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Abstract—The need for precise (subpixel accuracy) motion
estimates in conventional super-resolution has limited its appli-
cability to only video sequences with relatively simple motions
such as global translational or affine displacements. In this paper,
we introduce a novel framework for adaptive enhancement and
spatiotemporal upscaling of videos containing complex activities
without explicit need for accurate motion estimation. Our ap-
proach is based on multidimensional kernel regression, where
each pixel in the video sequence is approximated with a 3-D
local (Taylor) series, capturing the essential local behavior of
its spatiotemporal neighborhood. The coefficients of this series
are estimated by solving a local weighted least-squares problem,
where the weights are a function of the 3-D space-time orientation
in the neighborhood. As this framework is fundamentally based
upon the comparison of neighboring pixels in both space and time,
it implicitly contains information about the local motion of the
pixels across time, therefore rendering unnecessary an explicit
computation of motions of modest size. The proposed approach
not only significantly widens the applicability of super-resolution
methods to a broad variety of video sequences containing complex
motions, but also yields improved overall performance. Using
several examples, we illustrate that the developed algorithm
has super-resolution capabilities that provide improved optical
resolution in the output, while being able to work on general input
video with essentially arbitrary motion.

Index Terms—Denoising, frame rate upconversion, interpola-
tion, kernel, local polynomial, nonlinear filter, nonparametric,
regression, spatially adaptive, super-resolution.

I. INTRODUCTION

T HE emergence of high definition displays in recent years
(e.g., 720 1280 and 1080 1920 or higher spatial

resolution, and up 240 Hz in temporal resolution), along
with the proliferation of increasingly cheaper digital imaging
technology has resulted in the need for fundamentally new
image processing algorithms. Specifically, in order to display
relatively low quality content on such high resolution dis-
plays, the need for better space-time upscaling, denoising, and
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deblurring algorithms has become an urgent market priority,
with correspondingly interesting challenges for the academic
community. The existing literature on enhancement and up-
scaling (sometimes called super-resolution1) is vast and rapidly
growing in both the single frame case [1], [2] and the multi-
frame (video) case [3]–[11], and many new algorithms for this
problem have been proposed recently. Yet, one of the most
fundamental roadblocks has not been overcome. In particular,
in order to be effective, essentially all the existing multiframe
super-resolution approaches must perform (sub-pixel) accurate
motion estimation [3]–[12]. As a result, most methods fail to
perform well in the presence of complex motions which are
quite common. Indeed, in most practical cases where complex
motion and occlusions are present and not estimated with pin-
point accuracy, existing algorithms tend to fail catastrophically,
often producing outputs that are of even worse visual quality
than the low-resolution inputs. Meanwhile, important strides
have been made in the motion estimation aspects as well; [13]
by Baboulez et al. can be cited as one recent example.

In this paper, we address the challenging problem of spa-
tiotemporal video super-resolution in a fundamentally different
way, which removes the need for explicit subpixel accuracy mo-
tion estimation. We present a methodology that is based on the
notion of consistency between the estimated pixels, which is de-
rived from the novel use of kernel regression [14], [15]. Clas-
sical kernel regression is a well-studied, nonparametric point
estimation procedure. In our earlier work [15], we generalized
the use of these techniques to spatially adaptive (steering) kernel
regression, which produces results that preserve and restore de-
tails with minimal assumptions on local signal and noise models
[16]. Other related nonparametric techniques for multidimen-
sional signal processing have emerged in recent years as well.
In particular, the concept of normalized convolution [17], and
the introduction of support vector machines [18] are notable ex-
amples. In the present work, the steering techniques in [15] are
extended to 3-D where, as we will demonstrate, we can perform
high fidelity space-time upscaling and super-resolution. Most
importantly, this is accomplished without the explicit need for
accurate motion estimation.

In a related recent work [19], we have generalized the
nonlocal means (NLM) framework [20] to the problem of
super-resolution. In that work, measuring the similarity of
image patches across space and time resulted in “fuzzy” or
probabilistic estimates of motion. Such estimates also avoided

1To clarify the use of the words super-resolution and upscaling, we note that if
the algorithm does not receive input frames that are aliased, it will still produce
an output with a higher number of pixels and/or frames (i.e., “upscaled”), but
which is not necessarily “superresolved.”
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the need for explicit motion estimation and gave relatively larger
weights to more similar patches used in the computation of the
high resolution estimate. Another recent example of a related
approach appears in [21] where Danielyan et al. have presented
an extension of the block-matching 3-D filter (BM3D) [22] for
video super-resolution, in which the explicit motion estimation
is also avoided by classifying the image patches using block
matching. The objectives of the present work, our NLM-based
approach [19], and Video-BM3D [21] just mentioned are
the same: namely, to achieve super-resolution on general se-
quences, while avoiding explicit (subpixel-accurate) motion
estimation. These approaches represent a new generation of
super-resolution algorithms that are quite distinctly different
from all existing super-resolution methods. More specifically,
existing methods have required highly accurate subpixel motion
estimation and have thus failed to achieve resolution enhance-
ment on arbitrary sequences.

We propose a framework which encompasses both video de-
noising, spatiotemporal upscaling, and super-resolution in 3-D.
This framework is based on the development of locally adap-
tive 3-D filters with coefficients depending on the pixels in a
local neighborhood of interest in space-time in a novel way.
These filter coefficients are computed using a particular measure
of similarity and consistency between the neighboring pixels
which uses the local geometric and radiometric structure of the
neighborhood.

