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Problem Setting — Linear Algebra

Our dream — solve an linear system of

equations of the form X I

< L >

! Sparse representations for Signals
Theory and Applications

where

o L>N,

e @D s full rank, and

e Columns are normalized




Can We Solve This?

* Unless additional information is introduced.

Our assumption for today:

the sparsest possible solution is preferred




Great ... But,

o Why look at this problem at all? What is it good
for? Why sparseness?

e Is now the problem well defined now? does it
lead to a unigue solution?

e How shall we numerically solve this problem?

These and related
questions will be discussed
In today’s talk




Addressing the First Question

We will use the linear relation

X = boa

as the core idea for modeling signals




Signals’ Origin In

We shall assume that our signals of interest
emerge from a random generator machine M

Random
Signal
Generator
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Signals’ Origin in

sparse

Instead of defining M over the
signals directly, we define it over
“their "o

= Draw the number of none-zeros (s)
in o, with probability P(s),

= Draw the s locations from L
independently,

= Draw the weights in these s locations
independently (Gaussian/Laplacian).

The obtained vectors are very
simple to generate or describe.




Signals’ Origin in

e Every generated signal is

built as a linear combination
- - of few columns ( )

from our D
- Multiol e The obtained signals are a
Q== I;I lg)y special type mixture-of-
sREES y Gaussians (or Laplacians) —

X = da every column participate as
= = a principle direction in the
construction of many

Gaussians
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Why This Model?

e For a square system with non-
singular @, there is no need for

sparsity assumption. X — @

e Such systems are commonly
used (DFT, DCT, wavelet, ...).

1R

e Still, we are taught to prefer ‘sparse’ representations
over such systems (N-term approximation, ...).

o We often use signal models defined via the transform
coefficients, assumed to have a simple structure (e.g.,
independence).
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Why This Model?

e Going has
been also considered in g __ q)
past work, in an attempt — T
to strengthen the
sparseness potential.

|R

e Such approaches generally use L,-norm regularization
to go from x to a — Method Of Frames (MOF).

The model presented here is in line with
these attempts, trying to address the desire for sparsity
directly, while assuming independent coefficients in the
‘transform domain’.
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What's to do With Such a Model?

o Signal Transform: Given the signal, its sparsest
(over-complete) representation o is its forward
transform. Consider this for compression, feature
extraction, analysis/synthesis of signals, ...

e Signal Prior: in inverse problems seek a solution
that has a sparse representation over a
predetermined dictionary, and this way regularize
the problem (just as TV, bilateral, Beltrami flow,
wavelet, and other priors are used).
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Signal’s Transform

Po s Min [al,

_| . Multipl
o=" ) bygy— 4

sparse

| <
|R>

X = Da

e Is 0. = o ? Under which conditions?
» Are there practical ways to get @ ?

e How effective are those ways?
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Practical Pursuit Algorithms

The e
Q .a/gor. i, x= 0
_ s ‘n ’halth'hs S G
orse m o ny ¢as”’ork -l
htd alwafs e//
S) ;
N Omp
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Signal Prior

e Assume that x is known to emerge from M, i.e. Ja
sparse such that O
= Qo

* Suppose we observe Y = X +V, a noisy version of x
with [v], <e.

e We denoise the signal Y by solving
Po(e): MOEnH(_xHO s.t. HX - CDQHZ <eg

e This way we see that sparse representations can serve
in inverse problems (denoising is the simplest example).
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To summarize ...

e Given a dictionary ® and a signal x, we want to find the
sparsest “atom decomposition” of the signal by either

Minjaf, st. x=®a or Minjof; st |x-®af, <¢

e Basis/Matching Pursuit algorithms propose alternative
traceable method to compute the desired solution.

e Our focus today:
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Due to the Time Limit ...

we will NOT discuss today

(and there are beautiful and painful 6} proofs).
considerations in the pursuit algorithms.

