Sparse Representations and the
Basis Pursuit Algorithm*

Michael Elad

The Computer Science Department —
Scientific Computing & Computational mathematics (SCCM) program
Stanford University

November 2002

* Joint work with: Alfred M. Bruckstein — CS, Technion
David L. Donoho — Statistics, Stanford
Peyman Milanfar — EE, UCSC




Collaborators

!
P
| - P
Freddy Bruckstein Dave Donoho Peyman Milanfar
Computer Science Statistics Department EE - University of
Department — Technion Stanford California Santa-Cruz

Sparse representation and 2
the Basis Pursuit Algorithm



General

e Basis Pursuit algorithm
= Effective for finding sparse over-complete representations,
= Effective for non-linear filtering of signals.

e Our work (in progress) — better understanding BP and
deploying it in signal/image processing and computer
vision applications.

o We believe that over-completeness has an important role!

e Today we discuss:

= Understanding the BP: why successful? conditions?
= Deploying the BP: through its relation to Bayesian (PDE) filtering.
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Transforms

o Define the forward and backward transforms by (assume
one-to-one mapping)

Forward: o =T{s}

Backward: s =T '{u}

s — Signal (in the signal space CN)
a — Representation (in the transform domain Ct, L>N)

e Transforms T in signal and image processing used for
coding, analysis, speed-up processing, feature
extraction, filtering, ...
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The Linear Transforms

e Special interest - linear
transforms (inverse) s = dq, ~ General transforms

Linear

< L >
\ _1s Square
Unitary

Dictionary

[S:

e In square linear transforms,
® is an N-by-N & non-singular.
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Lack Of Universality

e Many available square linear transforms — sinusoids,
wavelets, packets, ridgelets, curvelets, ...

e Successful transform — one which leads to sparse
representations.

e (Observation: Lack of universality - Different bases
good for different purposes.
=  Sound = harmonic music (Fourier) + click noise (Wavelet),
= Image = lines (Ridgelets) + points (Wavelets).

e Proposed solution: Over-complete dictionaries, and
possibly
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Example — Composed Signal
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Example — Desired Decomposition

40 80 160 200 240

DCT Coefficients Spike (Identity) Coefficients
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Matching Pursuit

e Given d unitary matrices {®,, 1<k<d}, define a
dictionary @ = [®;, ©,, ... D]

e Combined representation per a signal s by
S = da
e Non-unique solution a - Solve for maximal sparsity

Po: Min |of st s=da

e Hard to solve — a sub-optimal greedy sequential
solver:
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Example — Matching Pursuit
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Basis Pursuit (BP)

e [Facing the same problem, and the same
optimization task

Py: Min |of st s=da

e Hard to solve — replace the ¢/, norm by an /,:

P,: Min Hg”l st. s=>da

e Interesting observation: In many cases it
successfully finds the sparsest representation.
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Example — Basis Pursuit

150 200

Coefficients
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Why /, ? 2D-Example

Min] ‘ocl‘p + ‘ocz‘p s.t. s=d¢,0, + 0,0,
L517()

Iaz Iaz Iaz

O<P<1 P=1 P>1
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Example — Lines and Points*

Original o
image e

Wavelet part Ridgelets part
of the noisy | « ° = - °

: e _ of the image
image

* Experiments from
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Example — Galaxy SBS 0335-052%*

S 3:. (_jﬁgina'-p.:

PR p—— |

* Experiments from Starck, Donoho, and Candes - Astronomy & Astrophysics 2002.
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Non-Linear Filtering via BP

e Through the previous example — Basis Pursuit can be
used for non-linear filtering.

e From Transforming to Filtering

Minfal, st s=dga Min o, +2[s - @l
e What is the relation to alternative non-linear filtering

methods, such as PDE based methods (TV, anisotropic
diffusion ...), Wavelet denoising?

o What is the role of over-completeness in inverse
problems?
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(Our) Recent Work

of
between E-B bounds [Feuer
P, and P, under some _ _ Relaxing the & Nemirovski]
conditions on the sparsity of tightening the bounds from /,,
the representation, and for to/ p Norm

dictionaries built of

[Elad and Donoho]
[Donoho and Huo]

Generalized to the
case
[Elad and Donoho]

Inverse
Problems

any dictionary
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Before we dive ...

e Given a dictionary = and a signal s, we want to find
the sparse “atom decomposition” of the signal.

e Our goal is the solution of Min|al| st s=da

e Basis Pursuit alternative is to solve instead

Min|o st s=da

e Our focus for now: Why should this work?
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Agenda
2. Two Ortho-Bases

< N > <« N >
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Our Objective

Given a signal s, and its two representations using ¥ and
©®, what is the lower bound on the sparsity of both?