To be more specific, the computation of the filter coefficients
is carried out in the following distinct steps. First, the local (spa-
tiotemporal) gradients in the window of interest are used to cal-
culate a covariance matrix, sometimes referred to as the “local
structure tensor” [23]. This covariance matrix, which captures
a locally dominant orientation, is then used to define a local
metric for measuring the similarity between the pixels in the
neighborhood. This local metric distance is then inserted into
a (Gaussian) kernel which, with proper normalization, then de-
fines the local weights to be applied in the neighborhood.

The above approach is based on the concept of Steering
Kernel Regression (SKR), earlier introduced in [15] for 2-D
signals (images). A specific extension of these concepts to
3-D signals for the express purpose of video denoising and
resolution enhancement are the main subjects of this paper. As
we shall see, since the development in 3-D involves the compu-
tation of orientation in space-time [24], motion information is
implicitly and reliably captured. Therefore, unlike conventional
approaches to video processing, 3-D SKR does not require
explicit estimation of (modestly sized but essentially arbitrarily
complex) motions, as this information is implicitly captured
within the locally “learned” metric. It is worth mentioning in
passing here that the approach we take, while independently
derived, is in the same spirit as the body of work known as
Metric Learning in the machine learning community, e.g., [25].

Naturally, the performance of the proposed approach is
closely correlated with the quality of estimated space-time
orientations. In the presence of noise, aliasing, and other arti-
facts, the estimates of orientation may not be initially accurate
enough, and as we explain in Section II-D, we, therefore,
propose an iterative mechanism for estimating the orientations,

which relies on the estimate of the pixels from the previous
iteration.

To be more specific, as shown in Fig. 6, we can first process
a video sequence with orientation estimates of modest quality.
Next, using the output of this first step, we can re-estimate
the orientations, and repeat this process several times. As this
process continues, the orientation estimates are improved, as
is the quality of the output video. It is important to note that
the numerical stability of this process has been empirically ob-
served. The overall algorithm we just described will be referred
to as the 3-D Iterative Steering Kernel Regression (3-D ISKR).

As we will see in the coming sections, the approach we in-
troduce here is ideally suited for implicitly capturing relatively
small motions using the orientation tensors. However, if the mo-
tions are somewhat large, the resulting (3-D) local similarity
measure, due to its inherent local nature, will fail to find similar
pixels in nearby frames. As a result, the 3-D kernels essentially
collapse to become 2-D kernels centered around the pixel of in-
terest within the same frame. Correspondingly, the net effect of
the algorithm would be to do frame-by-frame 2-D upscaling. For
such cases, as discussed in Section II-C, some level of explicit
motion estimation is unavoidable to reduce temporal aliasing
and achieve resolution enhancement. However, as we will illus-
trate in this paper, this motion estimation can be quite rough
(accurate to within a whole pixel at best). This rough motion es-
timate can then be used to “neutralize” or “compensate” for the
large motion, leaving behind a residual of small motions, which
can be implicitly captured within the 3-D orientation kernel. In
summary, our approach can accommodate a variety of complex
motions in the input videos by a two-tiered approach: (i) large
displacements are neutralized by rough motion compensation
either globally or block-by-block as appropriate, and (ii) 3-D
ISKR handles the fine-scale and detailed rest of the possibly
complex motion present.

The contributions of this paper are as follows: 1) We intro-
duce steering kernel regression in space-time as an effective tool
for video processing and super-resolution, which does not re-
quire explicit, (sub-pixel) accurate motion estimation, 2) we de-
velop the iterative implementation of this algorithm to enhance
its performance, and 3) we include the concept of rough motion
compensation to widen the range of applicability of the method
to sequences with quite general and complex motions.

This paper is structured as follows. In Section II, first we
briefly describe the fundamental concepts behind the SKR
framework in 2-D and present the extension of the SKR frame-
work to 3-D including discussions of how our method captures
local complex motions and performs rough motion compen-
sation, and explicitly describe its iterative implementation. In
Section III, we provide some experimental results with both
synthetic and real video sequences, and we conclude this paper
in Section IV.

II. SPACE-TIME STEERING KERNEL REGRESSION

In this section, we first review the fundamental framework
of kernel regression [16] and its extension, the steering kernel
regression (SKR) [15], in 2-D. Then, we extend the steering
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Fig. 1. Data model for the kernel regression framework.

approach to 3-D and discuss some important aspects of the 3-D
extension.

A. Review of Steering Kernel Regression in 2-D

1) Classic Kernel Regression: The KR framework defines its
data model as

(1)

where is a noisy sample at (Note: and are spatial
coordinates), is the (hitherto unspecified) regression func-
tion to be estimated, is an i.i.d. zero mean noise, and is
the total number of samples in an arbitrary “window” around a
position of interest as shown in Fig. 1. As such, the kernel re-
gression framework provides a rich mechanism for computing
point-wise estimates of the regression function with minimal as-
sumptions about global signal or noise models.

While the particular form of may remain unspecified, we
can develop a generic local expansion of the function about a
sampling point . Specifically, if is near the sample at , we
have the th order Taylor series

(2)

where and are the gradient and Hessian
operators, respectively, and is the half-vectorization op-
erator that lexicographically orders the lower triangular portion
of a symmetric matrix into a column-stacked vector. Further-
more, is , which is the signal (or pixel) value of interest,
and the vectors and are

(3)

Since this approach is based on local signal representations,
a logical step to take is to estimate the parameters
using all the neighboring samples while giving the
nearby samples higher weights than samples farther away.

