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Overview

bx=A
=n

kWe are given an underdetermined 
linear system of equations Ax=b
(k>n) with a full-rank A.

There are infinitely many possible 
solutions in the set S={x| Ax=b}. 

What happens when we demand 
positivity x≥0? Surely we should 
have S+={x| Ax=b, x≥0}   S.  

Our result: For a specific type of matrices A, if a sparse enough solution 
is found, we get that S+ is a singleton (i.e. there is only one solution).

In such a case, the regularized problem                         
gets to the same solution, regardless of the choice of the regularization         
f(x) (e.g., L0, L1, L2, L∞, entropy, etc.). 

( ) 0x,bx.t.sxfmin ≥=A

In this talk we shall briefly 
explain how this result is 

obtained, and discuss some    
of its implications 



A Non-Negative 
Sparse Solution to 
Ax=b is Unique

3/17?0x≥

Preliminaries
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Stage 1: Coherence Measures

Consider the Gram matrix G=ATA:

Prior work on L0-L1 equivalence                                                    
relies on a mutual-coherence                                                       
measure defined by                                      

(ai – the i-th column of A)

In our work we need a slightly different measure:               .

Note that this one-sided measure is weaker                                          
(i.e. µ(A)≤ρ (A)), but necessary for our analysis.

Both behave like         for random A with (0,1)-normal and i.i.d. entries.  
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Stage 2: The Null-Space of A

( ) { }0N =δδ= AA
It is relatively 
easy to show 

that

( )
( ) 11 t

1
δ⋅=δ⋅

+ρ
ρ

≤δ ∞ AA
A

In words: a vector in the null-
space of A cannot have 
arbitrarily large entries relative 
to its (L1) length. The smaller 
the coherence, the stronger this 
limit becomes.
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z

( )zϕ

Stage 3: An Equivalence Theorem

( )zϕ

Consider the following problem                                  
with a concave semi-monotonic 
increasing function       :

( ) bx.t.sxmin
k

1i
i

x
=∑ϕ

=
A

A feasible solution x (i.e. Ax=b) 
to this problem is the unique

global optimum if it is           
sparse enough: 

At2
1

x 0 <

Then

Note: Similar (but somewhat different!) results appear elsewhere [Donoho & Elad `03]               
[Gribonval & Nielsen `03, `04] [Escoda, Granai and Vandergheynst `04]. 
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The Main 
Result
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Stage 1: Limitations on A

So far we considered a general matrix A. 

From now on, we shall assume that A satisfies the condition:

The span of the rows                 
in A intersects the                     
positive orthant.

O+ includes 

All the positive matrices A,

All matrices having at least one strictly positive (or negative) row.

Note: If            then so does the product P·A·Q for any invertible  
matrix P and any diagonal and strictly positive matrix Q. 

{ }0wh,hO TTn >=ℜ∈∃=∈ + AAA

+∈OA

=
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Suppose that we found h such that                     .

Thus,          .

Using the element-wise positive scale mapping                          
we get a system of the form: 

Implication: we got a linear system of equations for which we also 
know that every solution for it must sum to Const. 

If x≥0, the additional requirement is equivalent to                  . 
This brings us to the next result …

0wh TT >=A

( ) xxwdiagz W==

Constz 1 =

Constz1&bzz T1 ===− DAW

Constxwbhxhbx TTT === AA

Stage 2: Canonization of Ax=b



A Non-Negative 
Sparse Solution to 
Ax=b is Unique

10/17?0x≥

Given a system of linear 
equations Ax=b with           , 
we consider the set of              
non-negative solutions, 

.

Assume that a canonization 
Dz=b is performed by finding a 
suitable h and computing the 
diagonal positive matrix W: 

{ }0x&bxxS ≥==+ A

Stage 3: The Main Result

+∈OA
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If a sparse solution             is 
found such that

then S+ is a singleton.

