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Agenda

1. Introduction
Sparse & overcomplete representations, pursuit algorithms

2. Success of BP/MP as Forward Transforms
Uniqueness, equivalence of BP and MP

3. Success of BP/MP for Inverse Problems
Uniqueness, stability of BP and MP

4. Applications
Image separation and inpainting
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Problem Setting – Linear Algebra

Our dream – solve an linear system of                           
equations of the form

known

αΦ=x
L

N

• L>N,

• Ф is full rank, and 

• Columns are normalized
Φ

where
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Can We Solve This? 

Our assumption for today:

the sparsest possible solution is preferred

Generally NO
* Unless additional information is introduced.

*
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Great … But, 

• Why look at this problem at all? What is it good 
for? Why sparseness?

• Is now the problem well defined now? does it 
lead to a unique solution?

• How shall we numerically solve this problem? 

These and related         
questions will be discussed 

in today’s talk
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Addressing the First Question 

We will use the linear relation

as the core idea for modeling signals

αΦ=x
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Signals’ Origin in Sparse-Land

Random 
Signal 

Generator x

We shall assume that our signals of interest           
emerge from a random generator machine  M 

M 
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Signals’ Origin in Sparse-Land























=α
sparse

Instead of defining       over the 
signals directly, we define it over 
“their representations” α:

Draw the number of none-zeros (s)  
in α with probability P(s),

Draw the s locations from L 
independently,

Draw the weights in these s locations 
independently (Gaussian/Laplacian). 

The obtained vectors are very 
simple to generate or describe.

M 
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• Every generated signal is  
built as a linear combination 
of few columns (atoms) 
from our dictionary Φ

• The obtained signals are a 
special type mixture-of-
Gaussians (or Laplacians) –
every column participate as 
a principle direction in the 
construction of many 
Gaussians

Signals’ Origin in Sparse-Land

Multiply 
by Φ

αΦ=x





















=α
sparse

M 
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Why This Model?

= αx Φ
• For a square system with non-

singular Ф, there is no need for 
sparsity assumption. 

• Such systems are commonly 
used (DFT, DCT, wavelet, …). 

• Still, we are taught to prefer ‘sparse’ representations 
over such systems (N-term approximation, …). 

• We often use signal models defined via the transform 
coefficients, assumed to have a simple structure (e.g., 
independence). 
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Why This Model?

= αx Φ
• Going over-complete has 

been also considered in 
past work, in an attempt 
to strengthen the 
sparseness potential.

• Such approaches generally use L2-norm regularization 
to go from x to α – Method Of Frames (MOF).

• Bottom line: The model presented here is in line with 
these attempts, trying to address the desire for sparsity
directly, while assuming independent coefficients in the 
‘transform domain’.
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What’s to do With Such a Model?    

• Signal Transform: Given the signal, its sparsest 
(over-complete) representation α is its forward 
transform. Consider this for compression, feature 
extraction, analysis/synthesis of signals, …

• Signal Prior: in inverse problems seek a solution 
that has a sparse representation over a 
predetermined dictionary, and this way regularize 
the problem (just as TV, bilateral, Beltrami flow, 
wavelet, and other priors are used).
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Signal’s Transform   

Multiply 
by Φ

αΦ=x





















=α
sparse

NP-Hard !!

αΦ

α
α

=x.t.s

Min:P
00

α̂

αα =ˆ• Is            ? Under which conditions?

• Are there practical ways to get     ?

• How effective are those ways?  

α̂
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Practical Pursuit Algorithms

Multiply 
by Φ

αΦ=x





















=α
sparse αΦ

αε
α

=x.t.s

Min:)(P
00

NP-Hard

α̂

Basis Pursuit

BPα̂
αΦ

αε
α

=x.t.s

Min:)(P
11

[Chen, Donoho, Saunders (‘95)]

2
x αΦ−

Matching Pursuit

Greedily minimize
MPα̂

[Mallat & Zhang (‘93)]

These algorithms work well 

in many cases                      

(but not always)
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Signal Prior

• This way we see that sparse representations can serve 
in inverse problems (denoising is the simplest example).

