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Abstract We consider the problem of simultaneous sparse
coding and anomaly detection in a collection of data vectors.
The majority of the data vectors are assumed to conform
with a sparse representation model, whereas the anomaly is
caused by an unknown subset of the data vectors - the out-
liers - which significantly deviate from this model. The pro-
posed approach utilizes the Alternating Direction Method of
Multipliers (ADMM) to recover simultaneously the sparse
representations and the outliers components for the entire
collection. This approach provides a unified solution both
for jointly sparse and independently sparse data vectors. We
demonstrate the usefulness of the proposed approach for ir-
regular heartbeats detection in Electrocardiogram (ECG) as
well as for specular reflectance and shadows removal from
natural images.
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1 Introduction

Anomaly detection is the problem of detecting patterns that
significantly deviate from an expected model. This problem
has numerous applications such as fraud detection for bank-
ing and businesses, intrusion detection for network security,
fault detection for production systems, health problems de-
tection for biomedical systems and more, see [1] for a re-
view. In this paper we assume that the expected behavior of
the data vectors is to conform with a sparse representation
model [2], and address the problem of simultaneous sparse
coding and anomaly detection. This problem can be applied
to three different tasks: 1) anomaly detection within sparsely
represented data vectors. 2) removal of interference from
sparsely represented data vectors. 3) dictionary learning in
the presence of outliers. In this paper we address the first
two tasks, and the latter is beyond the scope of this work.
Related work. Joint-sparse coding was addressed by [3,4]
for cases in which all data vectors are contaminated by either
a sparse or a sparsely-represented interference. Anomaly de-
tection in video was addressed by [5] which proposed a sparse
reconstruction cost to measure the normality of events, with
respect to a dictionary with various spatio-temporal struc-
tures. This problem was addressed also by [6], which com-
bined online dictionary learning with an objective function
that measures the normality of events. The work of [7] uti-
lized sparse representations to analyze stochastic processes
over graphs for anomaly detection in SmartGrids.
Contributions. The contributions of this paper are two-fold:
1) A unified formulation for the problem of simultaneous
sparse coding and anomaly detection is provided for jointly
sparse as well as for independently sparse data vectors; and a
numerical solver is provided for both cases. 2) the proposed
approach is demonstrated to detect irregular heartbeats in
ECG, and remove specular reflections and shadows from
natural images.
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Organization. Section 2 reviews sparse representations, sec-
tion 3 formulates the problem, section 4 explains the pro-
posed approach, and section 5 demonstrates its performance.

2 Sparse Representation Modeling

Sparse representation modeling [2] assumes that a signal
(data vector) y ∈ RN can be described as y ≈ Dx, where
D ∈ RN×M is a dictionary and x ∈ RM is sparse. There-
fore, y is represented by a linear combination of few columns
(atoms) of D. The recovery of the sparse representation,
termed sparse coding, can be obtained by solving the fol-
lowing problem:

x̂ = argmin
x

∥y −Dx∥22 s.t. ∥x∥0 ≤ T0, (1)

where ∥x∥0 is the l0 pseudo-norm that counts the number
of non-zero entries of x, and T0 is the maximum number of
non-zero entries. Problem (1) can be augmented for a col-
lection of signals:

X̂ = argmin
X

∥Y −DX∥2F s.t. ∥X∥0 ≤ LT0, (2)

where Y ∈ RN×L contains L signals {yi ∈ RN}Li=1, X ∈
RM×L contains L sparse representations {xi ∈ RM}Li=1

and ∥X∥0 counts the number of non-zero entries of X. This
type of model is referred to as the Single Measurement Vec-
tor (SMV), since each signal is assumed to be a single mea-
surement associated with a unique non-zero pattern of its
sparse representation (i.e. a unique combination of atoms).
The case in which all the sparse representations share the
same non-zero pattern is referred to as the Multiple Mea-
surement Vector (MMV) [8] or joint-sparsity model, as il-
lustrated in Fig. 1. For the MMV case, the following opti-
mization problem recovers more accurately the sparse rep-
resentations, by exploiting the joint-sparsity property:

X̂ = argmin
X

∥Y −DX∥2F s.t. ∥X∥0,2 ≤ T0, (3)

Fig. 1 The non-zeros (dark squares) of the sparse representations ma-
trix X for the SMV (left) and MMV (right) models.

where ∥X∥0,2 =
∑

j I(∥X(j, :)∥2) counts the number
of non-zero rows, X(j, :) is the j-th row of X and I is the

indicator function:

I(a) =

{
1 if |a| > 0

0 otherwise
.

Note that problems (1)-(3) are NP-hard and their solutions
can be approximated using convex relaxations: the l1 norm
∥x∥1 =

∑
i |xi| often replaces ∥x∥0, and the l1,p norm

∥X∥1,p =
∑

j ∥X(j, :)∥p often replaces ∥X∥0 with p = 1
and ∥X∥0,2 with p = 2.

3 Problem Formulation

Let Y ∈ RN×L be a collection of signals that are well ap-
proximated by a sparse representations model, excluding a
small number of signals - the outliers - which significantly
deviate from this model. The collection Y is described as
follows:

Y = DX+E+V, (4)

where D is assumed known, E has few non-zero columns
that equal to the deviation of each outlier from the sparse
representations model, and V is a low-energy noise compo-
nent (∥V∥2F is small compared to ∥Y∥2F ).
Our objective is to detect the outliers in Y and recover the
sparse representations. For the SMV case this objective can
be obtained by solving the following problem:

{X,E} = argmin
X,E

∥Y −DX−E∥2F

s.t. ∥X∥0 ≤ LT0

∥E∥2,0 ≤ K0, (5)

where ∥E∥2,0 =
∑

i I(∥E(:, i)∥2) counts the number of
non-zero columns in E, E(:, i) is the i-th column of E, and
K0 is the maximum number of non-zero columns (i.e. out-
liers). Problem (5) encourages a solution in which X is sparse,
however, for the outliers that cannot be represented exclu-
sively by D, it permits non-zero columns in E. For the MMV
case the objective can be obtained by solving the following
problem:

{X,E} = argmin
X,E

∥Y −DX−E∥2F

s.t. ∥X∥0,2 ≤ T0

∥E∥2,0 ≤ K0, (6)

where the constraints ensure at most T0 non-zero rows in X

and at most K0 non-zero columns in E.
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4 The Proposed Approach

The solutions to problems1 (5) and (6) can be approximated
by solving the following unconstrained convex problem:

min
X,E

1

2
∥Y −DX−E∥2F + α∥X∥1,p + β∥E∥2,1 (7)

where p = 1 for the SMV case, p = 2 for the MMV case
and α, β are a small positive scalars. In addition, ∥E∥2,1 =∑

i ∥E(:, i)∥2 is the l2,1 norm which provides a convex re-
laxation to ∥E∥2,0, and was applied in [9] for robust non-
negative matrix factorization. We propose to solve problem
(7) with the Alternating Direction Method of Multipliers
(ADMM) [10] due to the following reasons: (i) it is suit-
able for our problem format, (ii) it has proven convergence
properties, and (iii) it leads to a simple, coordinate-descent
structure. In the following we describe the ADMM method
and its application to our problem.

4.1 Alternating Direction Method of Multipliers

ADMM is a numerical method for solving problems of the
following form:

min
X,Z

f(X,Z) s.t. AX+BZ = C, (8)

where X,Z,A,B,C are matrices, and the objective func-
tion is either separable f(X,Z) = g(X) + h(Z) or bi-
convex. ADMM solves (8) by minimizing its Augmented-
Lagrangian:

LA(X,Z, µ,M) = f(X,Z)

+ < M,AX+BZ−C > +
µ

2
∥AX+BZ−C∥2F , (9)

where M is a Lagrange multiplier and µ is a penalty coef-
ficient that controls the penalty level of deviation from the
equality constraint. The minimization of LA(X,Z, µ,M) is
performed iteratively, while alternating between the mini-
mizations of X and Z:

Xk+1 = argmin
X

LA(X,Zk, µk,Mk) (10)

Zk+1 = argmin
Z

LA(X
k+1,Z, µk,Mk) (11)

Mk+1 = Mk + µk(AXk+1 +BZk+1 −C) (12)

µk+1 = ρµk; ρ > 1. (13)

ADMM can be extended to more than two variables, and its
convergence properties are analyzed in [10].