A (weighted) least-square formulation of the fitting problem
capturing this idea is

(4)

with

(5)

where is the regression order, is the kernel function
(a radially symmetric function such as a Gaussian), and is
the smoothing matrix which dictates the “footprint” of
the kernel function. The simplest choice of the smoothing ma-
trix is for every sample, where is called the global
smoothing parameter. The shape of the kernel footprint is per-
haps the most important factor in determining the quality of es-
timated signals. For example, it is desirable to use kernels with
large footprints in the smooth local regions to reduce the noise
effects, while relatively smaller footprints are suitable in the
edge and textured regions to preserve the signal discontinuity.
Furthermore, it is desirable to have kernels that adapt themselves
to the local structure of the measured signal, providing, for in-
stance, strong filtering along an edge rather than across it. This
last point is indeed the motivation behind the steering KR frame-
work [15] which we will review in Section II-A2.

Returning to the optimization problem (4), regardless of the
regression order and the dimensionality of the regression func-
tion, we can rewrite it as the weighted least squares problem

(6)

where

(7)

(8)

and see equation (9), shown at the bottom of the next page, with
“diag” defining a diagonal matrix. Using the notation above, the
optimization (4) provides the weighted least square estimator

(10)

and the estimate of the signal (i.e., pixel) value of interest is
given by a weighted linear combination of the nearby samples

(11)
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where is a column vector with the first element equal to one
and the rest equal to zero, and we call the equivalent kernel
weight function for (q.v. [15] or [16] for more detail). For
example, for zeroth order regresion (i.e., ), the estimator
(11) becomes

(12)

which is the so-called Nadaraya-Watson estimator (NWE) [26].
What we described above is the “classic” kernel regression

framework, which as we just mentioned, yields a pointwise es-
timator that is always a local linear combination of the neigh-
boring samples. As such, it suffers from an inherent limitation.
In the next sections, we describe the framework of steering KR
in two and three dimensions, in which the kernel weights them-
selves are computed from the local window, and, therefore, we
arrive at filters with more complex (nonlinear) action on the
data.

2) Steering Kernel Regression: The steering kernel frame-
work is based on the idea of robustly obtaining local signal struc-
tures (i.e., discontinuities in 2- and 3-D) by analyzing the radio-
metric (pixel value) differences locally, and feeding this struc-
ture information to the kernel function in order to affect its shape
and size.

Consider the smoothing matrix in (5). As explained
in Section II-A1, in the generic “classical” case, this matrix is a
scalar multiple of the identity with the global scalar parameter

. This results in kernel weights which have equal effect along
the - and -directions. However, if we properly choose this
matrix, the kernel function can capture local structures. More
precisely, we define the smoothing matrix as a symmetric matrix

(13)

which we call the steering matrix and where, for each given
position , the matrix is estimated as the local covariance
matrix of the neighborhood spatial gradient vectors. A naive
estimate of this covariance matrix may be obtained by

(14)

with

...
... (15)

where and are the first derivatives along - and
-axes, and is the number of samples in the local analysis

window around a sampling position . However, the naive es-
timate may in general be rank deficient or unstable. Therefore,
instead of using the naive estimate, we obtain the covariance
matrices by using the (compact) singular value decomposition
(SVD) of . A specific choice of using the SVD for the 2-D
case is discussed in [15], and we will show for the 3-D case
in Section II-B.

With the above choice of the smoothing matrix and a
Gaussian kernel, we now have the steering kernel function as

(16)

Fig. 2 shows visualization of the 2-D steering kernel function
for a noise-free and noisy image of Lena (we added white
Gaussian noise with standard deviation 25, the corresponding
PSNR2 being 20.16 [dB]). As shown in Fig. 2, the steering
kernel weights3 (which are the normalized as a
function of with held fixed) illustrate the relative size of
the actual weights applied to compute the estimate as in (11).
We note that even for the highly noisy case, we can obtain
stable estimates of local structure.

At this point, the reader may be curious to know how the
above formulation would work for the case where we are in-
terested not only in denoising, but also upscaling the images.
We discuss this novel aspect of the framework in detail in Sec-
tion II-D.

B. Space-Time (3-D) Steering Kernel Regression

So far, we presented SKR in 2-D. In this section, we introduce
the time axis and present Space-Time SKR to process video data.
As mentioned in the introductory section, we explain how this
extension can yield a remarkable advantage in that space-time
SKR does not necessitate explicit (sub-pixel) motion estimation.

First, introducing the time axis, we have the 3-D data model
as

(17)

2Peak Signal to Noise Ratio ��� ��� ��		 �
�� ������ ������ ����.
3For the sake of completeness, we note that the steering kernel (16) is different

from the steerable filter proposed by Freeman and Adelson [27]. One funda-
mental difference between them is that the contours of the steerable Freeman-
Adelson filter are always symmetric as it takes into account the orientation angle
at the center position of interest only. On the other hand, in the steering kernel
approach, we take the steering matrices of all the nearby samples into account,
which results in steering kernels that can become quite asymmetric and capture
the local image structures more effectively, as illustrated in Fig. 2.

...
...

...
...

