
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Style Transfer Via Texture Synthesis
Michael Elad and Peyman Milanfar

Abstract— Style transfer is a process of migrating a style from a
given image to the content of another, synthesizing a new image,
which is an artistic mixture of the two. Recent work on this
problem adopting convolutional neural-networks (CNN) ignited
a renewed interest in this field, due to the very impressive results
obtained. There exists an alternative path toward handling the
style transfer task, via the generalization of texture synthesis
algorithms. This approach has been proposed over the years, but
its results are typically less impressive compared with the CNN
ones. In this paper, we propose a novel style transfer algorithm
that extends the texture synthesis work of Kwatra et al. (2005),
while aiming to get stylized images that are closer in quality to
the CNN ones. We modify Kwatra’s algorithm in several key
ways in order to achieve the desired transfer, with emphasis
on a consistent way for keeping the content intact in selected
regions, while producing hallucinated and rich style in others.
The results obtained are visually pleasing and diverse, shown
to be competitive with the recent CNN style transfer algorithms.
The proposed algorithm is fast and flexible, being able to process
any pair of content + style images.

Index Terms— Style transfer, texture synthesis, patch
matching, segmentation, convolutional neural networks, tree
nearest-neighbor, image segmentation.

I. INTRODUCTION

STYLE transfer is a process of migrating a style from one
image (the Style-Image) to another (the Content-Image).

The goal is to synthesize a new image which is an artistic
mixture of content and style. In order to illustrate this task,
Figure 1 presents the style transfer results obtained by the
algorithm proposed in this work, applied on content+style
pairs. At its core, this transfer task is not well-defined, and
as such it could be interpreted and addressed in various ways.
More specifically, this fusion is not accompanied by clear
answers to questions such as:

• Which parts of the content should be preserved (and to
what extent) and which discarded or modified?

• Should the content image be allowed to modify its local
contrast as part of the transfer?

• Should edges and/or other elements in the content image
be allowed to shift and if so how?

• Which color palette should the output adopt?
• How far should the hallucination be allowed to go in the

regions where content is of no importance?

Manuscript received September 9, 2016; revised January 31, 2017; accepted
February 27, 2017. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Aljosa Smolic.

M. Elad is with the Computer Science Department, Technion - Israel
Institute of Technology, Haifa 32000, Israel (email: elad@cs.technion.ac.il).

P. Milanfar is with Google Research, Mountain View, CA 94043 USA
(email: milanfar@google.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2678168

Fig. 1. Style Transfer Examples: Content (left), Style (middle), and the
style transferred result (right) obtained by the proposed algorithm.

• Which parts from the style-image qualify as ’style’ to be
used, and which should be disregarded?

• Where do we draw the line between ’copying’ of style
and ’hallucination’ of it?

• Perhaps the most important question of all: What
constitutes a successful style transfer result?

Clearly, these are fundamental issues that govern the outcome
expected from style transfer methods. Indeed, various algo-
rithms were proposed over the years for handling this problem,
each based on a different view of the style transfer goal.
These methods provide either explicitly, or much more often,
implicitly, answers to these questions, in their attempt to obtain
visually pleasing fusion results.

Broadly speaking, the literature offers two distinct
approaches for handling the style transfer problem: The first
is generalization of classic texture synthesis methods, e.g.,
as practiced in [2] and [3]. These algorithms are based on
local patch-matching and their aggregation. An alternative path
towards handling style transfer emerged recently, basing the
transfer process on Convolutional Neural Networks (CNN)
[36]–[39]. Interestingly, these methods as well draw their
core intuition from texture synthesis, but one that is obtained
using convolutional neural networks [35]. There are also a few
exceptions to these two main activities [21]–[29]. While we
do not aim to give here a broad survey of all these existing
methods, we shall expand on a few milestone contributions
in this field in Section II, where we discuss past work, and
especially contributions that are relevant to the algorithm
proposed in this paper.

Our work addresses the style transfer problem by returning
to the classic texture synthesis route, leaning on the vast

1057-7149 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON IMAGE PROCESSING

knowledge accumulated in this field, while aiming to get
visual results that are on par with recently proposed methods.
Indeed, one could consider the style transfer task as a
generalization of texture synthesis, in which the content
image influences the otherwise regular synthesis process.
This view has been proposed already in the seminal work by
Efros and Freeman (2001) to a limited extent [2]. More
recently, Frigo et al. (2016) proposed the ‘Split and Match’
approach for achieving the same goal, via an adaptive
Quad-Tree division of the content image domain into patches,
and quilting matched-pieces taken from the style merged
by belief-propagation [3]. The results in this work are far
better than those of [2], getting closer to those obtained
by Gatys et al. [36], while being based on a much simpler
procedure. Still, the obtained images do not contain strongly
hallucinated style elements, as the algorithm forces patches
from the content to match those of the style.

In this work we propose a novel style transfer algorithm that
relies on the texture synthesis work of Kwatra et al. [1]. This
method has been chosen as the foundation for our algorithm
due to its elegance, simplicity, and excellent results. Still, we
believe that alternative texture synthesis methods could be
adapted for the transfer goal in a similar fashion. We modify
Kwatra’s algorithm in several key ways in order to achieve the
desired style transfer. These include:
1. An initialization of the algorithm by the content image,
augmented by very strong noise, in order to both tie the result
to the content in selected areas, while enabling it to depart
from it elsewhere.
2. Applying color-transfer from the style to the content within
the iterative process, in order to preserve the richness of the
style in the final outcome and avoid repetitive patterns, and
the most important of all,
3. Merging the intermediate result with the content image
in selected areas, applied in the patch-aggregation step in
each iteration. This is based on a segmentation algorithm that
defines the importance of content regions.