results (e.g. /P-norm results, amalgam of ortho-
bases, uncertainty principles).

performance (probabilistic) bounds.
e How to on data to obtain the best dictionary o.

o Relation to other fields ( , )
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Problem Setting

< L »
The Dictionary: Every column
N is normalized
to have an |,
v unit norm

Our dream - Solve:

Po : Minjajl, S.t. X =®a
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Uniqueness — Matrix "Spark”

Definition ™

Properties
e Generally: 2 < o=Spark{®} < Rank{d}+1.
e By definition, if ®v=0 then |v|, >0 .
e For any pair of representations of x we have
X=0oy, =y, = (DQ1 _Xz): 0 = Hﬂ _XZHO =0

* Kruskal rank (1977) is defined the same — used for decomposition of tensors (extension
of the SVD).
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Uniqueness Rule -1

o < v, + |,

Uncertainty rule: Any two different representations of the same
X cannot be jointly too sparse — the bound
depends on the properties of the dictionary.

Result 1 If we found a representation that satisfy
O
> > s

Then necessarily it is unique (the sparsest).
I

Surprising result! In general optimization tasks, the best we can
do is detect and guarantee local minimum.
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Evaluating the "Spark”
e Define the “"Mutual Incoherence” as
H
NI {Qkﬁj‘ }S 1

1<k,j<L, k#]j
e We can show (based on Gersgorin disks theorem)
that a lower-bound on the spark is obtained by

c>1+—.
\!

e Non-tight lower bound — too pessimistic! (Example,
for [I,F,] the lower bound is 1 + +/N instead of 2N ).
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Uniqueness Rule — 2

1
14 v <o < H%HO b HXZHO

This is a direct extension of the previous uncertainly
result with the Spark, and the use of the bound on it.

If we found a representation that satisfy

g%”nﬁkuﬂo
\ J

Then necessarily it is unique (the sparsest). I

Result 2
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Uniqueness Implication

e We are interested in solving

Py : Min ‘(_XHO s.t. X=0®a.
o

e Somehow we obtain a candidate solution a.
e The uniqueness theorem tells us that a simple test on
a could tell us if it is the solution of P,,.

e However:
= If the test is negative, it says nothing.
= This does not help in solving P,,.
= This does not explain why BP/MP may be a good replacements.
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BP Equivalence

In order for BP to succeed, we have to show that sparse
enough solutions are the smallest also in /t-norm. Using
duality in linear programming one can show the
following:

Given a signal x with a representation X = @y,
Assuming that || <0.5(+1/M), P, (BP) is

Guaranteed to find the sparsest solution™.

Result 4

* Is it a tight result? What is the role of “"Spark” in dictating Equivalence?
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MP Equivalence

As it turns out, the analysis of the MP is even simpler !
After the results on the BP were presented, both Tropp
and Temlyakov shown the following:

Given a signal x with a representation x =@y,
Assuming that || <0.5(L+1/M), MP is

Guaranteed to find the sparsest solution.

Result 5

Are these algorithms really comparable?
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To Summarize so far ...

Transforming signals

UL nd can - pr. Use
be done by seeking their BTEFET Algorithms
original representation

Why works so
well?

We explain
( and
fd ) — give
Desi . as via (M
(a) Design o |c.t|onar|es v.|a (. ,0), i st bounds on
(b) Test of solution for optimality, performance

(c) Use in applications as a
forward transform.
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The Simplest Inverse Problem

Denoising: Basis Pursuit
. st. |y-od| <e
- NP-Hard
a=%| mmp MDY Pe): Min ol ;
sparse by © st Jy- (Dng ..
X = Da
e Matching Pursuit
y=®oa+V y , A
s = - while §1X - (Dgg.i‘p > € Oimp
remove another _
atom
! Sparse representations for Signals 30
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Questions We Should Ask

e Reconstruction of the signal:

= What is the relation between this and other Bayesian
alternative methods [e.g. TV, wavelet denoising, ... ]?