(9)
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Fig. 2. 2-D steering kernel weights for Lena image without/with noise (white Gaussian noise with standard deviation � � ��) at flat, edge, and texture areas.

where is a noisy sample at , and are spatial coor-
dinates, is the temporal coordinate, is the re-
gression function to be estimated, is an i.i.d. zero-mean noise
process, and is the total number of nearby samples in a 3-D
neighborhood of interest, which we will henceforth call a “cu-
bicle.” As in (2), we also locally approximate by a Taylor
series in 3-D, where and are now the gradient and
Hessian operators, respectively. With a steering
matrix , the estimator takes the familiar form

(18)

The derivation for the adaptive steering kernel is quite similar
to the 2-D case. Indeed, we again define as

(19)

where the covariance matrix can be naively estimated as
with

...
...

... (20)

where , , and are the first derivatives along -,
-, and -axes, and is the total number of samples in a local

analysis cubicle around a sample position at . Once again for
the sake of robustness, as explained in Section II-A2, we com-
pute a more stable estimate of by invoking the SVD of
with regularization as

(21)

with

(22)

where and are the elongation and scaling parameters, re-
spectively, and are regularization parameters that dampen

the noise effect and restrict and the denominators of ’s from
being zero (q.v. Appendix A for the derivations). We fix
and throughout this paper. The singular values ( ,

, and ) and the singular vectors ( , , and ) are given
by the (compact) SVD of

(23)

Similar to the 2-D case, the steering kernel function in 3-D is
defined as

(24)

The main tuning parameters are the global smoothing parameter
in (19) and the structure sensitivity in (22). The specific

choices of these parameters are indicated in Section III, and Ap-
pendix B gives more details about and .

Fig. 3 shows visualizations of the 3-D weights given by the
steering kernel functions for two cases: (a) a horizontal edge
moving vertically over time (creating a tilted plane in the local
cubicle), and (d) a small circular dot also moving vertically
over time (creating a thin tube in the local cubicle). Consid-
ering the case of denoising for the sample located at the center
of each data cube of Fig. 3(a) and (d), we have the steering
kernel weights illustrated in Fig. 3(b) and (c) and Fig. 3(e) and
(f). Fig. 3(b) and (e) and Fig. 3(c) and (f) shows the cross sec-
tions and the iso-surfaces of the weights, respectively. As seen
in these figures, the weights faithfully reflect the local signal
structure in space-time.

As illustrated in Fig. 3, the weights provided by the steering
kernel function capture the local signal structures which include
both spatial and temporal edges. Here we give a brief description
of how orientation information thus captured in 3-D contains the
motion information implicitly. It is convenient in this respect
to use the (gradient-based) optical flow framework [28]–[30] to
describe the underlying idea. Defining the 3-D motion vector as

and invoking the brightness
constancy equation (BCE) in a local “cubicle” centered at ,
we can use the matrix of gradients in (20) to write the BCE
as
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Fig. 3. Steering kernel visualization examples for (a) the case one horizontal edge moving up (this creates a tilted plane in a local cubicle) and (d) the case one
small dot moving up (this creates a thin tube in a local cubicle). (a), (d) Cross sections of the 3-D data and (b), (c) cross sections and the isosurface of the weights
given by the steering kernel function when we denoise the sample located at the center of the data cube of (a). Similarly, (e) and (f) are the cross sections and the
isosurface of the steering kernel weights for denoising the center sample of the data cube of (d).

(25)

Multiplying both sides of the BCE above by , we have

(26)

Now invoking the decomposition of in (21), we can write

(27)

The above decomposition shows explicitly the relationship
between the motion vector and the principal orientation direc-
tions computed within the SKR framework. The most generic
scenario in a small cubicle is one where the local texture and
features move with approximate uniformity. In this generic
case, we have , and it can be shown that the sin-
gular vector (which we do not directly use) corresponding to
the smallest singular value can be approximately interpreted
as the total least squares estimate of the homogeneous optical
flow vector [31], [32]. As such, the steering kernel
footprint will, therefore, spread along this direction, and conse-
quently assign significantly higher weights to pixels along this
implicitly given motion direction. In this sense, compensation
for small local motions is taken care of implicitly by the assign-
ment of the kernel weights. It is worth noting that a significant
strength of using the proposed implicit framework (as opposed
to the direct use of estimated motion vectors for compensation)
is the flexibility it provides in terms of smoothly and adaptively
changing the elongation parameters defined by the singular

values in (22). This flexibility allows the accommodation of
even complex motions, so long as their magnitudes are not
excessively large. When the magnitude of the motions is large
(relative to the support of the steering kernels, specifically,)
a basic form of coarse but explicit motion compensation will
become necessary. We describe this scenario next.

C. Kernel Regression With Rough Motion Compensation

Before formulating the 3-D SKR with motion compensation,
first, let us discuss how the steering kernel behaves in the pres-
ence of relatively large motions.4 In Fig. 4(a) and (b), we il-
lustrate the contours of steering kernels for the pixel of interest
marked “ .” For the small motion case illustrated in Fig. 4(a),
the steering kernel ideally spreads across neighboring frames,
taking advantage of information contained in the the space-time
neighborhood. Consequently, we can expect to see the effects
of resolution enhancement and strong denoising. On the other
hand, in the presence of large displacements as illustrated in
Fig. 4(b), similar pixels, though close in the time dimension,
are found far away in space. As a result, the estimated kernels
will tend not to spread across time. That is to say, the net result
is that the 3-D SKR estimates in effect default to the 2-D case.
However, if we can roughly estimate the relatively large motion
of the block and compensate (or “neutralize”) for it, as illus-
trated in Fig. 4(c), and then compute the 3-D steering kernel,
we find that it will again spread across neighboring frames and
we regain the interpolation/denoising performance of 3-D SKR.