Indeed, one interesting positive feature of our solution is
that if our algorithm is applied to an empty content-image,
it reduces gracefully to be Kwatra’s classic texture synthesis
algorithm, applied on the style image. Figure 2 presents such
hallucination results for several style images.

Addressing the questions posed above, our algorithm’s
answers are far more explicit than those given by CNN
methods, and these answers are the following:
1. Content to be preserved? We propose using a segmentation
algorithm, deployed on the content image as a pre-process,
and clearly defining the regions to be preserved and the extent
of this preservation. Local contrast modifications are allowed
as part of a pre-process stage.
2. Shift of edges and/or other elements? Our answer is mostly
negative - edges and other objects in the segmented areas
remain in their original locations in the content image, but
may deviate slightly due to the patch-matching applied.
3. Color palette? While our method has the flexibility of
transferring the color from the content to the style, or adopt
any other palette of choice, the results we shall present in
this paper correspond to histogram matching that transfers the

Fig. 2. No-Content Style Transfer: Style image (left), and its hallucination
result (right) by Style transfer applied with an empty content image.

palette from the style to the content only. The reason for this
choice is the tendency of style images to be much richer in
their color expression, offering a more stable palette to rely on.
4. How far can the hallucination go? As opposed to other clas-
sic texture synthesis based methods (and even the recent [3]),
we allow the created image to depart from the content-image,
and create random combinations of elements from the style,
as seen in Figure 1. This is one of the prime sources for the
high-quality and artistic results obtained with our method.
5. Parts in the style-image qualifying as ’style’? We consider
every detail in the style image as a candidate for being used in
the fusion outcome. The chosen pieces are eventually decided
upon based on the randomized matchings done, and influenced
by the regions in the content that are allowed to drift. This
answer should not be taken lightly, as, for example, if the style-
image contains faces, they are likely to appear in the stylized
result, and we will consider this as a successful outcome.
If this is an undesired effect, it can be easily controlled by an
additional mask that marks the permitted regions to be used
from the style. While we do not provide examples for such
masking, it is a simple extension to the work reported here.
6. Copying versus hallucination? Being a texture synthesis
based algorithm, our method essentially merges patches from
the style-image. This might be substantially different from
CNN-based methods that are likely to synthesize unseen
structures (a questionable property). Therefore, elements of
the style are copied in our method. Nevertheless, measures for
avoiding copy of large pieces are taken, by pushing the image
to keep its color diversity, and by working with varying scales
and varying patch sizes.
7. Successful results? While the proposed algorithm is robust
and consistent, it does not mean that each produced result
can be considered as a successful one. The quality of the
outcome depends primarily on the success of the segmentation
algorithm to keep the important content from being overridden.
Other factors that govern the output quality are the match
between the content image and the style in terms of the palette
imposed, and the match between the content details and the
scale of objects found in the style image. We shall elaborate

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 3

on each of these factors in the results section, accompanying
these explanations with failure examples.

The results we obtain with the proposed algorithm
are competitive with the recent style transfer algorithms,
CNN [36]–[39] or texture synthesis based [3]. The created
images are visually pleasing, containing rich and diverse
hallucinated parts brought from the style, while keeping the
essence of the content intact. In terms of the computational
complexity, the most demanding part of the algorithm is the
patch-matching that takes place in the very last full-resolution
iterations. The run-time for the whole process in a direct
Matlab (no Mex) implementation stands at 25 − 30 seconds
for an image of size 400 × 400 pixels.

This paper is organized as follows: In Section II we describe
past work related to the task of style transfer, aiming to provide
background to the method we present in this paper. Section III
outlines all the ingredients of our proposed algorithm, tying
them carefully to Kwatra’s work [1]. Section IV brings a series
of results, demonstrating the various aspects of the proposed
algorithm and showing its success and failure results. In this
Section we also discuss several key features of the proposed
method in light of the results shown. In Section V we conclude
this work and highlight possible extensions.

II. PAST WORK ON STYLE TRANSFER

One of the earliest works related to our topic of style
transfer is reported in [2]. This paper by Efros and Freeman
belongs to the branch of texture synthesis based methods
– algorithms that aim to synthesize textured images based
on a given texture example (e.g. see [4]–[7]). This paper
suggested a patch-quilting procedure for texture synthesis, and
then showed how to extend it to target a closely related goal
of texture transfer (rather than style transfer). Their view of
the style transfer task was more conservative, assuming that
general shades of the given content image are to be reproduced
by tiling patches from a given texture image. Merging the
patches over their overlaps was proposed to be done by finding
optimal seam-curves between adjacent patches which exhibit
minimum variation. Later work by Freeman in a different
context (example-based super-resolution) [19], [20] replaced
this patch merging procedure with a better one based on a
Belief-Propagation (BP) approach. BP serves as a combinato-
rial approximate solver for a minimization procedure, seeking
the best patch assignments among few neighbors per each
location so as to get the smoothest outcome.

