Sparse Representations and the Basis Pursuit Algorithm*

Michael Elad

The Computer Science Department –
Scientific Computing & Computational mathematics (SCCM) program
Stanford University

November 2002

* Joint work with: Alfred M. Bruckstein – CS, Technion

David L. Donoho – Statistics, Stanford

Peyman Milanfar – EE, UCSC

Collaborators

Freddy Bruckstein

Computer Science

Department – Technion

Dave Donoho
Statistics Department
Stanford

EE - University of California Santa-Cruz

General

- Basis Pursuit algorithm [Chen, Donoho and Saunders, 1995]:
 - Effective for finding sparse over-complete representations,
 - Effective for non-linear filtering of signals.
- Our work (in progress) better understanding BP and deploying it in signal/image processing and computer vision applications.
- We believe that over-completeness has an important role!
- Today we discuss:
 - Understanding the BP: why successful? conditions?
 - Deploying the BP: through its relation to Bayesian (PDE) filtering.

Agenda

1. Introduction

Previous and current work

2. Two Ortho-Bases

Uncertainty → Uniqueness → Equivalence

3. Arbitrary dictionary

Uniqueness → Equivalence

4. Basis Pursuit for Inverse Problems

Basis Pursuit Denoising → Bayesian (PDE) methods

Understanding the BP

Using the BP for denoising

5. Discussion

Transforms

Define the forward and backward transforms by (assume one-to-one mapping)

Forward:
$$\underline{\alpha} = T\{\underline{s}\}$$

Backward:
$$\underline{s} = T^{-1}\{\underline{\alpha}\}$$

 \underline{s} – Signal (in the signal space C^N)

 $\underline{\alpha}$ – Representation (in the transform domain C^L, L \geq N)

 Transforms T in signal and image processing used for coding, analysis, speed-up processing, feature extraction, filtering, ...

The Linear Transforms

• Special interest - linear transforms (inverse) $\underline{s} = \Phi \underline{\alpha}$

In square linear transforms,

 Φ is an N-by-N & non-singular.

Lack Of Universality

- Many available square linear transforms sinusoids, wavelets, packets, ridgelets, curvelets, ...
- Successful transform one which leads to sparse representations.
- Observation: Lack of universality Different bases good for different purposes.
 - Sound = harmonic music (Fourier) + click noise (Wavelet),
 - Image = lines (Ridgelets) + points (Wavelets).
- Proposed solution: Over-complete dictionaries, and possibly combination of bases.

Example – Composed Signal

Example – Desired Decomposition

Matching Pursuit

- Given d unitary matrices $\{\Phi_k, 1 \le k \le d\}$, define a dictionary $\Phi = [\Phi_1, \Phi_2, \dots \Phi_d]$ [Mallat & Zhang (1993)].
- Combined representation per a signal <u>s</u> by

$$\underline{\mathbf{S}} = \Phi \underline{\alpha}$$

• Non-unique solution $\underline{\alpha}$ - Solve for maximal sparsity

$$P_0$$
: $\min_{\underline{\alpha}} \|\underline{\alpha}\|_0$ s.t. $\underline{s} = \Phi\underline{\alpha}$

 Hard to solve – a sub-optimal greedy sequential solver: "Matching Pursuit algorithm".

Example – Matching Pursuit

Basis Pursuit (BP)

 Facing the same problem, and the same optimization task [Chen, Donoho, Saunders (1995)]

$$P_0$$
: $\min_{\underline{\alpha}} \|\underline{\alpha}\|_0$ s.t. $\underline{s} = \Phi\underline{\alpha}$

• Hard to solve – replace the ℓ_0 norm by an ℓ_1 : "Basis Pursuit algorithm"

$$P_1$$
: $\min_{\alpha} \|\underline{\alpha}\|_1$ s.t. $\underline{s} = \Phi\underline{\alpha}$

• **Interesting observation**: In many cases it successfully finds the sparsest representation.

