A Sparse Solution of
{AX = bl X 2 0}
IS Necessarily Unique !!

Alfred M. Bruckstein, Michael Elad & Michael Zibulevsky

The Computer Science Department
The Technion — Israel Institute of technology
Haifa 32000, Israel

' s'.a}bo&m&v@& @.,m'




Overview

d We are given an underdetermined
linear system of equations Ax=b

(k>n) with a full-rank A. In this talk we shall briefly

Q There are infinitely many possible | €Xplain how this result is
solutions in the set S={x| Ax=b}. | obtained, and discuss some

Q What happens when we demand of its implications

positivity x=07? Surely we should
have S,={x| Ax=Db, x=0}C<S.

A Our result: For a specific type of matrices A, if a sparse enough solution
is found, we get that S, is a singleton (i.e. there is only one solution).

Q1In such a case, the regularized problem min f(x) s.t. Ax =b, x > 0
gets to the same solution, regardless of the choice of the regularization
f(x) (e.g., L, L;, L,, L, entropy, etc.).

x>07?




Preliminaries




Coherence Measures

Consider the Gram matrix G=ATA: |

Prior work on Ly-L, equivalence
relies on a mutual-coherence
measure defined by
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In our work we need a slightly different measure: p(A) = max ‘ i

u(A) = max ‘
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Note that this one-sided measure is weaker H 'HZ

(i.e. u(A)<p (A)), but necessary for our analysis.
Both behave like 1/+/n for random A with (0,1)-normal and i.i.d. entries.




The Null-Space of A

In words: a vector in the null-
N(A) — {8| A 8 — O} space of A cannot have
~ ~ arbitrarily large entries relative
to its (L,) length. The smaller

the coherence, the stronger this

It is relatively limit becomes

easy to show
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An Equivalence Theorem

Consider the following problem k

with a concave semi-monotonic min Z(qui‘) s.t. AXx=Db
increasing function ¢(z): X =1
“(P(Z)

A feasible solution X (i.e. AX=b)
to this problem is the unique
Then global optimum if it is
sparse enough:

=

Note: Similar (but somewhat different!) results appear elsewhere




The Main

Result




Limitations on A

[ So far we considered a general matrix A.
d From now on, we shall assume that A satisfies the condition:

The span of the rows
AecOf = {A‘ dh e m”, DTA: wT >0 ( in A intersects the
positive orthant.
( )( 1=

h! A w!

1 O* includes I

= All the positive matrices A,

= All matrices having at least one strictly positive (or negative) row.

Q Note: If A € O™ then so does the product P:A-Q for any invertible
matrix P and any diagonal and strictly positive matrix Q.




Canonization of Ax=b

Suppose that we found h such that hTAz WT > 0.

Thus, AX=Db bTA>_<=bTI_3 WTg(:Const.

Using the element-wise positive scale mapping z = diag(w)x = WX
we get a system of the form:

AW 1z -Dz=b

Implication: we got a linear system of equations for which we also
know that every solution for it must sum to Const.

If x>0, the additional requirement is equivalent to H;Hl = Const.
This brings us to the next result ...




The Main Result

Given a system of linear
equations Ax=b with A € O,
we consider the set of
non-negative solutions,

S, =X Ax=b & x>0f

Assume that a canonization / \ )_( — b
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Dz=b is performed by finding a A
suitable h and computing the If a sparse solution X € S is
diagonal positive matrix W: found such that

1.ATh=w>0 Then
2.W = diag(w)

3.0 =AW z = Wx

x>07?

then S, is a singleton.




Sketch of the Proof

n Find h Canonize the system
A e O such that to become Dz=Db using
ATh=w>0 W = diag(w),D = AW,z = Wx

Non-negativity of the and ... any solution There is a one-to-one
solutions implies that of Dz=Db satisfies mapping between solutions
2], = Const 1'z=h"b=Const of Dz=b and Ax=b

We are given a sparse Consider Q,, the By Theorem 1, Z is
solution Z>0, satisfying optimization problem the unique global
2, <1/2tp Qi :min [z, st. Dz=b minimizer of Q,

Theset S, No other solution can
contains only Z give the same L, length




Some

Thoughts




How About Pre-Coherencing?

[ The above result is true to A or any variant of it that is obtained by
A'=PAQ (P invertible, Q diagonal and positive).

Q Thus, we better evaluate the coherence for a “better-conditioned”
matrix A (after canonization), with the smallest possible coherence:

Pl A

«

h

.

@ One trivial option is P that nulls the mean of the columns.

[ Better choices of P and Q can be found numerically

x>07?




Solve {Ax =b, x >0}

If we are interested in a sparse result (which apparently may be
unique), we could:

d Trust the uniqueness and regularize in whatever method we want.
Q Solve an L,-regularized problem: min H5H1 st. AX=b & x>0
d Use a greedy algorithm (e.g. OMP):
= Find one atom at a time by minimizing the residual HAXJ- -b 5
= Positivity is enforced both in:
e Checking which atom to choose,
e The LS step after choosing an atom.

0 OMP is guaranteed to find the sparse result of {Ag =b, x> O}, if it sparse
enough




OMP and Pre-Coherencing?

O As opposed to the L, approach, pre-cohenercing helps the OMP and
improves its performance.

O Experiment:

s Regular OMP

= Random non-negative _{tj omP
matrix A of size 100x200,

Generate 40 random positive
solutions x with varying
cardinalities,

Check average performance.
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L, performs better BUT
takes much longer (~ 500/|x|, ).

OMP may be further improved o s 10 5202
. # OT aloms In the suppor
by better pre-coherencing.




Relation to Compressed Sensing?

d A Signal Model: b belongs to a signal family that have a (very)
sparse and non-negative representation over the dictionary A.




Relation to Compressed Sensing?

d A Signal Model: b belongs to a signal family that have a (very)
sparse and non-negative representation over the dictionary A.

d CS Measurement: Instead of measuring b we measure a projected
version of it Rb=d.
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Relation to Compressed Sensing?

d A Signal Model: b belongs to a signal family that have a (very)
sparse and non-negative representation over the dictionary A.

d CS Measurement: Instead of measuring b we measure a projected
version of it Rb=d.

[ CS Reconstruction: We seek the sparsest & non-negative solution
of the system RAx=d — the scenario describe in this work!!

d Our Result: We know that if the (non-negative) representation x
was sparse enough to begin with, ANY method that solves this

system necessarily finds it exactly.

A Little Bit of Bad News: We require too strong sparsity for this
claim to be true. Thus, further work is required to strengthen this

result.

A Non-Negative
> O? Sparse Solution to
— Ax=Db is Unique




Conclusions

d Non-negative sparse and redundant representation models are useful
in analysis of multi-spectral imaging, astronomical imaging, ...

A In our work we show that when a sparse representation exists, it may
be the only one possible.

[ This explains various regularization methods (entropy, L, and even L)
that were found to lead to a sparse outcome.

A Future work topics:
= Average performance (replacing the presented worst-case)?
= Influence of noise (approximation instead of representation)?
= Better pre-coherencing?

= Show applications?