These works have been followed by many, most of which
studied the problem of texture synthesis, aiming to generate
a pseudo-random texture image from a given texture example
with a high visual quality outcome. One of these follow-up
works is the paper by Kwatra et al. [1], which proposed
a very effective texture synthesis approach, relying on the
same core principles as in [2] of patch matching and their
fusion. Kwatra et al. adopted a global optimization point of
view, of seeking an overall synthesized image that would give
the minimal accumulated local distance to patches extracted
from the example texture. This task has been broken into
two stages, in the spirit of the EM (or K-Means clustering)
algorithm [40], in the first stage freezing the current global

image and seeking the best patch-matches, and in the second
freezing the found matches and seeking to update the global
image aggregating all these chosen patches. Their proposed
algorithm has been shown to lead to high quality texture
synthesis when applied sequentially on several patch sizes
from large to small, iterating the EM method several times per
each. Further improvement to this method is their suggestion
to operate on a Gaussian pyramid of the destination image.
As we shall see in section III, we shall adopt all these ideas
and extend them to develop our style transfer method.

A parallel activity that addressed synthesis of stylized
images is the one based on analogies, e.g., the work reported
in [16]–[18] and [48]. The problem statement is somewhat
different from the one discussed here, as it relies on the
availability of an input image and its stylized result. Based
on such an example pair, given a new content image we aim
to apply the transfer in analogy to the example-pair given. We
shall not discuss this branch of activity further in this work,
as it deviates from our problem.

We skip more than a decade to describe a very recent and
impressive paper by Frigo et al. [3] that suggests a style
transfer algorithm via texture synthesis. Their approach, to a
large extent, can be considered as a direct followup of the work
reported in [2], [19], and [20], adapted to include the influence
of the content image. Thus, whereas these papers used fixed-
size patches and belief-propagation to merge them properly,
Frigo et al. offer to divide the image domain adaptively
into squares, driving this adaptive quad-tree division by the
distance to the nearest neighbor in the style image and the
inner variance of the content patch. The results obtained by this
method are far better than those appearing in [2], but still lack
hallucination ability, as each patch must be close enough to
the content patch it covers. In that respect, this work’s results
tend to be more of a texture than style transfer.

In 2015 Gatys et al. proposed a brilliant and very different
style transfer method that was shown to lead to very
impressive results [36]. Their approach to the problem was
the first to adopt a pre-trained CNN [34], as the means
for extracting features from both the style and the content
images. Interestingly, their work was based on earlier effort
to use CNN for handling the texture synthesis problem [35],
and so we see the same pattern of building a texture synthesis
algorithm, and then generalizing it to obtain style transfer.

Gatys et al. posed the style transfer problem as an energy-
minimization task, seeking an image close to the content
one, while also providing correlation-map that is close to that
obtained by the style image – all measured in the VGG feature
domain [34]. This method essentially reverses the CNN, seek-
ing an input image based on the features desired, and as such,
leading to quite a demanding numerical optimization. Note that
while the objective function in Gatys’ work is very clearly
defined, it serves only as a proxy to answer the questions
posed above about the nature of the fusion to apply. Results
of this method were shown to be very daring, going well
beyond simply texturizing the content image (see Figure 1),
and allowing the creation of images that could be perceived
as high-quality art. Naturally, this ignited a renewed interest
in the problem of style transfer, and especially in the use of

4 IEEE TRANSACTIONS ON IMAGE PROCESSING

CNN for this purpose. The work reported in [37]–[39] present
various improvements, mainly in speed, over Gatys’ method,
by training a feed-forward network to achieve the overall goal,
while training it using Gatys’ penalty function. We will not
expand on this further. While we do not adopt any of the
features that characterize these algorithms in our proposed
method, we are strongly influenced and inspired by the kind
of results these methods obtain, and we shall aim to get close
to the flavor of those results while keeping the algorithm a
classic (patch-matching) texture synthesis oriented one.

III. THE PROPOSED ALGORITHM

In this section we describe in detail the proposed style trans-
fer algorithm. As explained earlier, many of its ingredients are
borrowed directly from Kwatra et al. [1], and thus we shall
clearly define the changes that brought us to handle the transfer
task.

A. Energy Minimization Point-of-View

We start by defining the core objective of our algorithm:
We are given a content image1 C ∈ R3Nc , and a style image
S ∈ R3Ns . These two images are accompanied by a segmenta-
tion mask W ∈ [0,∞)Nc that marks the importance of pixels
in the content image, in terms of its parts to be preserved.
More on this mask will be brought later in this Section. Our
goal is the creation of the image2 X that would minimize the
following series of energy functionals:

EL ,n
{

X
} = 1

c

∑

(i, j)∈�L,n

Min
(k,l)

∥
∥
∥Rn

i j X − Qn
kl D

S
L S

∥
∥
∥

r

2
(1)

+ ‖DC
L C − X‖2

W + λρ{X }.
The first term is very similar to the formulation of the problem
as posed in Kwatra’s work [1], although it may seem a little
bit different due to our notations.3 The operators DC

L and DS
L

stand for down-scaling4 of X (and C) and S, for operating over
a Gaussian pyramid of our images. Assume for now that we
operate in the native resolution of the images, using DC

1 = I
and DS

1 = I, and thus our goal is

E {X} = 1

c

∑

(i, j)∈�

Min
(k,l)

∥
∥
∥Rn

i j X − Qn
kl S

∥
∥
∥

r

2
(2)

+ ‖X − C‖2
W + λρ{X }.

The operator Rn
i j denotes the extraction of a patch of size

n from location (i, j) in the image X . This term expresses
our desire that the image X should be such that every patch
of size n extracted from it from location (i, j) would be
close to a patch of the same size extracted from S. The

1All the computations in our algorithm are performed in the RGB domain,
and thus the factor 3 in the definition of the content and style images.

2Eventually, X should be an image of the same size as C , but we define a
series of optimization tasks that operate in several scales of the problem, and
thus X’s size varies across the algorithm stages.