• Assume that x is known to emerge from     , i.e.    
sparse such that 

M

αΦ=x

α∃

vxy +=• Suppose we observe               , a noisy version of x
with            .ε≤

2
v

• We denoise the signal    by solving

εαΦαε
α

≤−
200 y.t.sMin:)(P

y
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To summarize …

• Basis/Matching Pursuit algorithms propose alternative 
traceable method to compute the desired solution. 

• Given a dictionary Φ and a signal x, we want to find the 
sparsest “atom decomposition” of the signal by either

• Our focus today: 
– Why should this work? 
– Under what conditions could we claim success of BP/MP?
– What can we do with such results? 

or εαΦα
α

≤−
20

x.t.sMinαΦα
α

=x.t.sMin
0
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Due to the Time Limit …

• Average performance (probabilistic) bounds.

• How to train on data to obtain the best dictionary Ф.

• Relation to other fields (Machine Learning, ICA, …).

(and the speaker’s limited knowledge) we will NOT discuss today

• Proofs (and there are beautiful and painful        proofs).

• Numerical considerations in the pursuit algorithms.
pl• Exotic results (e.g.    -norm results, amalgam of ortho-

bases, uncertainty principles).
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Agenda

1. Introduction
Sparse & overcomplete representations, pursuit algorithms

2. Success of BP/MP as Forward Transforms
Uniqueness, equivalence of BP and MP

3. Success of BP/MP for Inverse Problems
Uniqueness, stability of BP and MP

4. Applications
Image separation and inpainting
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Problem Setting

L

N

Every column 
is normalized 
to have an l2
unit normΦThe Dictionary:

Our dream - Solve:

known

αΦα
α

=x.t.sMin:P
00
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Uniqueness – Matrix “Spark”

Definition  : Given a matrix Φ, σ=Spark{Φ} is the smallest 
number of columns from Φ that are linearly dependent. 

*

* Kruskal rank (1977) is defined the same – used for decomposition of tensors (extension         
of the SVD). 

• Generally: 2 ≤ σ=Spark{Φ} ≤ Rank{Φ}+1.

σ≥
0

v• By definition, if Φv=0 then            . 

Properties

• For any pair of representations of x we have

( ) σγγγγΦγΦγΦ ≥−⇒=−⇒==
0212121

0x
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0201
γ+γ≤σ

Uncertainty rule: Any two different representations of the same 
x cannot be jointly too sparse – the bound 
depends on the properties of the dictionary.

Uniqueness Rule – 1

Surprising result! In general optimization tasks, the best we can 
do is detect and guarantee local minimum.

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).
02

γ>
σ

Result 1

Donoho & E (‘02) 

Gribonval & Nielsen (‘03)

Malioutov et.al. (’04)
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Evaluating the “Spark”

.
M
1

1 +≥σ

• We can show (based on Gerśgorin disks theorem) 
that a lower-bound on the spark is obtained by

{ } 1MaxM0
j

H
kjk,Lj,k1

≤=<
≠≤≤

φφ

Lower bound obtained by Thomas Strohmer (2003).

≤
+

−
)1L(N

NL

• Non-tight lower bound – too pessimistic! (Example, 
for [I,FN] the lower bound is           instead of        ).N1 + N2

• Define  the “Mutual Incoherence” as
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Uniqueness Rule – 2

0201M
1

1 γ+γ≤σ≤+

This is a direct extension of the previous uncertainly 
result with the Spark, and the use of the bound on it.

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

0

1 1
1

2 2 M
σ  ≥ + > γ 

 

Result 2

Donoho & E (‘02) 

Gribonval & Nielsen (‘03)

Malioutov et.al. (’04)
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Uniqueness Implication

.x.t.sMin:P
00 αΦα

α
=

• We are interested in solving

α̂
• The uniqueness theorem tells us that a simple test on     

could tell us if it is the solution of P0. 

• However: 
If the test is negative, it says nothing.
This does not help in solving P0.
This does not explain why BP/MP may be a good replacements. 