= What is the role of over-completeness and sparsity here?

= How about other, more general inverse problems?

e Reconstruction of the representation:
= Why the denoising works with Py(g)?

= Why should the pursuit algorithms succeed?
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2D—Example

[(!:I,iog] ‘al‘p + ‘az‘p S.t. Hy — 104 — ([)Z(XZHZ <eg

. ha, Tocz

Intuition Gained:

e Exact recovery is unlikely even for an
exhaustive P, solution.

e Sparse a can be recovered well both in
terms of support and proximity for p<1.
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Uniqueness? Generalizing Spark

Definition:

Spark, @
Properties: I park, (@)

1. For n >0, o = Sparkg {®{ > Spark, {®}>1,

O

2. Spark, {®} mon. non-increasing,
3. Spark, (@} > 1+ (L - n? )M,
4. [Avl, <m & v, =1

= |v|, > Spark, (Al LTS

1+1/M &
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Generalized Uncertainty Rule

Assume two feasible & different HXZH > Spark ., {®} - HZ 1”
representations of y: ° (F) °

o, se & fy-op], <

Result 6 Spark H'Y1H HVZH
2¢
for The further the
Hﬁ - XZHz = Candidate alternative
w] from?Y;, the denser is
must be.
1<y 7 Sparse representat|0ns for Signals 34




Uniqueness Rule

If we found a representation that satisfy
Itl, < 3 Spark, {©]

then necessarily it is unique (the sparsest)
among all representations that are AT
LEAST 2¢/n away (in ¢* sense) .

Result 7

Implications: 1. This result becomes stronger if we are willing to
consider substantially different representations.

2. Put differently, if you found two very sparse

approximate representations of the same signal, they
must be close to each other.
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Are the Pursuit Algorithms Stable?

_ Basis Pursuit
M, <& gl £.e): Min [

s.t. HX - (DQHP <eg

1R

‘ Multiply
by ©

Matching Pursuit

while HX - (D(_pr > g

remove another
atom

- y=0a+V

Stability:

Under which conditions on the original representations
a, could we guarantee that ||agp — a, and |dvp —af,
are small?
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BP Stability

Given a signal y = ®a + v with a representation
satisfying ||, < 0.25(1 +1/M) and bounded
noise |v|, <&, BP will give stability, i.e.,

& o (XHZ < 482
P2 T - M(4]of, +1)

Result 8

Observations: 1. e=0 — weaker version of previous result
2. Surprising - the error is independent of the SNR, and
3. The result is useless for assessing denoising performance.
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MP Stability

Given a signal y = ®a + v with bounded
noise |v|, < and a sparse representation,

ey <3 (143 )t
020 M) M mink{\a(k)\}
MP will give stability, i.e.,

Result 9

e — o < -
> 1-M(jof, +1)

Observations: 1. £=0 leads to the results shown already,
2. Here the error is dependent of the SNR, and
3. There are additional results on the sparsity pattern.
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To Summarize This Part ...

BP/MP can serve

for forward What Relax the equality

transform _Of about noise? constraint
Sparse-Land signals
Is it still

theoretically
sound?

We show

e Denoising performance?
e Relation to other methods?
e More general inverse problems?

uncertainty,
uniqueness and
stability results for
the noisy setting

 Role of over-completeness?
e Average study? Candes & Romberg HW
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Decomposition of Images

Family of Cartoon images

0]1]y Our Inverse
Assumption Problem

{Xk }k e R"

Given s, find its

vs 3K A building parts
such that =——p and the

S=AX +nY;  mixture weights

Y.i e R\
Wy < Moty X, Y

Family of Texture images
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Use of Sparsity