3The notation ‖v‖2 stands for the standard L2-norm (‖v‖2
2 = vT v), while

‖v‖W is a weighted L2-norm (‖v‖2
W = vT Wv).

4Since these two image may be of different sizes, different matrix operators
are attributed to each.

operator Qn
kl represents the patch extraction from the style

image, and within this minimization procedure, both X and all
the assignments (k, l) (for patches of size n) are considered
as unknowns. The coefficient 1/c normalizes the first term by
taking into account the level of overlap between the aggregated
patches in X .

The summation over (i, j) is done over �. While this
domain could consider fully overlapped patches and cover
each and every pixel in the support of the image X , we choose
to force these matchings over a decimated grid of points,
in order to reduce computations. This means that we skip a
constant number of rows/columns from one patch-match to
the other. Also, as in [1], the local patch errors are put to the
power r (=0.8) instead of the usual L2 squared term in order
to get a robust patch aggregation over the overlaps.

We now bring back the two hyper parameters governing
the energy functional – n and L. These correspond to our
desire to force the matching of X to patches from the style
image using several patch-sizes n, and over several scales
(L = 1, 2, . . . , Lmax). The patch sizes we use are
n1, n2, . . . , nm , and this guarantees that several element-
sizes of the style features are adopted in the style transfer.
Furthermore, the entire penalty is enforced over several scales
of the content and style images, in order to get better
minimization. Each choice of these two parameters yields a
different energy function, and our overall algorithm will handle
this chain of functionals sequentially in order to obtain the final
outcome.

As for the other parts of the expression in Equation (1),
the second term enforces the content parts marked by the
segmentation map of the final image, in the proper scale of the
pyramid. The third term is the (−) log of the prior, forcing X
to obey general image statistics, essentially driving X (in all
the resolution layers of its pyramid) to be spatially smooth.

Our goal is to find the image minimizing the above energy
functional for the smallest patch-size nm and the maximal
resolution layer L = 1. In order to better direct the solver and
avoid local minimum, our approach is iterative and sequential,
minimizing a chain of intermediate energy functionals that
sweep through the scales and the patch-sizes, generating a path
of refined solutions this way. For simplicity of the presentation,
we shall concentrate at the moment on a subproblem in which
only one patch-size is used, and the penalty considers only
the native resolution of the handled images (i.e. no pyramid
decomposition). Later on we shall discuss these two effects
and their influence on the overall algorithm.

B. The EM Optimization Structure

With the omission of the patch-sizes and the pyramid
decomposition, our target optimization problem is therefore,

Min
X

1

c

∑

(i, j)∈�

Min
(k,l)

‖Rn
i j X − Qn

kl S‖r
2 + ‖X − C‖2

W + λρ{X }.

(3)

The approach we shall take in handling this problem is
block-coordinate-descent, in which we sequentially freeze
some of the unknowns and update the others, and repeat this

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 5

strategy for several iterations. Kwatra et al. suggested the very
same strategy, explained to be an Expectation-Maximization
treatment to the problem at hand [1].

First, assume that X is fixed and known, and our goal is to
find the best matched-patches from the style image. In this case
the problem decomposes into a set of separable optimization
tasks of seeking for each patch Rn

i j X its closest neighbor in
the style image. These problems read

{k∗, l∗} = Min
(k,l)

∥
∥
∥Rn

i j X − Qn
kl S

∥
∥
∥

2
, (4)

and the patch matched to Rn
i j X would be zi j = Qn

k∗,l∗ S. The
distance measure to be used is L2, and we shall discuss fast
ways to implement this search later in this Section.

Having found the best matches to the style image, those are
kept fixed, and our goal now is to update X by solving

Min
X

1

c

∑

(i, j)∈�

∥
∥∥Rn

i j X − zi j

∥
∥∥

r

2
+ ∥

∥X − C
∥
∥2

W + λρ{X }. (5)

We handle this task by the Plug-and-Play approach [42]. First,
we modify the format of the problem to be

Min
X ,Y

1

c

∑

(i, j)∈�

∥
∥
∥Rn

i j X − zi j

∥
∥
∥

r

2
+ ∥

∥X − C
∥
∥2

W + λρ{Y }

s.t . Y = X . (6)

Then we use the Augmented-Lagrangian algorithm to handle
the constraint, resulting in

Min
X,Y

1

c

∑

(i, j)∈�

∥
∥∥Rn

i j X − zi j

∥
∥∥

r

2
+ ∥∥X − C

∥∥2
W

+ λρ{Y } + μ
∥
∥X − Y + U

∥
∥2

2 , (7)

where U serves as the Lagrange multiplier vector for the
set of constraints. ADMM (Alternating Direction Method of
Multipliers) solution of the above is done by updating X ,
Y , and U iteratively using the block-coordinate descent [41],
resulting in the following steps:

Step 1: Update of X while keeping Y and U as known,

Min
X

1

c

∑

(i, j)∈�

∥
∥
∥Rn

i j X − zi j

∥
∥
∥

r

2
+ ∥

∥X − C
∥
∥2

W

+ μ
∥
∥X − Y + U

∥
∥2

2 . (8)

This problem is handled by the Iterative Reweighed Least
Squares (IRLS) [43], in which we modify the r power of the
L2 into 2 by adding pseudo-weights, and then solving the
obtained quadratic expression as a simple patch-aggregation
procedure. More specifically, in the kth iteration we have the
temporary solution X̂ k and we compute the weights

wi j =
∥
∥∥Rn

i j X̂ k − zi j

∥
∥∥

r−2

2
, (9)

with which we redefine our task as

Min
X

1

c

∑

(i, j)∈�

wi j

∥
∥∥Rn

i j X − zi j

∥
∥∥

2

2
+ ∥

∥X − C
∥
∥2

W

+ μ
∥
∥X − Y + U

∥
∥2

2 . (10)