4It is important to note here that by large motions we mean speeds (in units
of pixels/frame) which are larger than the typical support of the local steering
kernel window, or the moving object’s width along the motion trajectory. In the
latter case, even when the motion speed is slow, we are likely to see temporal
aliasing locally.
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Fig. 4. Steering kernel footprints for (a) a video with small motions, (b) a video
with large motions, and (c) alarge-motion neutralized video.

The above approach can be useful even in the absence of aliasing
when the motions are small but complex in nature. As illustrated
in Fig. 5(b), if we cancel out these displacements, and make
the motion trajectory smooth, the estimated steering kernel will
again spread across neighboring frames and result in good per-
formance.

In any event, it is quite important to note that the above com-
pensation is done for the sole purpose of computing the more
effective steering kernel weights. More specifically, (i) this large
motion “neutralization” is not an explicit motion compensation
in the classical sense invoked in coding or video processing, (ii)
it requires absolutely no interpolation and, therefore, introduces
no artifacts, and (iii) it requires accuracy no better than a whole
pixel.

To be more explicit, 3-D SKR with motion compensation can
be regarded as a two-tiered approach to handle a wide variety of
transitions in video. Complicated transitions can be split into
two different motion components: large whole-pixel motions

and small but complex motion

(28)

where is easily estimated by, for instance, optical flow
or block matching algorithms, but, is much more difficult to
estimate precisely.

Suppose a motion vector is com-
puted for each pixel in the video. We neutralize the motions of
the given video data by , to produce a new sequence of
data , as follows:

Fig. 5. Steering kernel footprints for (a) a video with a complex motion trajec-
tory and (b) the large-motion neutralized video.

(29)

where is the time coordinate of interest. It is important to re-
iterate that since the motion estimates are rough (accurate to at
best a single pixel) the formation of the sequence does not
require any interpolation, and, therefore, no artifacts are intro-
duced. Rewriting the 3-D SKR problem for the new sequence

, we have

(30)

where is computed from the motion-compensated sequence
. Similar to the estimator in 2-D (11), the above minimiza-

tion yields the following pixel estimator at the position of in-
terest as

(31)

where is a column-stacked vector of the given pixels ,
and and are the basis matrix and the kernel weight matrix
constructed with the motion-compensated coordinates ; that
is to say [see (32)–(34), shown at the bottom of the page]. In the

(32)

(33)

...
...

...
...

(34)
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Fig. 6. Block diagram representation of the 3-D iterative steering kernel regression with motion compensation: (a) initialization process and (b) iteration process.

following section, we further elaborate on the implementation of
the 3-D SKR for enhancement and super-resolution, including
its iterative application.

D. Implementation and Iterative Refinement

As we explained earlier, since the performance of the steering
KR (SKR) depends strongly on the accuracy of the orientations,
we adopt an scheme (we call this ISKR) which results in im-
proved orientation estimates and, therefore, a better final de-
noising and upscaling result. The extension for upscaling is done
by first interpolating or upscaling using some reasonably effec-
tive low-complexity method (say the “classic” KR method) to
yield what we call a pilot initial estimate. The orientation in-
formation is then estimated from this initial estimate and the
SKR method is then applied to the input video data which we
embed in a higher resolution grid. To be more precise, the basic
procedure, as shown in Fig. 6, is as follows.

First we estimate the large motions of the given
input sequence . Then, using , we neutralize
the large motions and generate a motion compensated video se-

quence . Next, we compute the gradients
at the positions of the motion-

compensated data. This process is indicated as the “pilot esti-
mate” in the block diagram. After that, we create steering ma-
trices for all the samples by (19) and (21). Once

are available, we plug them into (33) and estimate not
only an unknown pixel value at a position of interest

by (31) but also its gradients . This is the initializa-

tion process which is shown in Fig. 6(a). Next, using , we
re-create the steering matrices . Since the estimated gra-

dients are also denoised and upscaled by SKR, the new
steering matrices contain better orientation information. With

, we apply SKR to the embedded input video again. We
repeat this procedure several times as shown in Fig. 6(b). While
we do not discuss the convergence properties of this approach

here, it is worth mentioning that typically, no more than a few
iterations are necessary to reach convergence.5

Fig. 7 illustrates a simple super-resolution example. In this
example, we created 9 synthetic low resolution frames from the
image shown in Fig. 7(a) by blurring with a 3 3 uniform PSF,
shifting the blurred image by 0, 4, or 8 pixels6 along the - and

-axes, spatially downsampling with a factor 3:1, and adding
White Gaussian noise with standard deviation . One of the
low resolution frames is shown in Fig. 7(b). Then, we created
a synthetic input video by putting those low resolution images
together in random order. Thus, the motion trajectory of the
input video is not smooth and the 3-D steering kernel weights
cannot spread effectively along time as illustrated in Fig. 5(a).
The upscaled frames by Lanczos, robust super-resolution [4],
nonlocal based super-resolution [19], and 3-D ISKR with rough
motion compensation at time are shown in Fig. 7(c)–(f).

With the presence of severe aliasing arising from large mo-
tions, the task of accurate motion estimation becomes signifi-
cantly harder. However, rough motion estimation and compen-
sation is still possible. Indeed, once this compensation has taken
place, the level of aliasing artifacts within the new data cubicle
becomes mild, and as a result, the orientation estimation step is
able to capture the true space-time orientation (and, therefore,
implicitly the motion) quite well. This estimate then leads to the
recovery of the missing pixel at the center of the cubicle, from
the neighboring compensated pixels, resulting in true super-res-
olution reconstruction as shown in Fig. 7.