1 The observant reader may notice that problem (5) is actually sepa-
rable, implying that we can solve for each column of X independently
from the others. Nevertheless, we choose in this paper a joint solver
for two reasons: (i) Giving a unified view of the two problems (5 and
6); and (ii) Our approach loses nothing in terms of complexity nor ele-
gance when compared to the independent sparse coding tasks.

4.2 Sparse Coding with Anomaly Detection

In order to apply ADMM to solve problem (7), we add an
auxiliary variable Z and an equality constraint as follows:

min
X,E,Z

1

2
∥Y −DX−E∥2F + α∥Z∥1,p + β∥E∥2,1 s.t. Z = X.

(14)

Note that by converting (7) into a constrained problem, we
have decoupled the first and second terms of (7), thus, avoid-
ing the need for an iterated-shrinkage [16] solution for X.
The addition of the auxiliary variable Z results in a closed-
form solution for X and a one-shot shrinkage solution for Z.
The Augmented-Lagrangian of problem (14) is given by:

Lp(X,Z,E,M, µ) =
1

2
∥Y −DX−E∥2F + α∥Z∥1,p

+ β∥E∥2,1+ < M,Z−X > +
µ

2
∥Z−X∥2F . (15)

The main stages of the ADMM-based solution are summa-
rized in Algorithm 1, and in the following we describe the
update equations of Xk+1,Zk+1,Ek+1. The update equa-
tion of Xk+1 is closed-form (and derived in the Appendix):

Xk+1 = (DTD+ µkI)−1(DT (Y −Ek) +Mk + µkZk).

(16)

The update equation of Zk+1 for the SMV case is obtained
from:

Zk+1 =argmin
Z

α∥Z∥1,1+ < Mk,Z−Xk+1 >

+
µk

2
∥Z−Xk+1∥2F , (17)

which can be simplified to :

Zk+1 = argmin
Z

1

2
∥P− Z∥2F + γ∥Z∥1,1, (18)

where P = Xk+1 − 1
µkM

k and γ = α
µk . The solution to

problem (18) is the element-wise soft thresholding operator
[10]:

Zk+1 = Sγ(P), (19)

where:

Sγ(a) =


a− γ if a > γ

0 if |a| ≤ γ

a+ γ if a < −γ

.

The update equation of Zk+1 for the MMV case is given by:

Zk+1 = argmin
Z

1

2
∥P− Z∥2F + γ∥Z∥1,2, (20)
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Algorithm 1 Sparse Coding with Anomaly Detection
Solve: minX,E

1
2
∥Y −DX−E∥2F + α∥X∥1,p + β∥E∥2,1.

Input: signals Y ∈ RN×L, Dictionary D ∈ RN×M .
Mode: p = 1 for SMV or p = 2 for MMV.
Initialize: set k = 0,Z0,E0,M0, µ0, ρ, ϵ.
Repeat Until Convergence:

1. Xk+1 = argminX Lp(X,Zk,Ek,Mk, µk).
2. Zk+1 = argminZ Lp(Xk+1,Z,Ek,Mk, µk).
3. Ek+1 = argminE Lp(Xk+1,Zk+1,E,Mk, µk).
4. Mk+1 = Mk + µk(Zk+1 −Xk+1).
5. µk+1 = ρµk.
6. k = k + 1.
7. Stop if ∥Zk−Xk∥2

