A Sparse Solution of $\left\{ A\underline{x}=\underline{b},\ \underline{x}\geq 0\right\}$ is Necessarily Unique !!

Alfred M. Bruckstein, Michael Elad & Michael Zibulevsky

The Computer Science Department
The Technion – Israel Institute of technology
Haifa 32000, Israel

Overview

- ☐ We are given an underdetermined linear system of equations $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ (k>n) with a full-rank \mathbf{A} .
- ☐ There are infinitely many possible solutions in the set $S=\{\underline{x} \mid A\underline{x}=\underline{b}\}$.
- □ What happens when we demand positivity $\underline{x} \ge 0$? Surely we should have $S_+ = \{\underline{x} \mid A\underline{x} = \underline{b}, \underline{x} \ge 0\} \subseteq S$.

In this talk we shall briefly explain how this result is obtained, and discuss some of its implications

- \square Our result: For a specific type of matrices **A**, if a sparse enough solution is found, we get that S_+ is a singleton (i.e. there is only one solution).
- □ In such a case, the regularized problem $\min f(\underline{x})$ s.t. $\mathbf{A}\underline{x} = \underline{b}, \underline{x} \ge 0$ gets to the same solution, regardless of the choice of the regularization $f(\underline{x})$ (e.g., L_0 , L_1 , L_2 , L_∞ , entropy, etc.).

Preliminaries

Stage 1: Coherence Measures

- \Box Consider the Gram matrix $G = A^TA$:
- \square Prior work on L₀-L₁ equivalence relies on a mutual-coherence measure defined by

$$\mu(\mathbf{A}) = \max_{i \neq j} \frac{\left| \underline{a}_{i}^{T} \underline{a}_{j} \right|}{\left\| \underline{a}_{i} \right\|_{2} \left\| \underline{a}_{j} \right\|_{2}} = \max_{i \neq j} \frac{\left| \mathbf{G}_{ij} \right|}{\sqrt{\mathbf{G}_{ii} \mathbf{G}_{jj}}}$$

 $(\underline{a}_i - \text{the i-th column of } \mathbf{A})$

- \square In our work we need a slightly different measure: $\rho(\mathbf{A}) = \max_{\mathbf{A}} \mathbf{A}$
- $\rho(\mathbf{A}) = \max_{i \neq j} \frac{\left|\underline{a_i}^{\mathsf{I}} \underline{a_j}\right|}{\left\|\underline{a_i}\right\|_2^2} = \frac{\left|\mathbf{G_{ij}}\right|}{\left|\mathbf{G_{ii}}\right|}.$
- □ Note that this one-sided measure is weaker (i.e. $\mu(A) \le \rho(A)$), but necessary for our analysis.
- \square Both behave like $1/\sqrt{n}$ for random **A** with (0,1)-normal and i.i.d. entries.

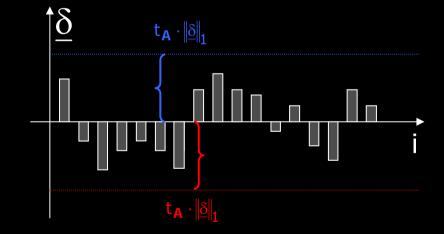
Stage 2: The Null-Space of A

$$N(A) = \{ \underline{\delta} \mid A \underline{\delta} = 0 \}$$

It is relatively easy to show that

$$\left\|\underline{\delta}\right\|_{\infty} \leq \frac{\rho(\mathbf{A})}{\rho(\mathbf{A}) + 1} \cdot \left\|\underline{\delta}\right\|_{1} = t_{\mathbf{A}} \cdot \left\|\underline{\delta}\right\|_{1}$$

In words: a vector in the null-space of \mathbf{A} cannot have arbitrarily large entries relative to its (L_1) length. The smaller the coherence, the stronger this limit becomes.



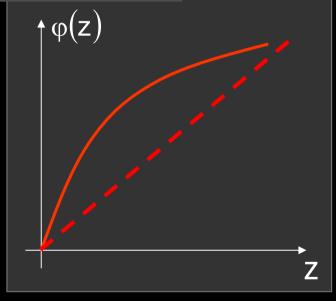
Stage 3: An Equivalence Theorem

Consider the following problem with a concave semi-monotonic increasing function $\phi(z)$: k $min \sum_{i=1}^{\infty} \phi$

$$\min_{\underline{x}} \sum_{i=1}^{k} \varphi(x_i|) \text{ s.t. } \mathbf{A}\underline{x} = \underline{b}$$

A feasible solution \hat{x} (i.e. $A\hat{x}=b$) to this problem is the unique global optimum if it is sparse enough:

$$\left\| \hat{\underline{x}} \right\|_0 < \frac{1}{2t_A}$$



Note: Similar (but somewhat different!) results appear elsewhere [Donoho & Elad `03] [Gribonval & Nielsen `03, `04] [Escoda, Granai and Vandergheynst `04].

