Y Hz

non-zeros in Q. 2

O The vector o is the ¥
representation ( /

of the desired

)
signal x. Dg_y —

d The core idea: while few (L out of K) atoms can be merged
to form the true signal, the noise cannot be fitted well. Thus,
we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.
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Wait! There are Some Issues

d Numerical Problems: How should we solve or approximate the
solution of the problem

: 2 :
min Do - YHZ s.t. ||gc||8 <L or min ngg s.t. Do - XH; < g?

or min 2Jaf; + [Pe-y[; ?

d Theoretical Problems: Is there a unique sparse representation? If
we are to approximate the solution somehow, how close will we get?

A Practical Problems: What dictionary D should we use, such that all
this leads to effective denoising? Will all this work in applications?
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

There are some issues:

1. Theoretical

2. How to approximate?
3. What about D?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad
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Theoretical &
Numerical Foundations
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Lets Start with the Noiseless Problem

Suppose we build a signal
by the relation

Do =X

We aim to find the signal’s
representation:

& = Arg Mi”HQ‘HS s.t. X

Do,

-
INEEENEN EEEEN T EEEEEEEEEETE
| . J

B Known

Why should we necessarily get Q = QL?

Uniqueness

It might happen that eventually HQHE < HQLHE .

Sparse and Redundant
Signal Representation,
and Its Role in

b R o TR .
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Matrix “Spark”

Definition:

Donoho & E. (*02)

Example:

o = O O
= O O O

* In tensor decomposition,
Kruskal defined something
similar already in 1989.
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Uniqueness Rule

Suppose this problem has been solved somehow

= ArgMin|a st. x =Da

Uniqueness If we found a representation that satisfy

A @)
l, <2

Then necessarily it is unique (the sparsest).

This result implies that if M generates

signals using “sparse enough” o, the
solution of the above will find it exactly.
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Our Goal

Here is a recipe for solving this problem:

[SetL=1~
There are (%)

such supports 1 -

o] BRGS

Done
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Lets Approximate

: 0 » 2 9
min uly st. [Pa-yf;, <

e\

Relaxation methods Greedy methods
Smooth the L, and use Build the solution
continuous optimization one non-zero

techniques element at a time
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Relaxation — The Basis Pursuit (BP)

Wl e

A This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (95)].

O The newly defined problem is convex (quad. programming).

A Very efficient solvers can be deployed:

= Interior point methods [Chen, Donoho, & Saunders ('95)] [Kim, Koh, Lustig, Boyd, &
D. Gorinevsky (" 07)].

= Sequential shrinkage for union of ortho-bases [Bruce et.al. (*98)].

= Jterative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole ('04)]
[E. (05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (*09)] ...
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Go Greedy: Matching Pursuit (MP)

algorithms that finds one atom EERERSSSSSSERSaREEEREEEE | | (L
Q Step 1: find the one atom that | SEEetESEmssmmsmcsmmmmeemaz) B
the signal.
O Next steps: given the previously

found atoms, find the next one to
the rsidual.

Q The algorithm stops when the error [Da - sz is below the destination
threshold.

d The Orthogonal MP (OMP) is an improved version that re-evaluates the
coefficients by Least-Squares after each round.
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Pursuit Algorithms

: 0 » 2 p)
min oy st Do XHz <g

There are various algorithms designed for approximating the

solution of

ot Why should
(OMP), L y S Ou ng
Pursuit [:

O Relaxatio th k ctor
& numer ey WO r u

O Hybrid Al lard-

Thresholaing [zuu/-toaay]|.
[
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The Mutual Coherence

Q Compute | ‘ b ]:

DT Assume

normalized T
columns D'D

d The Mutual Coherence n is the largest off-diagonal
entry in absolute value.

d The Mutual Coherence is a property of the dictionary
(just like the “Spark”). In fact, the following relation

can be shown:
c>1+—
L
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BP and MP Equivalence (No Noise)

& = Arg MianHg st. Xx=Du
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BP and MP Equivalence (No Noise)

Equivalence  Gjyen a signal x with a representation x = Do,
assuming that || <0.5(1+1/u), BP and MP

are guaranteed to find the sparsest solution.

d MP and BP are different in general (hard to say which is better).

[ The above result corresponds to the worst-case, and as such, it is
too pessimistic.