Example – Basis Pursuit

Why ℓ_1 ? 2D-Example

$$\underset{\left[\alpha_{1},\alpha_{2}\right]}{\mathsf{Min}} \left|\alpha_{1}\right|^{\mathsf{p}} + \left|\alpha_{2}\right|^{\mathsf{p}} \quad \mathsf{s.t.} \quad \mathsf{s} = \phi_{1}\alpha_{1} + \phi_{2}\alpha_{2}$$

Example – Lines and Points*

Example – Galaxy SBS 0335-052*

^{*} Experiments from Starck, Donoho, and Candes - Astronomy & Astrophysics 2002.

Non-Linear Filtering via BP

- Through the previous example Basis Pursuit can be used for non-linear filtering.
- From Transforming to Filtering

$$\operatorname{Min} \|\underline{\alpha}\|_{1} \quad \text{s.t.} \quad \underline{\mathbf{S}} = \underline{\Phi}\underline{\alpha} \qquad \qquad \operatorname{Min} \|\underline{\alpha}\|_{1} + \lambda \|\underline{\mathbf{S}} - \underline{\Phi}\underline{\alpha}\|_{2}^{2}$$

- What is the relation to alternative non-linear filtering methods, such as PDE based methods (TV, anisotropic diffusion ...), Wavelet denoising?
- What is the role of over-completeness in inverse problems?

(Our) Recent Work

Before we dive

- Given a dictionary and a signal s, we want to find the sparse "atom decomposition" of the signal.
- Our goal is the solution of $\min_{\alpha} \|\underline{\alpha}\|_{0}$ s.t. $\underline{s} = \Phi\underline{\alpha}$
- Basis Pursuit alternative is to solve instead

$$\underset{\alpha}{\mathsf{Min}} \|\underline{\alpha}\|_{1} \quad \mathsf{s.t.} \quad \underline{\mathsf{s}} = \underline{\Phi}\underline{\alpha}$$

Our focus for now: Why should this work?

Agenda

1. Introduction

Previous and current work

2. Two Ortho-Bases

 $Uncertainty \rightarrow Uniqueness \rightarrow Equivalence$

Our Objective

Given a signal \underline{s} , and its two representations using Ψ and Θ , what is the lower bound on the sparsity of both?

Our Objective is
$$\underline{\mathbf{S}} = \underline{\Psi}\underline{\alpha}$$

$$\underline{\mathbf{S}} = \underline{\Theta}\underline{\beta}$$

$$\underline{\|\underline{\alpha}\|_{0}} + \underline{\|\underline{\beta}\|_{0}} \geq \mathbf{Thr}(\underline{\Psi}, \underline{\Theta})$$

We will show that such rule immediately leads to a practical result regarding the solution of the P_0 problem.

Mutual Incoherence

Define
$$M = \underset{1 \le k, j \le N}{\text{Max}} \left(\underline{\psi}_{k}^{H} \underline{\theta}_{j} \right)$$

- M mutual incoherence between Ψ and Θ .
- M plays an important role in the desired uncertainty rule.
- Properties
 - Generally, $1/\sqrt{N} \le M \le 1$.
 - For Fourier+Trivial (identity) matrices $M = 1/\sqrt{N}$.
 - For random pairs of ortho-matrices $M \approx 2\sqrt{\log_e N}/\sqrt{N}$.

Uncertainty Rule

Theorem 1
$$\left\|\underline{\alpha}\right\|_0 + \left\|\underline{\beta}\right\|_0 \ge 2\sqrt{\left\|\underline{\alpha}\right\|_0 \cdot \left\|\underline{\beta}\right\|_0} \ge \frac{2}{M}$$

Examples:

- $\Psi = \Theta$: M=1, leading to $\|\underline{\alpha}\|_0 + \|\underline{\beta}\|_0 \ge 2$.
- Ψ =I, Θ =F_N (DFT): M = $1/\sqrt{N}$, leading to $\|\underline{\alpha}\|_0 + \|\underline{\beta}\|_0 \ge 2\sqrt{N}$.