It is worth noting that while in the proposed algorithm in
Fig. 6 we employ an SVD-based method for computing the
3-D orientations, other methods can also be employed such as
that proposed by Farnebäck et al. using local tensors in [34].

5It is worth noting that the application of the iterative procedure results in a
tradeoff of bias and variance in the resulting final estimate. As for an appropriate
number of iterations, a relatively simple stopping criterion can be developed
based on the behavior of the residuals (the difference images between the given
noisy sequence and the estimated sequence) [33].

6Note: this amount of shift creates severe temporal aliasing.
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Fig. 7. Simple super-resolution example using 3-D ISKR: (a) the original image, (b) one of 9 low resolution images generated by blurring with a 3� 3 uniform
PSF, spatially downsampling with a factor of 3:1, and adding white Gaussian noise with standard deviation � � �, (c) an upscaled image by Lancsoz (single frame
upsclae), (d) an upscaled image by robust super-resolution [4], and (e) an upscaled image by nonlocal based super-resolution [19]. The corresponding PSNR values
are (c) 19.67, (d) 30.21, (e) 27.94, and (f) 29.16 [dB].

Similarly, in our implementation, we used the optical flow [35]
framework to compute the rough motion estimates. This step
too can be replaced by other methods such as a block matching
algorithm [36].

E. Deblurring

Since we did not include the effect of sensor blur in the
data model of the KR framework, deblurring is necessary
as a postprocessing step to improve the outputs by 3-D
ISKR further. Defining the estimated frame at time as

where is the index of the
spatial pixel array and as the unknown image of interest,
we deblur the frame by a regularization approach

(35)

where is the blur matrix, is the regularization param-
eter, and is the regularization function. More specifically,
we rely on our earlier work and employ the Bilateral Total Vari-
ation framework

(36)

where is the smoothing parameter, is the window size, and
is the shift matrix that shifts by -pixels along the

-axis.
In the present work, we use the above BTV regularization

framework to deblur the upscaled sequences frame-by-frame,
which is admittedly suboptimal. In our very recent work [37],
we have introduced a different regularization function called
Adaptive Kernel Total Variation (AKTV) [15]. This framework
can be extended to derive an algorithm which can simulta-
neously interpolate and deblur in one integrated step. This
promising approach is part of our ongoing work and is outside
the scope of the this paper.

III. EXPERIMENTAL RESULTS

The utility and novelty of our algorithm lies in the fact that
it is capable of both spatial and temporal (and, therefore, spa-
tiotemporal) upscaling and super-resolution. Therefore, in this
section, we study the performance of our method in both spatial
and spatiotemporal cases.

A. Spatial Upscaling Examples

In this section, we present some denoising/upscaling exam-
ples. The sequences in this section contain motions of relatively
modest size due to the effect of severe spatial downsampling
(we downsampled original videos with the downsampling factor
3:1) and, therefore, motion compensation as we described ear-
lier was not necessary. In Section III-B, we illustrate additional
examples of spatiotemporal video upscaling.
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Fig. 8. Video upscale example using Miss America sequence: (a) the degraded frames at time � � � and 13, (b) the upscaled frames by Lanczos interpolation
[PSNR: 34.28 (top) and 33.95 (bottom)], (c) the upscaled frames by NL-means based SR [19] [PSNR: 34.67 (top) and 35.34 (bottom)], and (d) the upscaled frames
by 3-D ISKR [PSNR: 35.53 (top) and 35.15 (bottom)]. Also, the PSNR values for all the frames are shown in Fig. 10(a).

Fig. 9. Video upscaling example using Foreman sequence: (a) The degraded frames, (b) the upscaled frames by Lanczos interpolation [PSNR: 31.01 (top) and
30.21 (bottom)], (c) the upscaled frames by NL-means based SR [19] [PSNR: 32.13 (top) and 31.94 (bottom)], and (d) the upscaled frames by 3-D ISKR [PSNR:
33.02 (top) and 32.12 (bottom)]. Also, the PSNR values for all the frames are shown in Fig. 10(b).

First, we degrade two videos (Miss America and Foreman
sequences), using the first 30 frames of each sequence, blur-
ring with a 3 3 uniform point spread function (PSF), spatially
downsampling the videos by a factor of 3:1 in the horizontal and
vertical directions, and then adding white Gaussian noise with
standard deviation . Two of the selected degraded frames
at time and 13 for Miss America and and for

Foreman are shown in Figs. 8(a) and 9(a), respectively. Then,
we upscale and denoise the degraded videos by Lanczos in-
terpolation (frame-by-frame upscaling), the NL-means based
approach of [19], and 3-D ISKR, which includes deblurring7

7Note that the 3� 3 uniform PSF is no longer suitable for the deblurring since
the kernel regression gives its own blurring effects.
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Fig. 10. PSNR values of each upscaled frame by Lanczos, NL-means based SR [19], and 3-D ISKR for (a) the results of Miss America shown in Fig. 8 and (b) the
results of Foreman shown in Fig. 9.