[ Average performance results are available too, showing much
better bounds [Donoho (" 04)] [Candes et.al. (‘'04)] [Tanner et.al. ('05)]
[E. (06)] [Tropp et.al. ("06)] ... [Candes et. al. ("09)].
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BP Stability for the Noisy Case
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BP Stability for the Noisy Case

» Given a signal y =Da + Vv with a representation
Stability 0
satisfying ||lal, <1/3p and a white Gaussian

noise v ~ N(0, o’ ), BP will show™ stability, i.e.,
|éep — ; < Const(2) - logK - o - o7

Ben-Haim, Eldar & E. (‘09) * With very high
_ _ probability
A For =0 we get a weaker version of the previous result.

A This result is the oracle’s error, multuiplied by C-logkK.

A Similar results exist for other pursuit algorithms (Dantzig Selector,
Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, ...)
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

The
Dictionary D
should be
found
somehow !!!

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen that there are
approximation methods to
find the sparsest solution,

and there are theoretical
results that guarantee their
success.
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Dictionary Learning:
The K-SVD Algorithm

Sparse and Redundant Representation Modeling
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What Should D Be?

& = arg mianug s.t. %H Do -y Hz < &2 X =D&

a

Our Assumption: Good-behaved Images
have a sparse representation

A

D should be chosen such that it sparsifies the representations

\ 4 )\ 4

One approach to choose D is from The approach we will take for
a known set of transforms building D is training it,
(Steerable wavelet, Curvelet, based on Learning from

Contourlets, Bandlets, Shearlets ...) Image Examples
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[Cotter et. al. ('03)]
[Gribonval et. al. ('04)]
[Aharon, E. & Bruckstein ('04)]

[Engan et. al. ('99)]
[Aharon, E. & Bruckstein ('05)]

[Field & Olshausen (*96)]
[Lewicki & Sejnowski ('00)]
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Measure of Quality for D
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K—Means For Clustering

Clustering: An extreme sparse representation

Initialize
D

i

Sparse Coding

Nearest Neighbor T

] | X
Dictionary
E Update

Column-by-Column by
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The K=SVD Algorithm — General

[Aharon, E. & Bruckstein ('04,'05)]

Initialize
D

D

i

Sparse Coding

Use Matching Pursuit T

] | X
Dictionary
E Update

Column-by-Column by

. | Sparse and Redundant Representation Modeling
¥ of Signals — Theory and Applications
By: Michael Elad

34



K=SVD: Sparse Coding Stage

Min ZHDJ —JH st V], JH <L

Min HDgc—xjuz st. Joff <L

SOIVQd by lllllllllllllllllllllllllllllllllllllllll
A Pursuit Algorithm
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K=SVD: Dictionary Update Stage

We should solve:

Min OL dk —E
d ok
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We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kth column,
and seek both d, and
the kt" column in A to

better fit the residual!

36



K=SVD: Dictionary Update Stage

We should solve:

Min
Elkl

\
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We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kth column,
and seek both d, and
the kt" column in A to

better fit the residual!

37



To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Will it all
work in
applications?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen approximation
methods that find the
sparsest solution, and
theoretical results that

guarantee their success. We

also saw a way to learn D

38



Back to Denoising ...
and Beyond —
Combining it All

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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From Local to Global Treatment

[ The K-SVD algorithm is reasonable for low- ) K .
dimension signals (N in the range 10-400). $
As N grows, the complexity and the memory
requirements of the K-SVD become N D
prohibitive.

d So, how should large images be handled?
a Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps.

A 1 5
X = Arngn —x-y
Z,{gij }U 2 H —HZ

Our prior
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What Data to Train On?

Option 1:
d Use a database of images,

d We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:
d Use the corrupted image itself !

d Simply sweep through all patches of size
N-by-N (overlapping blocks),

A Image of size 10002 pixels == ~ 106
examples to use — more than enough.

O This works much better!

Sparse and Redundant Representation Modeling
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K-SVD Image Denoising

x=y and D known x and a;; known D and a;; known

: 4 4 : 4
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Image Denoising (Gray) (k. & anaron (06)]
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Image Denoising (Gray) (k. & anaron (06)]

\ " Source

| B REEMBYEE it
2N\ P L Ry BT
Visg 35@“@5&5!315

\id O The results of this algorlthm compete favorably with #

the state-of-the-art. gE _
0 In a recent work that extended this algorithm to S
use joint sparse representation on the patches, the =™
best published denoising performance are obtained %.&!q
[Malral Bach, Ponce, Sapiro & Zisserman (‘09)]. T
Result 30.829dB LT

e SN W Rl

e (RN
(] o DT TBSBSNSI T |

- Noisy image The obtained dictionary after
s =20 10 iterations
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Denoising (Color) imvairal, e. & sapiro (08)1

d When turning to handle color images, the
main difficulty is in defining the relation
between the color layers — R, G, and B.