* Donoho & Huo obtained a weaker bound $\|\underline{\alpha}\|_0 + \|\underline{\beta}\|_0 \ge (1 + M^{-1})$

Example

$$\Psi=I$$
, $\Theta=F_N$ (DFT) \longrightarrow $M=1/\sqrt{N}$ \longrightarrow $\|\underline{\alpha}\|_0+\|\underline{\beta}\|_0\geq 2\sqrt{N}$

- For N=1024, $\|\underline{s}\|_0 + \|\mathbf{F} \cdot \underline{s}\|_0 \ge 64$.
- The signal satisfying this bound: Picket-fence

Towards Uniqueness

• Given a unit norm signal \underline{s} , assume we hold two different representations for it using Φ

$$\underline{s} = \Phi \underline{\gamma}_1 = \Phi \underline{\gamma}_2$$

• Thus
$$\underline{0} = \Phi(\underline{\gamma}_1 - \underline{\gamma}_2) = [\Psi, \Theta][\underline{x}_1] \Rightarrow \underline{\Psi}\underline{x}_1 = -\Theta\underline{x}_2 = \underline{q}$$

Based on the uncertainty theorem we just got:

$$\frac{2}{\mathsf{M}} \leq \left\|\underline{\mathsf{x}}_1\right\|_0 + \left\|\underline{\mathsf{x}}_2\right\|_0 = \left\|\underline{\gamma}_1 - \underline{\gamma}_2\right\|_0 \leq \left\|\underline{\gamma}_1\right\|_0 + \left\|\underline{\gamma}_2\right\|_0$$

Uniqueness Rule

$$\frac{2}{M} \leq \left\| \underline{\gamma}_1 \right\|_0 + \left\| \underline{\gamma}_2 \right\|_0$$

In words: Any two different representations of the same signal CANNOT BE JOINTLY TOO SPARSE.

If we found a representation that satisfy

$$\frac{1}{\mathsf{M}} > \left\| \underline{\gamma} \right\|_{\mathsf{C}}$$

Then necessarily it is unique (the sparsest).

* Donoho & Huo obtained a weaker bound $\|\underline{\gamma}\|_0 < 0.5(1 + M^{-1})$

Uniqueness Implication

We are interested in solving

$$P_0: Min_{\alpha} \|\underline{\gamma}\|_{0} s.t. \underline{s} = [\Psi, \Theta]\underline{\gamma}.$$

- Somehow we obtain a candidate solution $\hat{\underline{\gamma}}$.
- The uniqueness theorem tells us that a simple test on $\frac{\hat{\gamma}}{2}$ (M $\cdot \|\hat{\gamma}\|_{0} < 1$) could tell us if it is the solution of P₀.
- However:
 - If the test is negative, it says nothing.
 - This does not help in solving P₀.
 - This does not explain why P₁ may be a good replacement.

Equivalence - Goal

We are going to solve the following problem

$$P_1: \min_{\alpha} \|\underline{\gamma}\|_1 \text{ s.t. } \underline{s} = [\Psi, \Theta]\underline{\gamma}.$$

- The questions we ask are:
 - Will the P₁ solution coincide with the P₀ one?
 - What are the conditions for such success?
- We show that if indeed the P₀ solution is sparse enough, then P₁ solver finds it exactly.

Equivalence - Result

Given a signal \underline{s} with a representation $\underline{s} = [\Psi, \Theta]_{\underline{\gamma}}$,

Assuming a sparsity on γ such that (assume $k_1 < k_2$)

$$\underline{\gamma} = \begin{bmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_N , \gamma_{N+1} & \gamma_{N+2} & \dots & \gamma_{2N} \end{bmatrix}$$

k₁ non-zeros k₂ non-zeros

Theorem 3

If k_1 and k_2 satisfy $2M^2k_1k_2 + Mk_2 - 1 < 0$ then P_1 will find the correct solution.

A weaker requirement is given by $k_1 + k_2 < \frac{\sqrt{2}-0.5}{M}$

* Donoho & Huo obtained a weaker bound $\|\underline{\gamma}\|_0 < 0.5(1 + M^{-1})$

The Various Bounds

Signal dimension: N=1024,

Dictionary: $\Psi = I$, $\Theta = F_N$,

Mutual incoherence M=1/32.

Results

Uniqueness: 32 entries and below,

Equivalence:

- 16 entries and below (D-H),
- 29 entries and below (E-B).

Equivalence – Uniqueness Gap

- For uniqueness we got the requirement $\left\|\underline{\gamma}\right\|_0 < \frac{1}{M}$
- For equivalence we got the requirement $\left\|\underline{\gamma}\right\|_0 < \frac{\sqrt{2}-0.5}{M}$
- Is this gap due to careless bounding?
- Answer [by Feuer and Nemirovski, to appear in IEEE Transactions On Information Theory]: No, both bounds are indeed tight.