The Main Result

Stage 1: Limitations on A

- ☐ So far we considered a general matrix A.
- From now on, we shall assume that **A** satisfies the condition:

$$\mathbf{A} \in O^+ = \left\{ \mathbf{A} \middle| \exists \underline{h} \in \mathfrak{R}^n, \, \underline{h}^T \mathbf{A} = \underline{w}^T > 0 \right\}$$
 The span of the rown in \mathbf{A} intersects the positive orthant

The span of the rows positive orthant.

$$\left[\begin{array}{c} \mathbf{h}^{\mathsf{T}} \end{array}\right] \left[\begin{array}{c} \mathbf{A} \end{array}\right] = \left[\begin{array}{c} \mathbf{w}^{\mathsf{T}} \end{array}\right]$$

- O+ includes
 - All the positive matrices A,
 - All matrices having at least one strictly positive (or negative) row.
- Note: If $A \in O^+$ then so does the product $P \cdot A \cdot Q$ for any invertible matrix P and any diagonal and strictly positive matrix Q.

Stage 2: Canonization of Ax = b

- \Box Suppose that we found \underline{h} such that $\underline{h}^T \mathbf{A} = \underline{w}^T > 0$.
- \Box Thus, $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}} \rightarrow \underline{\mathbf{h}}^T \mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{h}}^T \underline{\mathbf{b}} \rightarrow \underline{\mathbf{w}}^T \underline{\mathbf{x}} = \mathbf{Const.}$
- Using the element-wise positive scale mapping $\underline{z} = diag(\underline{w})\underline{x} = W\underline{x}$ we get a system of the form:

$$\mathbf{AW}^{-1}\underline{z} = \mathbf{D}\underline{z} = \underline{b}$$

- ☐ Implication: we got a linear system of equations for which we also know that every solution for it must sum to Const.
- ☐ If $x \ge 0$, the additional requirement is equivalent to $\|\underline{z}\|_1 = \text{Const.}$ This brings us to the next result ...

Stage 3: The Main Result

Given a system of linear equations $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ with $\mathbf{A} \in O^+$, we consider the set of non-negative solutions,

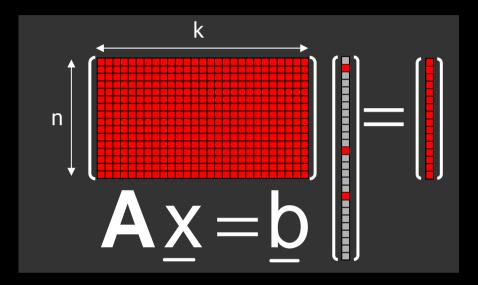
$$S_{+} = \left\{ x \middle| \mathbf{A}\underline{x} = \underline{b} \& \underline{x} \geq 0 \right\}$$

Assume that a canonization $D\underline{z}=\underline{b}$ is performed by finding a suitable \underline{h} and computing the diagonal positive matrix \mathbf{W} :

1.
$$A^T h = w > 0$$

$$2.\mathbf{W} = diag(\mathbf{w})$$

$$3.D = AW^{-1}, \underline{z} = W\underline{x}$$



If a sparse solution $\hat{\underline{x}} \in S_+$ is found such that

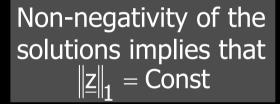
Then
$$\|\hat{\mathbf{x}}\|_0 < \frac{1}{2t_0}$$

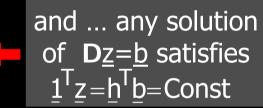
then S₊ is a singleton.

Sketch of the Proof

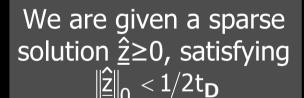
Find \underline{h} such that $\mathbf{A}^T \underline{h} = \underline{w} > 0$

Canonize the system to become $D\underline{z} = \underline{b}$ using $\mathbf{W} = \text{diag}(\underline{w}), \mathbf{D} = \mathbf{AW}^{-1}, \underline{z} = \mathbf{W}\underline{x}$





There is a one-to-one mapping between solutions of $D\underline{z} = \underline{b}$ and $A\underline{x} = \underline{b}$

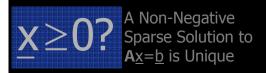


Consider Q_1 , the optimization problem $Q_1 : \min \|\underline{z}\|_1 \text{ s.t. } \mathbf{D}\underline{z} = \underline{b}$

By Theorem 1, $\frac{\hat{z}}{\hat{z}}$ is the unique global minimizer of Q_1

The set S_+ contains only \hat{z}

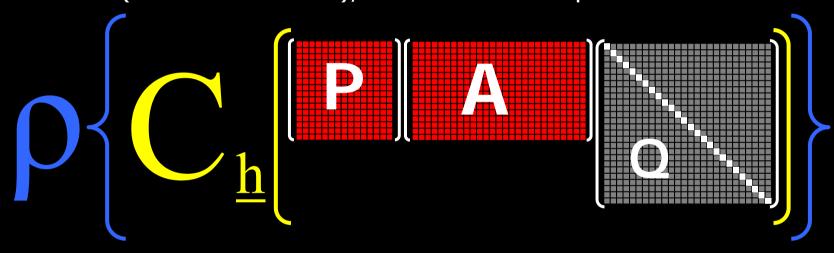
No other solution can give the same L₁ length



Some Thoughts

How About Pre-Coherencing?