We will show that such rule immediately leads to a
practical result regarding the solution of the P, problem.
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Mutual Incoherence

Define M = Max (IEEGJ")

1<k,j<N i

e M — mutual incoherence between ¥ and 6.

e M plays an important role in the desired uncertainty rule.

e Properties
= Generally, 1/</N<M<1.
= For Fourier+Trivial (identity) matrices M = 1/JN.

= For random pairs of ortho-matrices M ~ 2,/log. N / JN.
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Uncertainty Rule

p) K
heorem 1 [t + [B], > 2., - 8], > =

Examples:
» ¥=0: M=1, leading to |, + HEHO > 2.
« w=I, ©=F, (DFT):M = 1/N, leading to o, +[B] >2VN.

* Donoho & Huo obtained a weaker bound [, +[B], = (L+M1)
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Example

e For N=1024, |s], +[F-s|, = 64.
e The signal satisfying this bound: Picket-fence
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Towards Uniqueness

e Given a unit norm signal s, assume we hold two
different representations for it using @

S = (DX1 ~ CDXZ

e Thus 0= CDQl _XZ): [LP’ ®]|:X1:| — ¥X; =-0X, =(
. h

X,

e Based on the uncertainty theorem we just got:

2 <y boly = b - ), <, +




Uniqueness Rule

2 < N
i <l * al,
In words: Any two different representations of the same
signal CANNOT BE JOINTLY TOO SPARSE.

If we found a representation that satisfy o
Theorem 2 1 > HyH
M~ o

Then necessarily it is unique (the sparsest).

* Donoho & Huo obtained a weaker bound |3, < 0.5(t+M?)

o
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Uniqueness Implication

e We are interested in solving
Py Min | st s=[¥ 0.

e Somehow we obtain a candidate solution 7.
e The uniqueness theorem tells us that a simple test on
Y (M-} < 1) could tell us if it is the solution of P,.

e However:
= If the test is negative, it says nothing.
= This does not help in solving P,.
= This does not explain why P, may be a good replacement.

Sparse representation and
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Equivalence - Goal

e We are going to solve the following problem

P2 Min | st s=[¥ 0.

e The questions we ask are:
= Will the P, solution coincide with the P, one?
= What are the conditions for such success?

e \We show that if indeed the P, solution is sparse
enough, then P, solver finds it exactly.
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Equivalence - Result

Given a signal s with a representation S = [‘P,@]X,

Assuming a sparsity on y such that (assume k,<k,)
Y= [ Yi Y2 -+ Ynor Vet VN2 -- YzN]

k; non-zeros K, non-zeros

If k, and k, satisfy 2M?k.k, + Mk, -1 <0
then P, will find the correct solution.

Theorem 3

J2-05 3k
M

A weaker requirement is given by k; +K, <

* Donoho & Huo obtained a weaker bound [ <0.5(t+M?)

o
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The Various Bounds

Signal dimension: N=1024,

Dictionary: ¥Y=I, ©=F, K+Ko= 0.9142/M
. 2M’KK7+MK,-1=0
Mutual incoherence M=1/32.
K + K2= 1 / M

Results
Uniqueness: 32 entries and below,

Equivalence:
¢ 16 entries and below (D-H),
e 29 entries and below (E-B).

the Basis Pursuit Algorithm
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Equivalence — Uniqueness Gap

o For uniqueness we got the requirement MO <s

J2-05

e For equivalence we got the requirement MO <2

e [s this gap due to careless bounding?

e Answer
: No, both bounds are indeed tight.
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Agenda

< L >
3. Arbitrary dictionary Every column
N is normalized
to have an |,
, unit norm
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Why General Dictionaries?

e Because in many situations

= We would like to use (e.q.
Wavelet, Fourier, and ridgelets);

= We would like to use (pseudo-polar FFT,
Gabor transform, ... ),

= In many situations we would like to use
as our building blocks (Laplacian pyramid, shift-invariant
Wavelet, ...).

e In the following analysis we assume ARBITRARY
DICTIONARY (frame). We show that BP is successful
over such dictionaries as well.
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Uniqueness - Basics

e Given a unit norm signal s, assume we hold two
different representations for it using @

§:(DX1 :(Db - (D&l_XZ):Q

e In the two-ortho case - simple splitting and use of the
uncertainty rule — here there is no such splitting !!