F

∥Xk∥2
F

< ϵ

Output: Xk,Ek.

which results in a row-shrinkage operator (as proved in [4]):

Zk+1(j, :) =

{
∥P(j,:)∥2−γ
∥P(j,:)∥2

P(j, :) if γ < ∥P(j, :)∥2
0 otherwise

,

(21)

where P(j, :) is the j-th row of P.
The update equation of Ek+1 is obtained from:

Ek+1 =argmin
E

1

2
∥Y −DXk+1 −E∥2F + β∥E∥2,1, (22)

which results in a column-shrinkage operator (similar to the
derivation of (21)):

Ek+1(:, i) =

{
∥Q(:,i)∥2−β
∥Q(:,i)∥2

Q(:, i) if β < ∥Q(:, i)∥2
0 otherwise

,

where Q = Y − DXk+1 and Q(:, i) is the i-th column of
Q.

5 Performance Evaluation

The purpose of this section is to show the usefulness of the
proposed approach, by demonstrating2 it on two very dif-
ferent real life problems: The SMV mode of Algorithm 1 is
utilized to detect irregular heartbeats in ECG signal; and the
MMV mode of Algorithm 1 is utilized for the image pro-
cessing task of specular reflectance and shadows removal
from natural images. The simulations were performed on an
i7 quad-core computer with 8GB of RAM memory.

2 All the results in this paper are reproducible with a MATLAB
package that is freely available for distribution.

5.1 Arrhythmia Detection in ECG Signals

Irregular heartbeats, know as Arrhythmia, is a collection of
several types of abnormal cardiac electrical activity. Arrhyth-
mia is detected by analyzing ECG, which is a non-invasive
technique for monitoring cardiac electrical activity. The du-
rations of ECG recordings often reach 24 hours, which pro-
moted research efforts for automatic Arrhythmia detection
algorithms, see for example [11,12]. In this experiment we
focused on the detection of one type of Arrhythmia event: a
Premature Ventricular Contraction (PVC), which is demon-
strated in Fig. 2. Sparse representations have been proposed
by [13] for ECG source separation problems, which moti-
vated the utilization of the proposed approach for Arrhyth-
mia detection: given an ECG signal that contains mostly
normal heartbeats, the key idea is to decompose the sig-
nal into all possible N -samples windows (on the order of
1 second duration) and train a dictionary that will provide
a sparse representation for these windows. Note that due to
the multiplicity and periodicity of normal heartbeats, their
corresponding windows are highly repetitive, and constitute
the majority among all windows. The dictionary is expected
to enable an accurate sparse representation for the windows
that correspond to normal heartbeats, due to their high con-
tribution to the training stage. However, the windows that
correspond to Arrhythmia events are not expected to be ac-
curately represented by this dictionary, due to their signif-
icant deviation from the normal heartbeats waveforms and
their low contribution to the training stage (due to rareness
of such events). Therefore, a possible strategy for Arrhyth-
mia detection is to solve problem (7) for the SMV case, since
each window is expected to be sparsely represent by a dif-
ferent combination of dictionary atoms, and mark columns
of E with an l2-norm above a threshold τ as irregular heart-
beats locations.
We validated our approach using the MIT-BIH Arrhythmia
Database [14] that contains a collection of 30 minutes fully
annotated ECG recordings, sampled at 360Hz. We analyzed
ECG recording #109, which includes3 40 PVC events and
2492 regular heartbeats, by extracting all possible 256-samples
windows, leading to initial signal collection dimensions of
256× 647, 745. Due to normal sinus rhythm variations in
this recording between 77 to 101, this collection was di-
vided into six segments of five minutes that were processed
independently: the dimension of all windows in a segment
was reduced from 256 to 32 by projection onto the 32 lead-
ing PCA basis vectors of the segment, and an over-complete
dictionary D ∈ R32×128 was trained using the K-SVD [15]
algorithm for each segment, as demonstrated in Fig. 4. The
SMV mode of Algorithm 1 was employed for each segment
with the following parameters: µ0 = 1.0, ρ = 1.25, α =
1.0, β = 2.6, ϵ = 0.0025, and Arrhythmia events were de-