Fig. 11. Vdeo upscaling example using Foreman sequence: (a) the upscaled frames by NL-means based SR [19] [PSNR: 32.77 (top) and 32.06 (bottom)], (b) the
upscaled frames by V-BM3D [21] [PSNR: 33.45 (top) and 32.87 (bottom)], and (c) the upscaled frames by 3-D ISKR [PSNR: 33.30 (top) and 33.06 (bottom)].

the upscaled video frames using the BTV approach [4]. Hence,
we used a radially symmetric Gaussian PSF which reflects an
“average” PSF induced by the kernel function used in the re-
construction process. The final upscaled results are shown in
Figs. 8(b)–(d) and 9(b)–(d), respectively. The corresponding av-
erage PSNR values across all the frames for the Miss America
example are 34.05 [dB] (Lanczos), 35.04 [dB] (NL-means based
SR [19]), and 35.60 [dB] (3-D ISKR) and the average PSNR
values for Foreman are 30.43 [dB] (Lanczos), 31.87 [dB] (NL-
means based SR), and 32.60 [dB] (3-D ISKR), respectively. The
graphs in Fig. 10 illustrate the PSNR values frame by frame. It is
interesting to note that while the NL-means method appears to

produce more crisp results in this case, the corresponding PSNR
values for this method are surprisingly lower than that for the
proposed 3-D ISKR method. We believe, as partly indicated in
Fig. 17, that this may be in part due to some leftover high fre-
quency artifacts and possibly lesser denoising capability of the
NL-means method.

As for the parameters of our algorithm, we applied SKR with
the global smoothing parameter , the local structure
sensitivity and a local cubicle and used an
11 11 Gaussian PSF with a standard deviation of 1.3 for the
deblurring of Miss America and Foreman sequences. For the
experiments shown in Figs. 8 and 9, we iterated SKR 6 times.
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Fig. 12. Enlarged images of the cropped sections from the upscaled Foreman frames �� � ��� shown in Fig. 11.

Fig. 13. Spatial upscaling example of a real video: (a) Texas football sequence in luminance channel, and (b)–(d) the upscaled frames by Lanczos interpolation,
NL-based SR [19] and 3-D ISKR, respectively. The input sequence has 24 frames in total and it is a real HD-TV content which carries compression artifacts,
namely block artifacts. We upscale the video with the spatial upscaling factor of 1:3.

The next example involves spatial upscaling of a different
segment of the Foreman sequence. As suggested by one of the
reviewers, we carried out this example in order to illustrate a
comparison to the Video-BM3D method of [21]. Since the code
for that method is not currently available publicly, only a lim-
ited comparison was possible. Namely, we compared the per-
formance of our algorithm to exactly the same results reported
in [21], which were derived as follows: A simulated input se-
quence (without the addition of noise) was created by blurring
with a 3 3 uniform PSF and downsampling with a factor of
3:1. Two upscaled frames by nonlocal means-based approach
[19], video-BM3D [21], and the proposed method are shown in

Figs. 11 and 12, respectively. Although the results are visually
different, they are numerically close as indicated in the figure
caption.

The third example is a spatial upscaling example using a
section of a real HDTV video sequence (300 300 pixels, 24
frames) without any additional simulated degradation which is
shown in Fig. 13. As seen in the input frames, the video has
real compression artifacts (i.e., blocking). In this example, we
show the deblocking capability of the propose method, and the
upscaled results by Lanczos interpolation, NL-based SR [19]
and 3-D ISKR with a factor of 1:3 (i.e., the output resolution
is 900 900 pixels) are shown in Fig. 13(b)–(d), respectively.
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Fig. 14. Coastguard example of spatiotemporal upscaling: from the top row to the bottom, (a) original video frames at time � � � to 6 (b) the input videos
generated by blurred with a 2� 2 uniform PSF, adding white Gaussian noise with standard deviation � � �, and spatially downsampling with the factor of 2 : 1,
(c) upscaled and deblurred frames by 3-D ISKR, and (d) estimated intermediate frames at � � ��� (left) and � � ��� (right). The corresponding average PSNR
value across all the upscaled frames, except the intermediate frames, by 3-D ISKR with is 29.77 [dB].

Without modification, the proposed method8 is able to remove
the blocking artifacts effectively as well as to upscale the video.

B. Spatiotemporal Upscaling Examples

In this section, we present two video upscaling examples by
3-D ISKR. Unlike the previous examples (Miss America and
Foreman), in the next examples, the input videos have relatively
large and more complex displacements between frames. In order
to have better estimations of steering kernel weights, we esti-
mate patchwise (4 4 block) translational motions by the op-
tical flow technique [35], and apply 3-D ISKR to the roughly
motion-compensated inputs.

The first example in Fig. 14 shows (a) cropped original frames
from the Coastguard sequence (CIF format, 8 frames), (b) the

8We applied our method to the luminance channel only.

input video generated by blurring with a 2 2 uniform PSF,
spatially downsampling the cropped sequence by a factor of 2:1,
and then adding white Gaussian noise with standard deviation

, and (c) upscaled and deblurred frames by 3-D ISKR with
motion compensation . Similar to the first
example, we used the cropped “Stefan” sequence for the next
video upscaling example. The results are shown in Fig. 15. The
parameters and were used for 3-D ISKR.
The corresponding average PSNR value for across the upscaled
frames by 3-D ISKR with motion compensation the Coastguard
example is 29.77 [dB], and the one for the Stefan example is
23.63 [dB], respectively.