Then
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Sketch of the Proof

bz.t.szmin:Q 11 =D

+∈OA

Dt21z 0 <

Find h
such that

0whT >=A xz,),w(diag 1 WAWDW === −

Canonize the system                 
to become Dz=b using

Constbhz1 TT ==

and … any solution  
of  Dz=b satisfies

Constz 1 =

Non-negativity of the 
solutions implies that                 

There is a one-to-one 
mapping between solutions 

of Dz=b and Ax=b

By Theorem 1, z is 
the unique global 

minimizer of Q1

Consider Q1, the                   
optimization problem                  

We are given a sparse 
solution z≥0, satisfying                  

No other solution can 
give the same L1 length

The set S+
contains only z
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Some 
Thoughts
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How About Pre-Coherencing?  

The above result is true to A or any variant of it that is obtained by 
A’=PAQ (P invertible, Q diagonal and positive).

Thus, we better evaluate the coherence for a “better-conditioned”
matrix A (after canonization), with the smallest possible coherence: 

One trivial option is P that nulls the mean of the columns. 

Better choices of P and Q can be found numerically [Elad `07].  

AP
Qh
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Solve     { }0x,bx ≥=A

If we are interested in a sparse result (which apparently may be 
unique), we could:

Trust the uniqueness and regularize in whatever method we want.

Solve an L1-regularized problem:                             .

Use a greedy algorithm (e.g. OMP): 

Find one atom at a time by minimizing the residual              , 

Positivity is enforced both in:

• Checking which atom to choose,

• The LS step after choosing an atom.

OMP is guaranteed to find the sparse result of                  , if it sparse 
enough [Tropp `06], [Donoho, Elad, Temlyakov, `06]. 

0x&bx.t.sxmin 1 ≥=A

2j bx −A

{ }0x,bx ≥=A

SKIP?
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OMP and Pre-Coherencing?     

As opposed to the L1 approach, pre-cohenercing helps the OMP and 
improves its performance.

Experiment: 

Random non-negative                                                        
matrix A of size 100×200,

Generate 40 random positive                                     
solutions x with varying                                                   
cardinalities,

Check average performance.

L1 performs better BUT                                            
takes much longer (              ).

OMP may be further improved                                     
by better pre-coherencing.       

0x500~
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Relation to Compressed Sensing?     

0x,bx ≥=A

=n

k

A Signal Model: b belongs to a signal family that have a (very) 
sparse and non-negative representation over the dictionary A. 
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Relation to Compressed Sensing?     
A Signal Model: b belongs to a signal family that have a (very) 
sparse and non-negative representation over the dictionary A. 

CS Measurement: Instead of measuring b we measure a projected 
version of it Rb=d.  

0x,dbx ≥==RRA

= =



A Non-Negative 
Sparse Solution to 
Ax=b is Unique

18/17?0x≥

Relation to Compressed Sensing?     
A Signal Model: b belongs to a signal family that have a (very) 
sparse and non-negative representation over the dictionary A. 

CS Measurement: Instead of measuring b we measure a projected 
version of it Rb=d.  

CS Reconstruction: We seek the sparsest & non-negative solution 
of the system RAx=d – the scenario describe in this work!!  

Our Result: We know that if the (non-negative) representation x
was sparse enough to begin with, ANY method that solves this 
system necessarily finds it exactly. 

Little Bit of Bad News: We require too strong sparsity for this 
claim to be true. Thus, further work is required to strengthen this 
result. 
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Conclusions

Non-negative sparse and redundant representation models are useful  
in analysis of multi-spectral imaging, astronomical imaging, …

In our work we show that when a sparse representation exists, it may 
be the only one possible.

This explains various regularization methods (entropy, L2 and even L∞) 
that were found to lead to a sparse outcome. 

Future work topics: 

Average performance (replacing the presented worst-case)? 

Influence of noise (approximation instead of representation)?

Better pre-coherencing? 

Show applications? 