Agenda

1. Introduction

Previous and current work

2. Two Ortho-Bases

3. Arbitrary dictionary

Uniqueness → Equivalence

4. Basis Pursuit for Inve Basis Pursuit Denoising → Bayesian (1 DE) memous

Ν

Every column is normalized to have an I₂ unit norm

5. Discussion

Why General Dictionaries?

- Because in many situations
 - We would like to use more than just two ortho-bases (e.g. Wavelet, Fourier, and ridgelets);
 - We would like to use non-ortho bases (pseudo-polar FFT, Gabor transform, ...),
 - In many situations we would like to use non-square transforms as our building blocks (Laplacian pyramid, shift-invariant Wavelet, ...).
- In the following analysis we assume ARBITRARY DICTIONARY (frame). We show that BP is successful over such dictionaries as well.

Uniqueness - Basics

• Given a unit norm signal \underline{s} , assume we hold two different representations for it using Φ

$$\underline{\mathbf{s}} = \underline{\Phi}\underline{\gamma}_1 = \underline{\Phi}\underline{\gamma}_2 \implies \underline{\Phi}(\underline{\gamma}_1 - \underline{\gamma}_2) = \underline{\mathbf{0}}$$

- In the two-ortho case simple splitting and use of the uncertainty rule here there is no such splitting !!
- The equation $\Phi \underline{v} = \underline{0}$ implies a linear combination of columns from Φ that are linearly dependent. What is the smallest such group?

Uniqueness – Matrix "Spark"

Definition: Given a matrix Φ , define σ =Spark{ Φ } as the smallest integer such that there exists at least one group of σ columns from Φ that is linearly dependent. The group realizing σ is defined as the "Critical Group".

Examples:

Spark
$$\left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix} \right\} = N+1; Spark $\left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \right\} = 2$$$

"Spark" versus "Rank"

The notion of spark is confusing – here is an attempt to compare it to the notion of rank

Rank

Definition: Maximal # of columns that are linearly independent

Computation: Sequential - Take the first column, and add one column at a time, performing Gram-Schmidt orthogonalization. After L steps, count the number of non-zero vectors — This is the rank.

Spark

Definition: Minimal # of columns that are linearly dependent

Computation: Combinatorial - sweep through 2^L combinations of columns to check linear dependence - the smallest group of linearly dependent vectors is the Spark.

Generally: $2 \le \sigma = \text{Spark}\{\Phi\} \le \text{Rank}\{\Phi\} + 1$.

Uniqueness — Using the "Spark"

- Assume that we know the spark of Φ , denoted by σ .
- For any pair of representations of <u>s</u> we have

$$\underline{s} = \Phi \underline{\gamma}_1 = \Phi \underline{\gamma}_2 \implies \Phi (\underline{\gamma}_1 - \underline{\gamma}_2) = \underline{0}$$

• By the definition of the spark we know that if $\Phi \underline{v} = 0$ then $\|\underline{v}\|_0 \ge \sigma$. Thus

$$\left\| \underline{\gamma}_1 - \underline{\gamma}_2 \right\|_0 \ge \sigma$$

From here we obtain the relationship

$$\sigma \leq \left\| \underline{\gamma}_1 - \underline{\gamma}_2 \right\|_0 \leq \left\| \underline{\gamma}_1 \right\|_0 + \left\| \underline{\gamma}_2 \right\|_0$$

Uniqueness Rule – 1

$$\sigma \leq \left\| \underline{\gamma}_1 \right\|_0 + \left\| \underline{\gamma}_2 \right\|_0$$

Any two different representations of the same signal using an **arbitrary dictionary** cannot be jointly sparse.

Theorem 4

If we found a representation that satisfy

$$\frac{\sigma}{2} > \left\| \underline{\gamma} \right\|_{0}$$

Then necessarily it is unique (the sparsest).

Lower bound on the "Spark"

• Define $0(?) < M = \max_{\substack{1 \le k, j \le L \\ k \ne j}} \left\{ \left| \underline{\phi}_k^H \underline{\phi}_j \right| \right\} \le 1$ (notice the resemblance to the previous definition of M).

$$\sigma \geq 1 + \frac{1}{M}$$
.