3 http://www.physionet.org/physiobank/database/html/mitdbdir/records.htm
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tected as column in E with l2-norm above a threshold τ =

0.1 (the processing time for the 30 minutes recording was
176 seconds). Fig. 3 depicts ∥E(:, i)∥2 for the first 15 min-
utes (formed by concatenation of the results from the first 3
segments), demonstrating accurate matching between most
of the non-zero l2-norm columns and the ground truth an-
notations of this recording. Due to the randomness of the
initial dictionary used in the K-SVD algorithm, the entire
experiment was repeated 10 times, resulting in an average
of 97.18% true positive detections with standard deviation
1.89%, and an average of 2.82% false negatives with stan-
dard deviation 1.89%. Additional 13 non-PVC events were
detected on average, which corresponded to noise and wave-
form distortions.
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Fig. 2 A Premature Ventricular Contraction (PVC) event interrupts a
series of normal heartbeats in ECG recording #109 from the MIT-BIH
Arrhythmia Database [14].

5.2 Specular Reflectance And Shadows Removal From
Natural Images

The reflection of light from surfaces is associated with two
main components [17]: diffuse and specular. The diffuse com-
ponent scatters light uniformly in all directions, whereas the
specular component scatters light in a direction that depends
on the angle of incident light and the surfaces normal. Light
energy due to specular reflections is often concentrated, caus-
ing strong bright regions (highlights) to appear in the image,
as demonstrated in Fig. 6 (left column). These bright regions
can cause computer vision algorithms such as segmentation,
shape from shading, stereo, and motion detection to produce
errors. Therefore, there has been significant interest in spec-

0 5 10 15
−0.5

0

0.5

1

1.5

2

Time [minutes]

||E
(:

,i)
|| 2

 

 
||E(:,i)||

2

Ground Truth Annotations

Fig. 3 Arrhythmia detection: columns of E with an l2-norm above
τ = 0.1 indicate an ECG anomaly.

ular reflectance removal, see [18] for a review. According to
Phong shading model [17], the intensity of the diffuse com-
ponent at image pixel k is given by:

ik(λ) = L(λ)ρk(λ)max(0, n̂k · v̂), (23)

where λ is the wavelength (color), L(λ) is the intensity pro-
file of incident light, ρ(λ) is the albedo, n̂ = [nx, ny, nz]

T

is the surface normal, and v̂ = [vx, vy, vz]
T is a unit vector

pointing to the direction of incident light. Equation (23) is
interpreted as follows: The measured intensity is given by
the product of the source intensity, the albedo and the co-
sine of the angle θi between the surface normal and direc-
tion of incident light. In the case that |θi| > π/2 the inten-
sity equals zero, which results in a self-shadow4 effect. By
column-stacking m pixels, and neglecting the self shadow-
ing effect (i.e. allowing |θi| > π/2), the following matrix
formulation is obtained:

i(λ) = N(λ)v̂ ∈ Rm×1, (24)

where

i(λ) =

i1(λ)i2(λ)
...

 ∈ Rm×1,N(λ) =

L(λ)ρ1(λ)n̂
T
1

L(λ)ρ2(λ)n̂
T
2

...

 ∈ Rm×3.

(25)

Given a collection of K images of a diffuse object, pho-
tographed from the same view-point and under varying light
source directions, the following rank-3 model is obtained:

I(λ) = N(λ)V, (26)

4 This is in contrast to cast-shadows, where one part of an object is
shadowed by another part.
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Fig. 4 ECG dictionary:16 atoms of one ECG segment, displayed after reconstruction using the 32 leading PCA basis vectors of the segment.

where

I(λ) =

i1(λ)i2(λ)
...

 ∈ Rm×K ,V = [v̂1, · · · , v̂K ] ∈ R3×K .