\4
Sparse representation and 34
the Basis Pursuit Algorithm

e The equation @v =
implies a linear combmatlon
of columns from @ that are
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the smallest such group?




Uniqueness — Matrix "Spark”

Definition.
Examples:
- A - I
1 01 10 01
01 -~ 01 01 - 00
Spark<|. . . .i.|-=N+1; Spark<|. . . .. |-=2
00 - 1i1] 00 - 1{0]
~ _/ - _/
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“Spark” versus "Rank”

The notion of spark is confusing — here is an attempt to
compare it to the notion of rank

Definition: Maximal # of columns
that are linearly independent

Computation: Sequential - Take the
first column, and add one column at

a time, performing Gram-Schmidt
orthogonalization. After L steps,
count the number of non-zero
vectors — This is the rank.

Definition: # of columns

that are linearly

Computation: -
sweep through 2L combinations

of columns to check linear
dependence - the smallest group
of linearly dependent vectors is
the Spark.

Generally: 2 < o=Spark{®} < Rank{®}+1.
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Uniqueness — Using the "Spark”

e Assume that we know the spark of ®, denoted by .

e For any pair of representations of s we have
§:(DX1 :(DX2 - CDQ1 _Xz):Q

e By the definition of the spark we know that if ®v=0
then |v|, > o. Thus

HXl N XZHO =2
e From here we obtain the relationship

ol bl il
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Uniqueness Rule -1

o < v, + .,

Any two different representations of the same signal
using an arbitrary dictionary
cannot be jointly sparse.

If we found a representation that satisfy

Theorem 4 % > HXHO

Then necessarily it is unique (the sparsest).
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Lower bound on the "Spark”

=2

(notice the resemblance to the previous definition of M).

e Define 0(?)<M= 1I\</Ikax{
k;t]

e We can show (based on Gersgorin disks theorem)
that a lower-bound on the spark is obtained by

GZ].-I—l.
\!

e Since the Gersgorin theorem is un-tight, this lower
bound on the Spark is too pessimistic.
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Uniqueness Rule — 2

L+ g <o <], +[r,
Any two different representations of the same signal
using an arbitrary dictionary
cannot be jointly sparse.

If we found a representation that satisfy
A
Theorem 5 321 1+l
2 2 M)
Then necessarily it is unique (the sparsest).

> 1,

* This is the same as Donoho and Huo’s bound! Have we lost tightness?

o

4
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“Spark” Upper bound

e The Spark can be found by solving

Is, Min lv|, st ®y=0 &, =1}L {XE
e k=1
J— 1 S
0" I:/ilknsL XKHO

e Use Basis Pursuit

{Qk: Min |y|, st ®y=0 &yk=1}
Y

L

k=1

v~ < Min

—Kllo 1<k<L

» Clearly 7| =[] . Thus & = Min

1<k<L

Sparse representation and
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Equivalence — The Result

Following the same path as shown before for the
equivalence theorem in the two-ortho case, and adopting
the new definition of M we obtain the following result:

Given a signal s with a representation s =®y,
Theorem 6 Assuming that || <0.5(1+1/M), P, (BP) is

Guaranteed to find the sparsest solution.

* This is the same as Donoho and Huo’s bound! Is it non-tight?

o
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To Summarize so far ...

Over-complete

linear transforms (SRS Basis Pursuit

— great for sparse |[SEFISATE Algorithm
representations

Why works so
well?

We give
explanations
deeieclll  (uniqueness and
Ayellle=ileiE - equivalence) true
for any dictionary

(a) Design of dictionaries,

(b) Test of solution for optimality,

(c) Applications of BP for
scrambling, signal separation,
inverse problems, ...
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Agenda

Yy =X+n

4. Basis Pursuit for Inverse Problems
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From Exact to Approximate BP

A. Min|a| st y=oo

5 Min o, st. [y~ al] <o

C.Min fal, +2]y - @qf




Wavelet Denoising

e Wavelet denoising by Donoho and Johnston (1994) —

Min |- y[f + W], = Min [W7a—y[; 2l

a=Wx

where W is an orthonormal matrix, and p=0 or 1.

e The result is very simple - hard (p=0) or soft (p=1)

thresholding.
Thresholding

Inverse
WEAE S )
WENEE
Transform e
Transform
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Shift Invariance Wavelet Denoising

e Major problem with Wavelet denoising — A shifted signal
results with a different output - "“shift-dependence”.

e Proposed solution (Donoho and Coifman, 1995): Apply
the Wavelet denoising for all shifted version of the W
matrix and average — results very promising.