This has a closed form solution,

X̂ k+1 =
⎡

⎣1

c

∑

(i, j)∈�

wi j (Rn
i j)

T (Rn
i j) + W + μI

⎤

⎦

−1

·
⎡

⎣1

c

∑

(i, j)∈�

wi j (Rn
i j)

T zi j +WC + μ(Y − U)

⎤

⎦. (11)

Putting aside the role of the Lagrange multiplier (assigning
μ = 0), this expression suggests to aggregate all the
patches zi j into their locations in the overall image by
weighted averaging governed by wi j , and then applying a
weighted average of this outcome with the content image by
selectively choosing the regions highlighted by W. This whole
iterative process should be applied several times (10 iterations
in our experiments) to obtain the final solution for X .

Step 2: Update of Y while freezing X and U by

Min
Y

λρ{Y } + μ‖X − Y + U‖2
2, (12)

which is simply a denoising procedure applied on the image
X +U with the assumption that the noise level is λ/μ. Notice
that so far we refrained from defining the choice of ρ{X}, and
now the reason becomes clear. The choice of the denoising
algorithm is our way of choosing which prior to be used.
This way, we may invoke highly effective denoising algorithms
without explicitly defining ρ. This is the essence of the Plug-
and-Play Prior method as proposed in [42]. In this work we
chose to apply the Domain-Transform filtering [44], a fast
approximation algorithm for the bilateral filter.

Step 3: Update of U should be done by the Augmented
Lagrangian approach [41], of U = U + X − Y .

In the special case in which the prior is removed, our prob-
lem becomes simpler, and its solution can be approximated by
IRLS directly. A further shortcut can be proposed in this case,
in which the overall optimization we treat,

Min
X

1

c

∑

(i, j)∈�

∥∥
∥Rn

i j X − zi j

∥∥
∥

r

2
+ ∥∥X − C

∥∥2
W (13)

could be broken into two, much simpler, parts. In the first
of these we minimize the first term only, resulting in the
temporary result X̃

X̃ = Argmin
X

∑

(i, j)∈�

∥
∥
∥Rn

i j X − zi j

∥
∥
∥

r

2
. (14)

This can be done using the very same IRLS as used by
Kwatra [1]. Then the solution to the overall problem can be
approximated as

X̂ = (W + I)−1(X̃ + WC). (15)

Note that this approach is perfectly exact when r = 2, since
in this case we have that 1

c

∑
(i, j)∈�(Rn

i j)
T (Rn

i j) = I.
Still in the spirit of simplifying things, we can now bring

back the prior and deploy it as a denoising post-process stage
on the resulting image X̂ . Indeed, all the results we shall
present later on refer to these numerical shortcuts.

6 IEEE TRANSACTIONS ON IMAGE PROCESSING

C. Multi-Scale and Multi-Patch Sizes

All the above processes should be applied to varying patch-
sizes and to several resolution scales of the images involved
(X , C , and S). One could imagine merging all these energy
functionals together into one holistic term to be minimized,
but this is not the path taken here. We deploy a sweep over
the patch sizes and over the scales sequentially. This has the
spirit of the stochastic gradient descent approach, where each
patch-size and resolution level contributes its influence to the
final outcome separately, thus leading to a better steady-state
final result, with better chances of avoiding local minima.

The proposed sweep over the patch sizes and the scales is
done only for one round, starting from the coarsest resolution
down to the native one, and for each such resolution sweeping
through patch sizes from the largest to the smallest. For each L
(resolution level) and n (patch-size) we apply a fixed number
of outer iterations to update X and the patch-assignments
{(k, l)}, and within each of these we apply 10 inner iterations
to solve the IRLS problem. Each sub-optimization problem
is initialized with the output of the preceding optimization,
with an option to lead to randomized overall results by adding
strong noise to the temporary solution at the beginning of the
processs in each resolution later. The very first of all these
optimization steps is initialized by the content image with very
strong additive Gaussian noise (σ = 50), so as to enable the
algorithm to match patches daringly.

This process serves our overall goal of getting a fast end-
to-end style transfer process that gradually refines the result.
One refinement effect is in terms of the spatial resolution of
the resulting image, as we go from the coarsest to the finest
resolution layer. A second refinement effect is obtained by
starting with big patches (33 × 33) and moving gradually
to smaller and smaller ones (21 × 21, 13 × 13, 9 × 9, and
possibly going down to 5 × 5), which gives the ability to
the algorithm to adopt large elements from the style image,
while refining and modifying them locally. The third and
perhaps the most important refinement effect corresponds to
the influence of the content image. The details of the content
are consistently pushed into the temporary result, weighted
by W, and influencing the hallucination results obtained,
delicately in regions where W is low, and more pronounced
in regions where W is high. This way, important regions in
the result never depart too far from the content image, while
less important regions are allowed to drift and hallucinate.

D. Segmentation and Its Role

While the computation of the segmentation mask W could
be considered as outside the scope of this work, we do
mention briefly several options we experimented with. We
should note that each of these methods has its own strengths
and weaknesses, and there is no clear choice between them
for our purposes. The tested methods are the following:

1) Edge-Based Segmentation: Per each pixel in C we may
accumulate all the local gradient vectors as a matrix G of size
n2 × 2, where the accumulation neighborhood is n × n pixels.
Computing the two singular values of this matrix (there is
a closed form expression for these in this case) provides

information about the local coherence and contrast (see [46]
for more details). Thresholding both these measures, we can
obtain a map of the consistent and strong edges in G. A region
filling over this result leads to one segmentation option we
have experimented with. We shall refer to this as Edge-Based
Segmentation.