• Since the Gerśgorin theorem is un-tight, this lower bound on the Spark is too pessimistic.

Uniqueness Rule – 2

$$1 + \frac{1}{M} \le \sigma \le \left\| \underline{\gamma}_1 \right\|_0 + \left\| \underline{\gamma}_2 \right\|_0$$

Any two different representations of the same signal using an **arbitrary dictionary** cannot be jointly sparse.

If we found a representation that satisfy

$$\frac{\sigma}{2} \ge \frac{1}{2} \left(1 + \frac{1}{M} \right) > \left\| \underline{\gamma} \right\|_{0}$$

Then necessarily it is unique (the sparsest).

* This is the same as Donoho and Huo's bound! Have we lost tightness?

"Spark" Upper bound

The Spark can be found by solving

$$\left\{S_{k}: \underset{\underline{\gamma}}{\text{Min}} \left\|\underline{\gamma}\right\|_{0} \quad \text{s.t.} \quad \Phi\underline{\gamma} = \underline{0} \quad \& \quad \gamma_{k} = \mathbf{1}\right\}_{k=1}^{L} \qquad \left\{\underline{\gamma}_{k}^{S}\right\}_{k=1}^{L}$$

$$\sigma = \underset{1 \leq k \leq L}{\text{Min}} \left\|\underline{\gamma}_{k}^{S}\right\|_{0}$$

• Use Basis Pursuit

$$\left\{ \begin{array}{ll} Q_k: & \underset{\underline{\gamma}}{\text{Min}} \left\| \underline{\gamma} \right\|_1 & \text{s.t.} & \Phi \underline{\gamma} = \underline{0} & \& \ \gamma_k = 1 \end{array} \right\}_{k=1}^L \qquad \left\{ \underline{\gamma}_k^Q \right\}_{k=1}^L$$

$$\bullet \ \ \text{Clearly} \ \left\| \underline{\gamma}_k^Q \right\|_0 \geq \left\| \underline{\gamma}_k^S \right\|_0. \ \ \text{Thus} \ \ \sigma = \underset{1 \leq k \leq L}{\text{Min}} \left\| \underline{\gamma}_k^S \right\|_0 \leq \underset{1 \leq k \leq L}{\text{Min}} \left\| \underline{\gamma}_k^Q \right\|_0.$$

Equivalence — The Result

Following the same path as shown before for the equivalence theorem in the two-ortho case, and adopting the new definition of M we obtain the following result:

Given a signal \underline{s} with a representation $\underline{s} = \underline{\Phi}\underline{\gamma}$, Assuming that $\|\underline{\gamma}\|_0 < 0.5(1+1/M)$, P_1 (BP) is Guaranteed to find the sparsest solution.

* This is the same as Donoho and Huo's bound! Is it non-tight?

To Summarize so far

Over-complete
linear transforms
– great for sparse
representations

forward transform?

Basis Pursuit Algorithm

Why works so well?

- (a) Design of dictionaries,
- (b) Test of solution for optimality,
- (c) Applications of BP for scrambling, signal separation, inverse problems, ...

Practical Implications?

We give explanations (uniqueness and equivalence) true for any dictionary

Agenda

1. Introduction

Previous and current work

2. Two Ortho-Bas
Uncertainty → Unique

$$\underline{y} = \underline{x} + \underline{n}$$

3. Arbitrary dictio

Uniqueness → Equivalence

- 4. Basis Pursuit for Inverse Problems
 Basis Pursuit Denoising → Bayesian (PDE) methods
- 5. Discussion

From Exact to Approximate BP

A.
$$\min_{\underline{\alpha}} \|\underline{\alpha}\|_1$$
 s.t. $\underline{y} = \Phi\underline{\alpha}$

B. $\min_{\underline{\alpha}} \|\underline{\alpha}\|_1$ s.t. $\|\underline{y} - \Phi\underline{\alpha}\|_2^2 \le \delta^2$

C. $\min_{\underline{\alpha}} \|\underline{\alpha}\|_1 + \lambda \|\underline{y} - \Phi\underline{\alpha}\|_2^2$

Wavelet Denoising

Wavelet denoising by Donoho and Johnston (1994) –

$$\underset{\underline{x}}{\text{Min}} \ \left\| \underline{x} - \underline{y} \right\|_{2}^{2} + \lambda \left\| W \underline{x} \right\|_{p} = \underset{\underline{\alpha} = W \underline{x}}{\text{Min}} \ \left\| W^{\mathsf{T}} \underline{\alpha} - \underline{y} \right\|_{2}^{2} + \lambda \left\| \underline{\alpha} \right\|_{p}$$

where W is an orthonormal matrix, and p=0 or 1.