α̂• Somehow we obtain a candidate solution   .
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BP Equivalence

In order for BP to succeed, we have to show that sparse 
enough solutions are the smallest also in    -norm. Using 
duality in linear programming one can show the 
following:

1l

Given a signal x with a representation           ,

Assuming that                        , P1 (BP) is 

Guaranteed to find the sparsest solution  . 

γΦ=x

( )M115.0
0

+<γ
Donoho & E (‘02) 

Gribonval & Nielsen (‘03)
Malioutov et.al. (’04)

Result 4

* Is it a tight result? What is the role of “Spark” in dictating Equivalence?  

*
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MP Equivalence

As it turns out, the analysis of the MP is even simpler ! 
After the results on the BP were presented, both Tropp
and Temlyakov shown the following:

SAME RESULTS !?
Are these algorithms really comparable?

Given a signal x with a representation           ,

Assuming that                        , MP is 

Guaranteed to find the sparsest solution. 

γΦ=x

( )M115.0
0

+<γ
Tropp (‘03) 

Temlyakov (‘03)

Result 5
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To Summarize so far …

Transforming signals 
from Sparse-Land can 

be done by seeking their 
original representation

Use pursuit
Algorithms

forward 
transform?

We explain 
(uniqueness and 

equivalence) – give 
bounds on 

performance

Why works so 
well?

Implications?
(a) Design of dictionaries via (M,σ),
(b) Test of solution for optimality,

(c) Use in applications as a

forward transform.
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Agenda

1. Introduction
Sparse & overcomplete representations, pursuit algorithms

2. Success of BP/MP as Forward Transforms
Uniqueness, equivalence of BP and MP

3. Success of BP/MP for Inverse Problems
Uniqueness, stability of BP and MP

4. Applications
Image separation and inpainting
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The Simplest Inverse Problem

Multiply 
by Φ

αΦ=x

+
ε≤

p
v

vy += αΦ






















=α
sparse εαΦ

αε
α

≤−
p

00

y.t.s

Min:)(P
NP-Hard

α̂

εαΦ >−
p

ywhile

Matching Pursuit

remove another 
atom

MPα̂

εαΦ

αε
α

≤−
p

11

y.t.s

Min:)(P
Basis Pursuit

BPα̂
Denoising:
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Questions We Should Ask

• Reconstruction of the signal:
What is the relation between this and other Bayesian    
alternative methods [e.g. TV, wavelet denoising, … ]?

What is the role of over-completeness and sparsity here? 

How about other, more general inverse problems? 

These are topics of our current research with P. Milanfar, D.L. 
Donoho, and R. Rubinstein.

• Reconstruction of the representation:
Why the denoising works with P0(ε)? 

Why should the pursuit algorithms succeed?

These questions are generalizations of the previous treatment.
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2D–Example

[ ]
εαφαφαα

αα
≤−−+

22211
p

2
p

1
,

y.t.sMin
21

εαφαφ ≤−−
22211s

0≤P<1

2α

1α 1α

2α

P=1

εαφαφ ≤−−
22211s εαφαφ ≤−−

22211s

1α

2α

P>1

Intuition Gained:
• Exact recovery is unlikely even for an 

exhaustive P0 solution.

• Sparse α can be recovered well both in 
terms of support and proximity for p≤1.
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Uniqueness? Generalizing Spark

Definition: Sparkη{Φ} is the smallest number of columns 
from Φ that give a smallest singular value ≤η. 

Properties: 

mon. non-increasing, { }ΦηSpark.2

{ }.ASparkv

1v&vA.4

0

22

η

η

≥⇒

=≤

{ } { } ,1SparkSpark,0For.1 0 ≥≥=≥ ΦΦση η

η1

σ
{ }ΦηSpark

1

{ } ( ) ,M11Spark.3 2ηΦη −+≥
M11 +
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εγΦεγΦ ≤−≤−
2221

y&y

Assume two feasible & different 
representations of y:

Generalized Uncertainty Rule

{ }
0201

Spark γγΦη +≤

221

2
γγ
εη

−
=

Result 6

Donoho, E, & Temlyakov (‘04)

for

1
γ

The further the 
candidate alternative 
from   , the denser is 

must be.
1
γ

d

{ }
01

d
202

Spark γΦγ ε −≥
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Uniqueness Rule

Implications: 1. This result becomes stronger if we are willing to   
consider substantially different representations. 