2) Affinity-Based Segmentation: For the image C (that has
Nc pixels) we can build an Nc × Nc affinity matrix A that
corresponds to the interrelations between its pixels. We con-
sider for example the affinity matrix obtained for the bilateral
filter [44], [45], built by assessing distances between the pixels
in both spatial and radiometric domains. Given this matrix,
its second eigenvector serves as a candidate segmentation of
the image. While this process may sound computationally
daunting, numerical shortcuts based on very sparse sampling
of the rows of A and the Nystrom method make this process
fast and effective. We shall not expand on this approach here,
as it is not included in the reported experiments.

3) Face-Detection Based Segmentation: Most of the images
taken by cell-phones and which would be candidates for style
transfer contain faces. One would even go to the extreme
of claiming that most of these are selfies. The above two
segmentations are entirely oblivious to faces, and this means
that we may ruin identifiability of the people photographed if
not segmented well. For such cases, our experiments included
yet another segmentation method that starts by detecting faces,
and then searches for the bodies to connect to these faces,
finalizing the segmentation by a grabcut algorithm [47]. We
shall refer to this as Face-Based Segmentation.

Could we do without segmentation altogether? The answer
is not conclusive. We shall present such results in which W
is set to be a constant image of value 0 < α < ∞. When
α = 0, we get texture synthesis, hallucinating an image
built from the style image alone, without any influence of
the content image. When α → ∞, we force the content
so strongly so as to prevent the algorithm from achieving
any transfer of the style. For intermediate values we do get
texturization of the image, but our experiments indicate that
often times, this process does not end with visually pleasing
results.

One may question how CNN-based style transfer algorithms
can operate without an explicit segmentation. We speculate
that the answer is that this segmentation exists within the VGG
network implicitly. This highlights two interesting and critical
differences between our solution and CNN based ones:
1. On the positive side, our algorithm is built of clear and
simple building blocks, and as such, the influence of its
ingredients (e.g., the chosen patch-sizes, segmentation and
its effect, and practically every other piece of the algorithm)
on the final outcome is rather clear. This helps in adjusting
the algorithm’s parameters and providing meaningful knobs
to control the results obtained.
2. On the negative side, CNN based style transfer methods
permit themselves to go into the important content parts and
modify them. Most often, this is done delicately, leading to
pleasing results. Our current solution is slightly different as
it is likely to less influence these regions, providing only a
delicate texturizing effect. We consider this as a shortcoming

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 7

of our method and we intend to invest more in addressing it
in our future work.

E. Color Transfer

The above described algorithm operates fully in the RGB
domain. One may envision modifying it to work only on the
luma channel, while modifying the chroma channels indepen-
dently, but we leave this for future work.

As already mentioned in the Introduction, the resulting
image palette could be controlled to be anything desired.
In particular, it could be adopted from the style, kept faithful
to the content image, or be anything else chosen. The key is
to pre-process the incoming images C and S, bringing them
both to common grounds of sharing the same palette before
the optimization process starts. While we experimented with
several such options, we found that in most cases the palette
of S is far richer than that of C , and thus aligning with it tends
to lead to better visual results.

Palette matching is critical not just as a pre-process stage,
but also within the iterative refinement algorithm. The reason
is the desire to force the algorithm to preserve the diversity
offered by the style image, avoiding a partial use of its
wealth. Indeed, each round (optimization of EL ,n for a specific
resolution layer and patch-size) is followed by rematching the
result to the destination palette. As an example, in the popular
starry-night style image, there are yellowish stars of different
sizes. Without the re-projection onto the palette, a solution
may avoid the use of the yellow parts altogether, giving a less
daring result.

The actual palette matching can be done by a direct
histogram matching, by a simpler parametric method
that aligns the moments of the colors span, and other
techniques [30]–[33]. All the results shown in this work
were obtained with the histogram matching supported by
Matlab (imhistmatch). In some cases in which the style
image is not rich enough or tends to overemphasize a specific
unnatural color, this may inflict on the results, rendering
them unpleasant. Another possible problem takes place when
the style image has a large dark region. In such cases we
essentially force the same relative darkness on the output
images, often times resulting in unpleasant results.

The above comments suggest that prior to activating the
style transfer algorithm, the chosen style images should be
carefully picked and pre-processed, so as to increase chances
of success of the transfer task. Still in the same spirit to
this line of thinking, our algorithm considers all the elements
within the style image as style, without an ability to distinguish
between artistic styled patches and other objects. As such,
if, for example, the style image contains faces or other
distinguishable features, they are very likely to be used in the
style transfer, appearing in random locations and in different
contexts. As mentioned in the Introduction, this can be easily
managed by masking some regions of the style image.

F. Fast Nearest Neighbor (NN) Used

The most computationally intensive part of the proposed
algorithm is the patch matching, solving problems of the

form

(k∗, l∗) = Min
(k,l)

‖Rn
i j X − Qn

kl S‖2. (16)

Posed differently, the patches of the style image can be pre-
organized for each resolution layer and each patch size, into
a matrix PL ,n of size n × ML ,n , where ML ,n is the number of
possible patches. Denoting xi j = Rn

i j X , our goal is to find the
column in PL ,n that is closest to this vector. Many methods
exist for handling this problem efficiently (e.g., [8]–[15]), and
it is beyond the scope of this work to explore all these options.
Our approach to the problem is to reduce dimensions in both
axes of P, reducing the vectors dimensions, n, and reducing the
need to linearly compare xi j with each of the ML ,n columns.