Though we did not discuss temporal upscaling much explic-
itly in the text of this paper, the presented algorithm is capable of
this functionality as well in a very straightforward way. Namely,
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Fig. 15. Stefan example of video upscaling: from the top row to the bottom, (a) original video frames at time � � � to 6, (b) the input videos generated by
blurred with a 2� 2 uniform PSF, adding white Gaussian noise with standard deviation � � �, and spatially downsampling with the factor of 2 : 1, (c) upscaled
and deblurred frames by 3-D ISKR, and (d) estimated intermediate frames at � � ��� (left) and � � ���. The corresponding average PSNR values across all the
upscaled frames, except the intermediate frames, by 3-D ISKR is 23.63 [dB].

the temporal upscaling is effected by producing a pilot esti-
mate and improving the estimate iteratively just as in the spatial
upscaling case illustrated in the block diagrams in Fig. 6. We
note that this temporal upscaling capability, which essentially
comes for free in our present framework, was not possible in the
NL-means based algorithm [19]. The examples in Figs. 14(d)
and 15(d) show this application of 3-D ISKR, namely simulta-
neous space-time upscaling, using the same inputs of the Coast-

guard and Stefan sequences. Figs. 14(d) and 15(d) illustrate es-
timated intermediate frames by 3-D ISKR.

The final example in Fig. 16 is a real experiment9 of
space-time upscaling with a native QCIF sequence, Carphone
(144 176, 30 frames). Fig. 16 shows (a) the input frame at

to 27 and (b) the upscaled frames by NL-based method

9That is to say, the input to the algorithm was the native resolution video,
which was subsequently upscaled in space and time directly. In other words,
the input video is not simulated by downsampling a higher resolution sequence.
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Fig. 16. Carphone example of video upscaling: from the top row to the bottom, (a) input video frames at time � � �� to 27 (144� 176, 30 frames) and (b) upscaled
frames by Lanczos interpolation.

[19], and (c) the upscaled frames by 3-D , and (d) the estimated
intermediate frames by 3-D ISKR. Also, Fig. 17 shows the vi-
sual comparison between small sections of the upscaled frames

at by (a) Lanczos, (b) NL-based method, and (c) 3-D
ISKR, where we can see the visual differences more clearly.
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Fig. 17. Enlarged images of the cropped sections from the upscaled Carphone frame �� � ��� shown in Fig. 16.

IV. CONCLUSION

Traditionally, super-resolution reconstruction of image
sequences has relied strongly on the availability of highly ac-
curate motion estimates between the frames. As is well-known,
subpixel motion estimation is quite difficult, particularly in
situations where the motions are complex in nature. As such,
this has limited the applicability of many existing upscaling
algorithms to simple scenarios. In this paper, we extended
the 2-D steering KR method to an iterative 3-D framework,
which works well for both (spatiotemporal) video upscaling
and denoising applications. Significantly, we illustrated that the
need for explicit subpixel motion estimation can be avoided by
the two-tiered approach presented in Section II-C, which yields
excellent results in both spatial and temporal upscaling.

Performance analysis of super-resolution algorithm remains
an interesting area of work, particularly with the new class of
algorithms such as the proposed and NL-based method [19]
which can avoid subpixel motion estimation. Some results al-
ready exist which provide such bounds under certain simpli-
fying conditions [38], but these results need to be expanded and
studied further.

Reducing the computational complexity of 3-D ISKR is of
great interest, and we are in the process of developing a fast
algorithm. Most of the computational load is due to (in order
of severity): (i) the computations of steering (covariance) ma-
trices in (19), (ii) the generation of the equivalent kernel
coefficients in (31) from the steering kernel function with
higher order (i.e., ), and (iii) iterations. For (i), to speed
up the estimation of , instead of application of SVD, which
is computationally heavy, we can create a lookup table con-
taining a discrete set of representative steering matrices (using,
say, vector quantization), and choose an appropriate matrix from
the table given local data. For (ii), computation of the second
order filter coefficients from the steering kernel
weights (24) maybe sped up by using an approximation using

the lower order (e.g., zeroth order, ) kernels. This idea
was originally proposed by Haralick in [24] and may be directly
applicable to our case as well. For (iii), we iterate the process of
steering kernel regression in order to obtain better estimates of
orientations. If the quantization mentioned above gives us fairly
reasonable estimates of orientations, we may not need to iterate.

APPENDIX

A) Steering Kernel Parameters: Using the (compact) SVD
(23) of the local gradient vector (20), we can express the naive
estimate of steering matrix as

(37)

where

(38)

and is the number of rows in . Since the singular values
may become zero, we regularize the elongation pa-

rameters and the scaling parameter as shown in (22)
in order to restrict the parameters from being zero.

B) The Choice of the Regression Parameters: The param-
eter which have critical roles in steering kernel regression are
the regression order , the global smoothing parameter
in (19) and the structure sensitivity in (22). It is generally
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known that the parameters and control the balance between
the variance and bias of the estimator [39]. The larger and the
smaller , the higher the variance becomes and the lower the
bias. In this paper, we fix the regression order .

The structure sensitivity (typically ) controls
how strongly the size of the kernel footprints is affected by the
local structure. The product of the singular values ( , , and

) indicates the amount of the energy of the local signal struc-
ture: the larger the product, the stronger and the more complex
the local structure is. A large is preferable when the given
signal carries severe noise. In this paper, we focus on the cases
where the given video sequences have a moderate amount of
noise and fix .

Ideally, although one would like to automatically set these
regression parameters using a method such as cross validation
[40], [41] or SURE (Stein’s unbiased risk estimator) [42], this
would add significant computational complexity to the already
heavy load of the proposed method. So for the examples pre-
sented in the paper, we make use of our extensive earlier ex-
perience to note that only certain ranges of values for the said
parameters tend to give reasonable results. We fix the values of
the parameters within these ranges to yield the best results, as
discussed in Section III.
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