2. Put differently, if you found two very sparse 
approximate representations of the same signal, they 
must be close to each other. 

If we found a representation that satisfy 

then necessarily it is unique (the sparsest) 
among all representations that are AT 

LEAST 2ε/η away (in    sense) .

{ }Φγ ηSpark2
1

0
<

Result 7

Donoho, E, & Temlyakov (‘04)

2l
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Are the Pursuit Algorithms Stable? 

εαΦ

αε
α

≤−
p

11

y.t.s

Min:)(P























=α Multiply 
by Φ +

ε≤
2

v
Basis Pursuit

BPα̂

εαΦ >−
p

ywhile

Matching Pursuit

remove another 
atom

MPα̂αΦ=x
vy += αΦ

Stability:                                                      
Under which conditions on the original representations 
α, could we guarantee that              and                  
are small? 

2MPˆ αα −
2BPˆ αα −
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BP Stability

Observations:  1. ε=0 – weaker version of previous result

2. Surprising - the error is independent of the SNR, and

3. The result is useless for assessing denoising performance.

Given a signal                 with a representation

satisfying                            and bounded 

noise          , BP will give stability, i.e., 

( )M1125.0
0

+<α

Donoho, E, & Temlyakov (‘04),  Tropp (‘04),  Donoho & E (‘04)

Result 8
vy += αΦ

ε≤
2

v

)14(M1
4

ˆ
0

2
2
2BP +−

<−
α
εαα
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MP Stability

Observations:  1. ε=0 leads to the results shown already,

2. Here the error is dependent of the SNR, and

3. There are additional results on the sparsity pattern.

Given a signal                 with bounded       
noise          , and a sparse representation, 

MP will give stability, i.e., 
{ })k(minM

1
M
1

1
2
1

k
0 α

εα ⋅−






 +<

Donoho, E, & Temlyakov (‘04),  Tropp (‘04)

Result 9
vy += αΦ

ε≤
2

v

)1(M1
ˆ

0

2
2
2MP +−

<−
α
εαα
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To Summarize This Part …

BP/MP can serve 
for forward 
transform of 

Sparse-Land signals

Relax the equality 
constraint

What    
about noise?

We show 
uncertainty, 

uniqueness and 
stability results for 
the noisy setting

Is it still 
theoretically 

sound?

Where      
next?

• Denoising performance?

• Relation to other methods?

• More general inverse problems?

• Role of over-completeness?

• Average study? Candes & Romberg HW
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Agenda

1. Introduction
Sparse & overcomplete representations, pursuit algorithms

2. Success of BP/MP as Forward Transforms
Uniqueness, equivalence of BP and MP

3. Success of BP/MP for Inverse Problems
Uniqueness, stability of BP and MP

4. Applications
Image separation and inpainting
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Decomposition of Images

{ } N
jjY ℜ∈

Family of Texture images

{ } N
kkX ℜ∈

Family of Cartoon images

λ

µ
jk YXs

thatsuch
,,j,ks

µ+λ=

µλ∃∀

Our 
Assumption

Our Inverse
Problem

Given s, find its 
building parts    

and the    
mixture weights  

jk Y,X,, µλ
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Use of Sparsity

N

L

Φx = kX

kα

Nk

X.t.sArgMin

0k

k
xk0k

<<α∀⇒






 αΦ=α=α

α

Φx is chosen such that the 
representation of            
are sparse: 

{ } N
kkX ℜ∈

Nj

Y.t.sArgMin

0j

k
xj0j

→β∀⇒









βΦ=β=β
β

=Φx jY

j
βΦx is chosen such that the 

representation of            
are non-sparse: 

{ } N
jjY ℜ∈

We similarly construct Φy to sparsify Y’s while being 
inefficient in representing the X’s.  
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Decomposition via Sparsity

[ ]
ε

β
αΦΦ

βα
β
α

βα
≤












−+=













2

yx
00

,
s.t.sArgMinˆ

ˆ

Φy

β

Φx

α

s+

• The idea – if there is a sparse solution, it stands for the separation.