The data dimension n is reduced by PCA, removing the
mean m P vector from all the columns of5 P and finding the
leading k(� n) eigenvectors spanning the obtained residuals,
forming the rows of the projection matrix EP . The destination
dimension is chosen so as to preserve 95% of the energy of
the original data, resulting in a projection matrix of size k ×n.
In the pre-process stage, all the style patches are projected by
computing P̃ = EP(P − m P1T), and this should be done for
all patch sizes and all resolution layers.

Given a vector x for which we seek its NN, we first condi-
tion it to the PCA domain of the data by x̃ = EP(x −m P), and
then search for NN within P̃ in this reduced dimensionality.
Once the NN is found, the true patch from P is used as zi j
for our further processing.

As for the need to reduce the number of examples, we
follow the recommendation made by Kwatra et al. [1], of
approximating this search by constructing a clustering tree.
In our implementation, our tree allows for overlaps between
the subsets in order to avoid inaccuracies (i.e. 50% of the
examples in each stage of the tree clustering are allowed to
participate in more than one cluster).

G. An Overall Description of the Proposed Algorithm

In Figure 3 we outline the complete structure of the pro-
posed algorithm, with all its ingredients. As can be seen, we
start from the coarsest resolution and slowly work our way to
the refined layers. The image X is being updated and scaled-
up as we pass from one layer to the next. The output of the
algorithm is the image X , but without the last stage of the
weighted average of C , so as to leave the effect of delicate
textured regions also in the content parts.

Just before concluding this section, we would like to
mention two recent papers that are of great relevance to the
work reported here. As opposed to Kwatra’s texture synthesis
and the work described here, extracting and matching patches
can be done in a feature domain, such as a chosen layer
within a given neural network that has been pre-trained for
natural images. This is exactly the idea in the work reported
in [49] and [50]. The work in [48] suggests replacing the
style-loss in Gaty’s algorithm [36] with a Markov Random-
Field (MRF) patch-matching penalty, similar to the first term in

5We omit hereafter the dependency on L and n to keep the explanation
simple.

8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 3. The overall Style Transfer Algorithm.

Equation (1). The work in [49] which followed ours, took this
idea further by essentially proposing an algorithm very similar
to the one described here, simply implemented in the feature
domain of a pre-trained network. Both these contributions
expose the richness of possibilities and strength that MRF
brings to the realm of style transfer. Both differ substantially
from our work by the fact that we avoid using CNN altogether,
thus gaining computational speed.

IV. RESULTS

In this section we summarize several key experiments that
illustrate the kind of results expected from the proposed
algorithm, and a closer look into the algorithm’s ingredients.
All the results shown in this section use the following baseline
parameter settings, unless said otherwise:

• All images are of size 400 × 400 pixels.
• The patch-sizes are [33, 21, 13, and 9].
• The sub-sampling gaps are [28, 18, 8, and 5].
• The pyramids built have Lmax = 3 resolution layers.
• The robust fusion uses r = 0.8.
• Per each patch we apply Ialg = 3 iterations.

We recommend that the reader looks at the figures of this
paper on screen, and zoom-in on the images shown, in order
to see fine details and how they are treated.

A. Style Transfer Examples

We start by presenting in Figure 4 a set of successful
examples of style transfer applied on content images con-
taining faces. Common to all these results is the fact that

Fig. 4. Style Transfer via Face-Segmentation: Content image (left),
Style image (middle), and the style transfer result obtained (right). All these
images contain faces, and the segmentation applied was Face-Based.

the segmentation applied was Face-Based. We refrain from
showing the segmentation maps in order to save space, and
since they are self-evident from the results obtained – regions
segmented as foreground are those in which the final image
preserves the content.

Few comments are in order with regard to these examples:

• Notice that the first and fifth results contain pieces of the
face that appear in the style image. As commented earlier,
these regions in the style images are permitted (along our
view) to be used, as they are part of the ‘style’ definition.

• In the second example the bottom part is too-dark, and
this is a by-product of our palette-transfer applied, which
forces the same proportions of dark region in the style
and the outcome images.

• In the third example, the hand and the cell-phone vanish,
and this is due to the segmentation which decided to mark
these regions as background. The same affect takes place
in the second example, where the right hand vanishes.

• Lastly, observe that the segmented content appears almost
as is, with slight modifications. If we have chosen to
stop the algorithm at a stage in which bigger patches are
matched, this would have been different. We will come
back to this matter towards the end of this section, when
we dive into the intermediate results obtained.

We move to show additional style transfer results, shown
in Figure 5, this time on images that were segmented using
the Edge-Based method. Apart from this difference, we also
added another patch-size of 5 × 5 to the algorithm’s process,

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 9

Fig. 5. Style Transfer via Edge-Segmentation: Content image (left),
Style image (middle), and the style transfer result obtained (right). All these
images were segmented using the Edge-Based method.

used with gap of 3, in order to get slightly more refined results
in content areas.

Overall, the results obtained in these two experiments
provide an acceptable style transfer effect, and as claimed
earlier, the quality obtained is competitive with state-of-the-
art. In background regions (based on the segmentation), the
result is allowed to hallucinate while being remotely related
to the original content, while in the foreground regions the
content is, to a large extent, preserved.