The result is very simple - hard (p=0) or soft (p=1) thresholding.

Shift Invariance Wavelet Denoising

- Major problem with Wavelet denoising A shifted signal results with a different output - "shift-dependence".
- Proposed solution (Donoho and Coifman, 1995): Apply the Wavelet denoising for all shifted version of the W matrix and average – results very promising.
- In our language $\min_{\underline{\alpha}} \lambda \|\underline{\alpha}\|_1 + \|[W,DW,\cdots,D^{N-1}W]\underline{\alpha} \underline{y}\|_2^2$.

$$\left[\mathsf{W}, \mathsf{DW}, \, \cdots, \mathsf{D}^{\mathsf{N}-1} \mathsf{W} \right]^{\!\!\#} = \mathsf{W}^\mathsf{T} \left[\mathsf{I}, \mathsf{D}, \, \cdots, \mathsf{D}^{\mathsf{N}-1} \right]^{\!\mathsf{T}}$$

• Can be applied in the Bayesian approach — variant of the Bilateral filter.

Basis Pursuit Denoising

 A denoising algorithm is proposed for non-square dictionaries [Chen, Donoho & Saunders 1995]

$$\min_{\underline{\alpha}} \| \Phi \underline{\alpha} - \underline{y} \|_{2}^{2} + \lambda \| \underline{\alpha} \|_{1}$$

- The solution now is not as simple as in the ortho-case, but the results are far better due to over-completeness!
- Interesting questions:
 - Which dictionary to choose?
 - Relation to other classic non-linear denoising algorithms?

BP Denoising & Total Variation

 Relation between BP and the Total-Variation denoising algorithm [Rudin, Osher & Fatemi, 1992]? Answer is given by [Chen, Donoho & Saunders 1995]:

TV:
$$\min_{\underline{x}} \|\underline{x} - \underline{y}\|_{2}^{2} + \lambda TV\{\underline{x}\}$$

• We have that $TV\{\underline{x}\} = \|\underline{\alpha}\|_1$ for $\underline{x} = H\underline{\alpha}$ H is the *Heaviside* basis vectors.

A General Bayesian Approach

Our distributions are

$$P_{\underline{Y}/\underline{X}}\left(\underline{y}/\underline{x}\right) = C_{1} \cdot exp\left\{\frac{1}{2\sigma_{n}^{2}}\left\|\underline{x}-\underline{y}\right\|_{2}^{2}\right\}, \quad P_{\underline{X}}\left(\underline{x}\right) = C_{2} \cdot exp\left\{\frac{-1}{2\sigma_{x}^{2}}\left\|\Omega^{T}\underline{x}\right\|_{p}\right\}$$

Using the Maximum A-Posteriori Probability (MAP) we get

$$\underline{\boldsymbol{\hat{x}}_{\text{MAP}}} = \underset{\underline{x}}{\text{ArgMax}} \ P_{\underline{x}/\underline{y}}\left(\underline{x}\,/\,\underline{y}\right) = \underset{\underline{x}}{\text{ArgMax}} \ \frac{P_{\underline{y}/\underline{x}}\left(\underline{y}\,/\,\underline{x}\right)P_{\underline{x}}\left(\underline{x}\right)}{P_{\underline{y}}\left(\underline{y}\right)}$$

$$= \underset{\mathbf{x}}{\mathsf{ArgMin}} \quad \left\| \underline{\mathbf{x}} - \underline{\mathbf{y}} \right\|_{2}^{2} + \lambda \left\| \Omega^{\mathsf{T}} \underline{\mathbf{x}} \right\|_{\mathsf{p}}$$