) L
A = =
|
[ — N — .
N 0 - Xk . S X]
E B
\ 4 . .
. 5 o . =P
®, is chosen such that the =& =k ®, is chosen such that the =J
: y : Ny B
representation of {X,} e®" & representation of 1Y;} e ®" =
are sparse: E are non-sparse: -
[ | . |
{Qk = ArgMinfa, st X, :cpxg} 0 {[_sj :Ar%MmHQHO st. Y, :cpxg} i
[o! rk 1 £ k [ |
[ | [ |
= W Ja, <N : = vifp) N :

We similarly construct @, to sparsify Y’s while being
inefficient in representing the X’s.
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Decomposition via Sparsity

a
HREGR ;- ‘Dv]H ..
gin e, + ], st. | | -

U
%

=

o |

e The idea — if there is a sparse solution, it stands for the separation.

e This formulation removes noise as a by product of the separation.

! Sparse representations for Signals 43
— Theory and Applications




Theoretical Justification

Several layers of study:

1. Unigueness/stability as shown above apply directly but
are ineffective in handling the realistic scenario where
there are many non-zero coefficients.

2. Average performance analysis (Candes & Romberg HW)
could remove this shortcoming.

3. Our numerical implementation is done on the “analysis
domain” — Donoho's results apply here.

4. All is built on a for images as being built as
sparse combination of D, 0+D .
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Prior Art

— The concept of combining
transforms to represent efficiently different signal contents
was advocated by already in the early 90’s.

— Compression algorithms were proposed
by and , based
on separate transforms for cartoon and texture.

— Modeling texture and cartoon
and variational-based separation algorithms:

4 4

— a recent work by
— MP and MRF modeling for sketch images.
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Results on '‘Barbara’

B =

Separated texture using Separated Cartoo using |
local overlapped DCT Curvelets (5 resolution
(32x32 blocks) layers)
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Results — '‘Barbara’ Zoomed in

Zoom in on the = ‘, I:,';-_r -'_'Jl,-"‘ll'.?"‘l:.:‘{qi_:? ' 'r A, B The same part
result shownin| = ALl taken from
the previous Vese's et. al.
slide (the

texture part)

Zoom in on the The same part
results shown in _ __ , taken from
the previous ' - " Vese’s et. al.
S"de (the : Sl u‘"".‘i
sl L i
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Inpainting

er |- i, + o 1l -0, 0,0

separation B

What if some values in s are unknown
(with known locations!!!)?

G . ’
M - ArgMin o, + B, +[Ws - @0~ @,

The image ®,0+® B Wi
Interesting comparison to

| be the inpainted outcome.
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Results — Inpainting (1)

Texture

e — o — — L —

— — — ——— - — PR — i .
= :
- e — ™ g

— - —— ., S gl . G

i el e -t | T

i p— g A

— | — ——

i —  —— i i
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Results — Inpainting (2)

nage inpainting [2, 10, 20, 38] is the proces
ing data in a designated region of a still or
lications range firot ¥ing ohjects fio
uching damaged pi 8 and photogrs
produce a revised image in which
i seamlessly merged inio the imag
etectable by a typical viewet: Tradit
een done by professional artistd? Fo
inpainting is vsed to revert deterio
tographs or scratches and dust spot:
ove elements {e.g., removal of star
an photographs, the infameous “air
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Summary

e Pursuit algorithms are successful as

— we shed light on this behavior.

— we have shown that
the noiseless results extend nicely to treat this case as well.

e The dream: the over-completeness and sparsness ideas
are highly effective, and should replace existing methods
in signal representations and inverse-problems.

e We would like to contribute to this change by

= Supplying clear(er) explanations about the BP/MP behavior,
= Improve the involved numerical tools, and then
= Deploy it to applications.
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Future Work

e Many intriguing questions:

= What dictionary to use? Relation to learning? SVM?

Improved bounds — average performance assessments?

Relaxed notion of sparsity? When zero is really zero?

How to speed-up BP solver (accurate/approximate)?

Applications — Coding? Restoration? ...

e More information (including these slides) is found in
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