A The solution with the above algorithm is
simple — consider 3D patches or 8-by-8
with the 3 color layers, and the dictionary
will detect the proper relations.

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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DenOiSing (COlOr) [Mairal, E. & Sapiro (‘08)]

g L
AL YR

A
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Noisy (20.43dB)  Result (30.
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Denoising (Color) imvairal, e. & sapiro (08)1

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [Mcauley et. al. (06)]
which implements a learned MRF model (Field-of-Experts)

SR

Original Noisy (12.77dB)  Result (29.87dB)
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Video Denoising rrrotter & E. (09)]

Our experiments lead to state-of-the-art video
denoising results, giving ~0.5dB better results on

average compared to [Boades, Coll & Morel (05)] @and
comparable tO [Rusanovskyy, Dabov, & Egiazarian (‘06)]

3 ) A |/ : b, s o BT RFEETS £ y > &
- . S 2 A RN :

! B S . P 9, " “he ) ~ \ A8
S . .

0rigial - avoided (5,250l s Renised (PSNR=29.99)
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Low-Dosage Tomography (shiok, zibuievsky & E. ¢10)3

A In Computer-Tomography (CT) reconstruction, an
image is recovered from a set of its projections.

A In medicine, CT projections are obtained by X-ray,
and it typically requires a high dosage of radiation in
order to obtain a good quality reconstruction.

A A lower-dosage projection implies a stronger noise
(Poisson distributed) in data to work with.

A Armed with sparse and redundant representation
modeling, we can denoise the data and the final
reconstruction ... enabling CT with lower dosage.
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Low-Dosage Tomography (shiok, zibulevsky & E. ¢10)3

Original ' w

.—‘ ! f&"‘"{

FBP result with
high dosage

PSNR=24.63dB

Denoising of the
sinogram and post-
processing (another
denoising stage) of
the reconstruction

FBP result with low
dosage (one fifth)

PSNR=26.06dB
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Image Inpainting — The Basics

d Assume: the signal x has been created
by x=Dg, with very sparse a,.

d Missing values in x imply
missing rows in this linear
system.

d By removing these rows, we get

Do = X

d Now solve

Min[jaf, st. X =Da

Q If o, was sparse enough, it will be the solution of the
above problem! Thus, computing Da,, recovers x perfectly.

. | Sparse and Redundant Representation Modeling
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Side Note: Compressed-Sensing

A is leaning on the very same principal, leading
to alternative sampling theorems.

0 Assume: the signal x has been created by x=Da, with very sparse q,.

O Multiply this set of equations by the matrix Q which reduces
the number of rows.

A The new, smaller, system of equations is ~
QDo = Qx == Do =X X

Q If a, was sparse enough, it will be the sparsest solution of the
new system, thus, computing Da,, recovers x perfectly.

d Compressed sensing focuses on conditions for this to happen,
guaranteeing such recovery.
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Inpainting (mairal, E. & sapiro (08))

Our experiments lead to state-of-the-art inpainting results.

Original 80% missing Reéult
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Inpainting (mairal, E. & sapiro (08))

Our experiments lead to state-of-the-art inpainting results.

AL 0

Origi'h_aflw 800/; missing Result

Sparse and Redundant Representation Modeling 54
of Signals — Theory and Applications
By: Michael Elad



Inpainting (vairal, £. & sapiro (08))

Our experiments lead to state-of-the-art inpainting results.