• This formulation removes noise as a by product of the separation.

≈

[ ]
ε

β
αΦΦ

βα
β
α

βα
≤












−+=













2

yx
11

,
s.t.sArgMinˆ

ˆ
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Theoretical Justification 

Several layers of study:

1. Uniqueness/stability as shown above apply directly but 
are ineffective in handling the realistic scenario where 
there are many non-zero coefficients.

2. Average performance analysis (Candes & Romberg HW) 
could remove this shortcoming.

3. Our numerical implementation is done on the “analysis 
domain” – Donoho’s results apply here. 

4. All is built on a model for images as being built as 
sparse combination of Фxα+Фyβ.
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Prior Art

• Coifman’s dream – The concept of combining 
transforms to represent efficiently different signal contents 
was advocated by R. Coifman already in the early 90’s.

• Compression – Compression algorithms were proposed 
by F. Meyer et. al. (2002) and Wakin et. al. (2002), based 
on separate transforms for cartoon and texture. 

• Variational Attempts – Modeling texture and cartoon 
and variational-based separation algorithms: E. Meyer 
(2002), Vese & Osher (2003), Aujol et. al. (2003,2004).

• Sketchability – a recent work by Guo, Zhu, and Wu 
(2003)  – MP and MRF modeling for sketch images.
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Results – Synthetic + Noise
Original image 
composed as a 
combination of 

texture, cartoon, 
and additive 

noise (Gaussian,   
) 

The separated 
texture (spanned 

by Global DCT 
functions)

The separated 
cartoon 
(spanned by 5 
layer Curvelets
functions+LPF)

The residual, 
being the 
identified noise

10=σ
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Original ‘Barbara’ image Separated texture using 
local overlapped DCT 

(32×32 blocks) 

Separated Cartoon using 
Curvelets (5 resolution 

layers)

Results on ‘Barbara’
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Results – ‘Barbara’ Zoomed in
Zoom in on the 
result shown in 

the previous 
slide  (the 

texture part) 

Zoom in on the 
results shown in 

the previous 
slide (the 

cartoon part)

The same part 
taken from 
Vese’s et. al.

The same part 
taken from 
Vese’s et. al. 

We should note that Vese-Osher
algorithm is much faster because 

of our use of curvelet    
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Inpainting

2

2yx11,
sArgMinˆ

ˆ
βΦ−αΦ−λ+β+α=








β
α

βα

For 
separation

What if some values in s are unknown 
(with known locations!!!) ?

The image                 will be the inpainted outcome. 
Interesting comparison to Bertalmio et.al. (’02)

βΦαΦ yx +

( ) 2

2yx11,
sWArgMinˆ

ˆ
βΦαΦλβα

β
α

βα
−−++=







 Noise removal 
Inpainting
Decomposition
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Results – Inpainting (1)

Source

Cartoon 
Part

Texture 
Part

Outcome
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Results – Inpainting (2)

Source

Cartoon 
Part

Texture 
Part

Outcome
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Summary

• Pursuit algorithms are successful as
Forward transform – we shed light on this behavior.

Regularization scheme in inverse problems – we have shown that 
the noiseless results extend nicely to treat this case as well.

• The dream: the over-completeness and sparsness ideas  
are highly effective, and should replace existing methods  
in signal representations and inverse-problems. 

• We would like to contribute to this change by 
Supplying clear(er) explanations about the BP/MP behavior, 

Improve the involved numerical tools, and then 

Deploy it to applications. 
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Future Work

• Many intriguing questions:
What dictionary to use? Relation to learning? SVM?

Improved bounds – average performance assessments? 

Relaxed notion of sparsity? When zero is really zero?

How to speed-up BP solver (accurate/approximate)?

Applications – Coding? Restoration? …

• More information (including these slides) is found in 
http://www.cs.technion.ac.il/~elad
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