» In our language Min 2l +H[W, DW, --- ,D'“W]g—xui .
\w,pw, -, 0w =w'[L,D, - , D[

e Can be applied in the Bayesian approach — variant of the
Bilateral filter.
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Basis Pursuit Denoising

e A denoising algorithm is proposed for non-square
dictionaries

Min oo - y[, +al,

e The solution now is not as simple as in the ortho-case,
but the results are far better due to over-completeness!

e Interesting questions:
= Which dictionary to choose?

= Relation to other classic non-linear denoising algorithms?

Sparse representation and 48
the Basis Pursuit Algorithm



BP Denoising & Total Variation

e Relation between BP and the Total-Variation denoising
algorithm ? Answer is given by

TV: Min Ix - XHi + ATV x}

e We have that TVix=|q], for x = Ha J

H is the Heaviside basis vectors. 1

Min [Ho: -y} + e,
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A General Bayesian Approach

e Qur distributions are

Pus(1/)=Com g Rl =Coem

d,

e Using the Maximum A-Posteriori Probability (MAP) we get

Py /x (Y/X) ( )

Kipp = ArgiVIax Py (g/y) ArgMax = Px(y)

= ArgMin Ix - XHi + HQTXHP
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Generalized Result

» Bayesian denoising formulation Min |x - y|; +AQTx|

e Using Q'x=0 = QQ"x=0Qau and thus* @ =(QQ")'Q

we obtain Min ngHp + H(D@ - XHi

e Thus, we have a general relationship between Q
(Bayesian Prior operator) and @ (dictionary).

* The case of non-full-rank Q can be dealt-with using sub-space projection as
a pre-stage, and using Economy SVD for pseudo-inverse.
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Example 1 — Total Variation

e Looking back at the TV approach we have (D — shift-right)
Min 2fx - y[, +|(- D)«

e Based on our result we have (I-D)x=a = ®=(I-D")*

1 \

e Indeed we get a "
Heaviside basis.  —
Moreover, finite .
support effects 0
and singularity are .
taken into account ¢

properly. L
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Example 2 — Bilateral Filter

e ONE recent denoising algorithm of great impact:
= Bilateral filter

4

= Digital TV ,
= Mean-Shift
e Recent work show that these filters are
essentially the same, being one Jacobi iteration
minimizing 1_D']
Min k“x—xHi + x
) I-D*
- - lip
e In we give speed-up and other extensions for

the above minimization — Implication: Speed-up the BP.
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Example 2 — Bilateral Dictionary

The dictionary @ has truncated (not all scales) multi-
scaled and shift-invariant (all locations) ‘derive-lets’ :

Sparse representation and
the Basis Pursuit Algorithm



Results

Original and noisy ( 62=900) images

the Basis Pursuit Algorithm
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TV filtering:
10 iterations 50 iterations
(MSE=146.3339) (MSE=131.5013)
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Wavelet Denoising (hard)
Using DB3 Using DB5
(MSE=154.1742) (MSE=161.086)
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Wavelet Denoising (soft)
Using DB3 Using DB5
(MSE=144.7436) (MSE=150.706)
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Filtering via the Bilateral (BP equivalent):
2 iterations with 11x11 Sub-gradient based 5x5
(MSE=89.2516) (MSE=93.4024)
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Agenda

5. Discussion
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Part 5

Discussion
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Summary

e Basis Pursuit is successful for

= Forward transform — we shed light on this behavior.

= Regularization scheme — we have shown relation to Bayesian non-
linear filtering, and demonstrated the bilateral filter speed-up.

e The dream: the over-completeness idea is highly effective,
and should replace existing methods in representation and
inverse-problems.

e We would like to contribute to this change by
= Supplying clear(er) explanations about the BP behavior,
= Improve the involved numerical tools, and then
= Deploy it to applications.
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Future Work

e What dictionary to use? Relation to learning?
e BP beyond the bounds — Can we say more?
e Relaxed notion of sparsity? When zero is really zero?

e How to speed-up BP solver (both accurate and
approximate)?

e Theory behind approximate BP?

e Applications — Demonstrating the concept for practical
problems beyond denoising: Coding? Restoration?
Signal separation? ...
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