(27)

Therefore, the diffuse component can be modeled by a low-
dimensional subspace, and the works [19,20] proved that the
dimension of this subspace is upper bounded by 9. The basis
for this subspace can be computed from the PCA basis of the
images. However, specular components and shadows are not
represented by this subspace. Therefore, we can solve prob-
lem (7) with the MMV mode, in order to decompose the
images Y (each column of Y is one column-stacked image)
into diffuse components DX, and specular components and
shadows E as follows: the diffuse components of all images
are expected to be jointly-sparse with respect to the PCA
basis D, whereas the specular components and shadows are
assumed to appear in a subset of the images, thus, by mini-
mizing ∥E∥2,1 the columns of E would contain those parts
of the images that do not conform with the joint-sparsity
model. In our experiment we used a collection of 37 images
(195× 317 pixels) of a wrist watch, photographed from the
same view-point and using 37 different illumination condi-
tions. We computed the PCA basis of Y ∈ R61,815×37 and
used it as the dictionary D. We further employed Algorithm
1 and set p = 2, α = 4.5, β = 0.5, µ = 0.05, ρ = 1.15, ϵ =

10−10. Fig. 4 presents convergence of the algorithm within

35 iterations (processing time was 22 seconds) to a joint-
sparsity pattern with 3 non-zero rows (a 3-dimensional sub-
space). Fig. 6 presents specular reflectance removal results
(best viewed in the electronic version of this paper) for five
images: the obtained diffuse components (equal to DX(:, l),
where l is the corresponding index of each input image) are
free of specular reflections and the shadows are significantly
removed.
For the case of color images, the low-dimensional subspace
model still holds since for a certain image pixel, only the
albedo and incident light intensity are color (wavelength)
dependent. Using an RGB color representation we obtain
the following model:

iRGB =

i(R)
i(G)

i(B)

 =

N(R)v̂
N(G)v̂

N(B)v̂

 =

N(R)
N(G)

N(B)

 v̂ ∈ R3m×1.

(28)

Given a collection of K color images of a diffuse object,
photographed from the same view-point and under varying
light source directions, a rank-3 model is obtained, similar
to equation (26). Fig. 7 demonstrates specular reflectance
and shadows removal results for color images: the obtained
diffuse components are free of specular reflections and the
shadows are significantly removed.
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Fig. 5 Specular reflectance removal convergence: (a) number of non-

zero rows in X, (b) approximation error ∥Zk−Xk∥2
F
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.

Fig. 6 Specular reflectance removal: input images (left), diffuse com-
ponents (center) and specular components (right).

6 Conclusions

Sparse coding and anomaly detection are important tasks,
with numerous signal processing applications. This paper
presented a unified approach for simultaneous sparse coding
and anomaly detection for both jointly-sparse and independently-
sparse signal models. The usefulness of the proposed ap-
proach was demonstrated for two challenging real-life prob-

Fig. 7 Specular reflectance and shadows removal from color images:
input images (left), diffuse components (center) and specular compo-
nents (right).

lems: Arrhythmia detection in ECGs and specular reflectance
removal from natural images. Due to the constantly growing
number of signals that are well modeled by sparse represen-
tations, the proposed approach could be combined in many
existing and emerging applications.

7 APPENDIX

The update equation for Xk+1 is obtained by solving:

min
X

1

2
∥Y −DX−Ek∥2F+ < Mk,Zk −X > +

µk

2
∥Zk −X∥2F .

(29)
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The solution of (29) is computed from:

∂

∂X
(
1

2
Tr{(Y −DX−Ek)(Y −DX−Ek)T }

+ Tr{(Zk −X)TMk}+ µk

2
Tr{(Zk −X)(Zk −X)T }) = 0,

(30)

which results in:

DT (Y −DX−Ek) +Mk + µk(Zk −X) = 0, (31)

and the update equation is given by:

Xk+1 = (DTD+ µkI)−1(DT (Y −Ek) +Mk + µkZk).
(32)
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