- ☐ The above result is true to A or any variant of it that is obtained by A'=PAQ (P invertible, Q diagonal and positive).
- ☐ Thus, we better evaluate the coherence for a "better-conditioned" matrix A (after canonization), with the smallest possible coherence:



- ☐ One trivial option is P that nulls the mean of the columns.
- ☐ Better choices of P and O can be found numerically [Elad `07].

Solve $\{A\underline{x} = \underline{b}, \underline{x} \ge 0\}$

If we are interested in a sparse result (which apparently may be unique), we could:

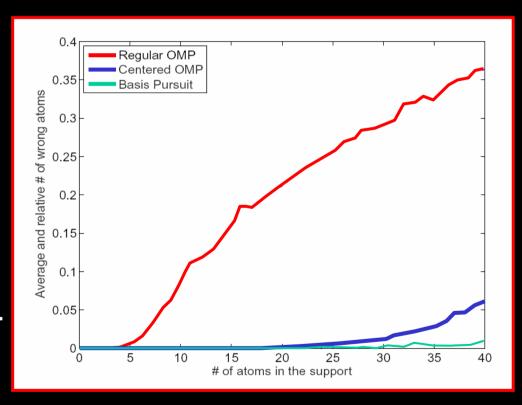
- ☐ Trust the uniqueness and regularize in whatever method we want.
- □ Solve an L₁-regularized problem: min $\|\underline{x}\|_1$ s.t. $\mathbf{A}\underline{x} = \underline{b} \ \& \ \underline{x} \ge 0$
- ☐ Use a greedy algorithm (e.g. OMP):
 - Find one atom at a time by minimizing the residual $\|\mathbf{A}\underline{\mathbf{x}}_{j} \underline{\mathbf{b}}\|_{2}$
 - Positivity is enforced both in:
 - Checking which atom to choose,
 - The LS step after choosing an atom.
- \square OMP is guaranteed to find the sparse result of $\{A\underline{x} = \underline{b}, \ \underline{x} \ge 0\}$, if it sparse enough [Tropp `06], [Donoho, Elad, Temlyakov, `06].

OMP and Pre-Coherencing?

 \square As opposed to the L₁ approach, pre-cohenercing helps the OMP and improves its performance.

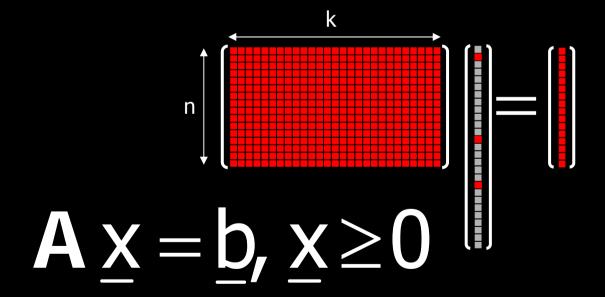
☐ Experiment:

- Random non-negative matrix A of size 100×200,
- Generate 40 random positive solutions <u>x</u> with varying cardinalities,
- Check average performance.
- L₁ performs better BUT takes much longer (~ $500/\|\underline{\mathbf{x}}\|_{0}$).
- OMP may be further improved by better pre-coherencing.



Relation to Compressed Sensing?

□ A Signal Model: <u>b</u> belongs to a signal family that have a (very) sparse and non-negative representation over the dictionary **A**.



Relation to Compressed Sensing?

- □ A Signal Model: <u>b</u> belongs to a signal family that have a (very) sparse and non-negative representation over the dictionary **A**.
- □ CS Measurement: Instead of measuring \underline{b} we measure a projected version of it $R\underline{b} = \underline{d}$.

$$RAx = Rb = d, x \ge 0$$

Relation to Compressed Sensing?

- □ A Signal Model: <u>b</u> belongs to a signal family that have a (very) sparse and non-negative representation over the dictionary **A**.
- □ CS Measurement: Instead of measuring \underline{b} we measure a projected version of it $\underline{Rb} = \underline{d}$.
- □ CS Reconstruction: We seek the sparsest & non-negative solution of the system $RAx = \underline{d}$ the scenario describe in this work!!
- \Box Our Result: We know that if the (non-negative) representation \underline{x} was sparse enough to begin with, ANY method that solves this system necessarily finds it exactly.
- □ Little Bit of Bad News: We require too strong sparsity for this claim to be true. Thus, further work is required to strengthen this result.

Conclusions

- □ Non-negative sparse and redundant representation models are useful in analysis of multi-spectral imaging, astronomical imaging, ...
- ☐ In our work we show that when a sparse representation exists, it may be the only one possible.
- ☐ This explains various regularization methods (entropy, L_2 and even L_∞) that were found to lead to a sparse outcome.
- ☐ Future work topics:
 - Average performance (replacing the presented worst-case)?
 - Influence of noise (approximation instead of representation)?
 - Better pre-coherencing?
 - Show applications?