" tl_i)l( rg"" g
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Inpainting (mairal, E. & sapiro (08))

The same can be done for video, very much like the
denoising treatment: (i) 3D patches, (ii) no need to
compute the dictionary from scratch for each frame, and
iii) no need for explicit motion estimation

Original 80% missing
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Demosaicing (mairal, E. & sapiro (08)]

ur erlments lead to state-o the art de

e
Q1o 5 SRR HRE mpag e e
color peI’ Fg‘% ?ﬁ%@%f?g?cﬁang &ehan (06)]

mterpolated
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Image Compression (et and E. (08))

d The problem: Compressing photo-ID images.

d General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

d By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

d For these techniques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

A In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

d Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. ('05)].
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Image Compression

Detect main features and warp
the images to a common
reference (20 parameters)

¥

Divide the image into disjoint
15-by-15 patches. For each
compute and

v

Per each patch find the
operating parameters (number
of atoms L, quantization Q)

v

Warp, remove the mean from
each patch, sparse code using L
atoms, apply Q, and dewarp

. | Sparse and Redundant Representation Modeling
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Training set (2500 images)
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Deblocking the Results (st and e (- 09);

<
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Su PEr- Resolution [Zeyde, Protter, & E. (*11)]

A Given a low-resolution image, we desire to enlarge it
while producing a sharp looking result. This problem is
referred to as “Single-Image Super-Resolution”.

[ Image scale-up using bicubic interpolation is far from
being satisfactory for this task.

A Recently, a sparse and redundant representation
technique was proposed [Yang, Wright, Huang, and Ma ('08)]
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images.

[ We extended and improved their algorithms and
results.
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Super-Resolution — Results (1)

This book is about convezr optimization, a special class of mathematical optimiza

tion problems, which includes least-squares and linear programming problems. I
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.
While the mathematics of convex optimization has been studied for about &
century, several related recent developments have stimulated new interest in the
The first is the recognition that interior-point methods, developed in the
s to solve linear programming problems, can be used to solve convex optimiza
tion problems as well. These new methods allow us to solve certain new classe:
of convex optimization problems, such as semidefinite programs and second-orde

cone programs, almost as easily as linear programs. The tralnlng Image:

The second development is the discovery that convex optimization problems 717)( 717 - I
(beyond least-squares and linear p ums) are more prevalent in practice thar plxe S[
was previously thought. Since 1990 many ications have been di red 11

areas such as automatic control systems, estimation and signal pl‘()(‘(.. xlé. com prOVIdIng a Set Of

munications and networks, electronic circuit design, data analysis and modeling 54 289 t =
statistics, and finance. Convex optimization has also found wide application in com / ra INi ng
binatorial optimization and global optimization, where it is used to find bounds or t h .

the optimal value, as well as approximate solutions. We believe that many othe: pa C -paIrS-

applications of convex optimization are still waiting to be discovered.

There are great advantages to recognizing or formulating a problem as a conves
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other speci
methods for convex optimi On. ese solution methods are reliable enough to he
embedded in a computer-aided design or analysis tool, or even a real-time reactive

or automatic control system. There are also theoretical or conceptual advantage:
of formulating a problem as a convex optimization problem. The associated dua
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Super-Resolution — Results (1)
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Super-Resolution — Results (2)

Scaled-Up (factor 2:1) using the proposed algorithm,
PSNR=29.32dB (3.32dB improvement over bicubic)
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result

Sparse and Redundant Representation Modeling 68
of Signals — Theory and Applications
By: Michael Elad



Super-Resolution — Results (2)

Bicubic Interpolation SR result
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Yes! We have seen a group of
applications where this model is
showing very good results:
denoising of bw/color stills/video,
CT improvement, inpainting,
super-resolution, and
compression

Well, many
more things ...
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Summary and
Conclusion
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Today We Have Seen that ...

4 4

and the use of

are important ideas that

can be used in designing
better tools in

signal/image processing

In our work on we
cover theoretical,
numerical, and
applicative issues
related to this model
and its use in practice.

applications
a ..

We keep working on:

A Improving the model

d Improving the dictionaries
1 Demonstrating on other

Sparse and Redundant Representation Modeling
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Thank You

All this Work is Made Possible Due to

:
=
my teachers and mentors g ‘

A.M. Bruckstein D.L. Donoho

colleagues & friends collaborating with me

G. Sapiro J.L. Starck I. Yavneh M. Zibulevsky
and my students

M. Aharon O. Bryt J. Mairal M. Protter R. Rubinstein J. Shtok R. Giryes Z. Ben Ha|m J. Turek R. Zeyde
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If you are Interested ...

More on this topic (including the
slides, the papers, and Matlab
toolboxes) can be found in my
webpage:
http://www.cs.technion.ac.il/~elad

A book on these topics was
published in August 2010.
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