Generalized Result

- Bayesian denoising formulation $\min_{\mathbf{x}} \|\mathbf{x} \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{\Omega}^{\mathsf{T}}\mathbf{x}\|_{p}$
- Using $\Omega^T \underline{x} = \underline{\alpha} \Rightarrow \Omega \Omega^T \underline{x} = \Omega \underline{\alpha}$ and thus* $\Phi = (\Omega \Omega^T)^{-1} \Omega$ we obtain $\min_{\alpha} \lambda \|\underline{\alpha}\|_p + \|\Phi \underline{\alpha} - \underline{y}\|_2^2$
- Thus, we have a general relationship between Ω (Bayesian Prior operator) and Φ (dictionary).

* The case of non-full-rank Ω can be dealt-with using sub-space projection as a pre-stage, and using Economy SVD for pseudo-inverse.

Example 1 — Total Variation

Looking back at the TV approach we have (D – shift-right)

$$\underset{x}{\text{Min}} \ \lambda \|\underline{x} - \underline{y}\|_{2}^{2} + \|(\mathbf{I} - \mathbf{D})\underline{x}\|_{1}$$

- Based on our result we have $(I-D)\underline{x} = \underline{\alpha} \Rightarrow \Phi = (I-D^T)^{\#}$
- Indeed we get a
 Heaviside basis.
 Moreover, finite
 support effects
 and singularity are
 taken into account
 properly.

Example 2 — Bilateral Filter

- ONE recent denoising algorithm of great impact:
 - Bilateral filter [Tomasi and Manduchi, 1998],
 - Digital TV [Chan, Osher and Shen, 2001],
 - Mean-Shift [Comaniciu and Meer, 2002].
- Recent work [Elad, 2001] show that these filters are essentially the same, being one Jacobi iteration minimizing $\| \mathbf{T} \mathbf{D}^1 \| \|$

$$\underset{\underline{x}}{\text{Min}} \lambda \left\| \underline{x} - \underline{y} \right\|_{2}^{2} + \left\| \begin{array}{c} \mathbf{I} - \mathbf{D}^{1} \\ \vdots \\ \mathbf{I} - \mathbf{D}^{k_{0}} \end{array} \right\|_{2}$$

• In [Elad, 2001] we give speed-up and other extensions for the above minimization — Implication: Speed-up the BP.

Example 2 – Bilateral Dictionary

The dictionary Φ has truncated (not all scales) multiscaled and shift-invariant (all locations) 'derive-lets':

Results

Original and noisy (σ^2 =900) images

TV filtering:

10 iterations (MSE=146.3339)

50 iterations (MSE=131.5013)

Wavelet Denoising (hard)

Using DB3 (MSE=154.1742) Using DB5 (MSE=161.086)

Wavelet Denoising (soft)

Using DB3 (MSE=144.7436)

Using DB5 (MSE=150.7006)

Filtering via the Bilateral (BP equivalent):

(MSE=89.2516)

2 iterations with 11×11 Sub-gradient based 5×5 (MSE=93.4024)

Agenda

1. Introduction

Previous and current work

2. Two Ortho-Bases

Uncertainty \rightarrow Uniqueness \rightarrow Equivalence

3. Arbitrary dictionary

Uniqueness ightarrow Equivalence

4. Basis Pursuit for Inverse Problems

Basis Pursuit Denoising → Bayesian (PDE) methods

5. Discussion

Part 5

Discussion

Summary

- Basis Pursuit is successful for
 - Forward transform we shed light on this behavior.
 - Regularization scheme we have shown relation to Bayesian nonlinear filtering, and demonstrated the bilateral filter speed-up.
- The dream: the over-completeness idea is highly effective, and should replace existing methods in representation and inverse-problems.
- We would like to contribute to this change by
 - Supplying clear(er) explanations about the BP behavior,
 - Improve the involved numerical tools, and then
 - Deploy it to applications.

Future Work

- What dictionary to use? Relation to learning?
- BP beyond the bounds Can we say more?
- Relaxed notion of sparsity? When zero is really zero?
- How to speed-up BP solver (both accurate and approximate)?
- Theory behind approximate BP?
- Applications Demonstrating the concept for practical problems beyond denoising: Coding? Restoration?
 Signal separation? ...