B. No-Segmentation Results

We mentioned earlier in Section III that one could apply
the proposed algorithm without segmentation, by setting W to
a constant value. We provide in Figure 6 several such results
that correspond to a relatively successful transfer. We note that
these are the better looking cases, and in other situations the
outcome is not visually pleasing (as will be shown later on).
Another note is that the success of such transfer depends on
the content image (not having too many details), and on the
style image (being based on localized elements rather than
global brush strokes).

C. Tendency to Randomness

In Figure 7 we show four different results obtained by
running the very same algorithm on the very same input pair
of content+style and with the very same parameters. As can
be seen, the results are slightly different, owing to the inner
randomness that exists within the algorithm. This randomness

Fig. 6. Style Transfer with No-Segmentation: Content image (left),
Style image (middle), and the style transfer result obtained (right).
Zoom-in to better see the behavior of the algorithm on the fine details.

Fig. 7. Tendency to Randomness: Content image (top-left), Style image
(bottom-left), and the style transfer results obtained by running the algo-
rithm four times using the very same settings, and leaning on Edge-Based
segmentation.

can be in fact strengthened by allowing the algorithm to choose
more crude approximate nearest neighbors, and by initializing
each round by random patch assignments (as proposed in [1]),
but we did not explore these directions.

D. Comparison to [36] and [3]

How do these results compare with recent ones that
appeared in the literature? We provide a brief comparison to
the work by Gatys et al. [36] and the work by Frigo et al. [3].
Figure 8 shows three style transfer results obtained by
Gatys et al. [36], and Figure 9 presents the correspond-
ing results obtained by our approach. Similarly, Figure 10
shows two style transfer results obtained by Frigo et al. [3],

10 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 8. Style Transfer by Gatys’ work [36]: Three results are shown for
three different style images.

Fig. 9. Comparison to Gatys’ Results: These three results are obtained by
our algorithm, and should be compared to the images shown in Figure 8.

Fig. 10. Style Transfer by Frigo’ work [3]: Two results are shown for two
content images transferred by a common style image (Starry-Night).

Fig. 11. Comparison to Frigo’ Results: These two results are obtained by
our algorithm, and should be compared to the images shown in Figure 10.

and Figure 11 presents the corresponding results obtained by
our approach.

Overall, the style transfer obtained by our method seems
to be competitive with Gatys’ results, and perhaps slightly
inferior to it. In terms of computational complexity, the
proposed algorithm is far faster, and does not require special
pre-training. In the images in Figure 9 that are compared
to Gatys’ work, the palette transfer plays a key role in the
results obtained. The sky in the content image is forced to
be bluish, and this poses a limit to the pieces from the style
images that are eventually adopted for this region. Another
key feature that characterize Gatys’ results and is missing
from ours are the very long brush-strokes from the style. This
is extremely evident in the first and third examples, where
such strokes exist. Lastly, we see that our algorithm is more
‘conservative’ in handling the foreground (segmented) content.
All these highlight important directions of future research,

Fig. 12. Failure due to Poor Palette Transfer: These two results are
obtained by our algorithm, and their poor quality is mostly due to the poor
palette transfer applied within our method.

Fig. 13. Failure due to Poor Segmentation: These two results are
obtained by our algorithm, and their poor quality is due to the failure of
the segmentation algorithm (Edge-Based) to identify the critical face regions.

with the hope to further strengthen the results obtained by
the proposed algorithm.

In comparison to Frigo’s work, our images tend to be more
vivid, adopting larger and more diverse style ingredients. This
is mostly due to the freedom some regions in the image are
given in hallucinating their final content.

E. Failure Cases

Despite the fact that the proposed algorithm is stable and
robust, we do get unsatisfactory results on some of the input
pairs of content+style. We present several such cases and
discuss the reasons for the failures:

1) Poor Palette-Transfer: Figure 12 presents two failure
cases in which the initial palette transfer ruined the outcome of
the algorithm. In both these cases, the level of brightness and
contrast on the objects of interest were set badly, washing-out
the important details. The reason for this mistake is obvious -
the brightest part in the content image is matched to the
brightest colors of the style, and when over-done, the effect is
a severe loss of quality.

2) Poor Segmentation: Figure 13 presents two style-
transfers in which the poor segmentation is the reason to
the failure. In both cases the segmentation used was the
Edge-Based, and it fails to recover the complete faces.
As a consequence, regions of the faces were overridden too
aggressively by style.

3) Mismatch Between Content and Style: Figure 14 presents
two transfer results that failed due to a miss-match between

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 11

Fig. 14. Failure due to Poor Match: These two results are obtained by our
algorithm. There is a fundamental mismatch between the object sizes in the
content and the style, which causes loss of critical information.

Fig. 15. Failure due to Poorly Chosen Style Image: These two results
are obtained by our algorithm, and in both the chosen style image is not rich
enough to provide with a proper transfer.

the content and the style images. The heads in the content
image are very small, while the core elements of the style are
much larger. In such a case, while the outcome may be very
rich and interesting, faces are unrecognizable, and most users
would consider this as failure.

4) Poorly Chosen Style Image: Figure 15 presents two
failure cases, caused by the poor choice of the style image.
A fundamental question that has been overlooked in the
style transfer literature is when a given style image could be
considered as appropriate? One trivial (and partial) answer is
that the style image should have a rich palette. Large bright
(or dark) regions are likely to ruin the results of the transfer,
as in the second example shown. Low number of expressive
colors may also have a devastating effect, as happens in the
first example.

5) Poor Results Without Segmentation: Lastly, Figure 16
shows two results in which no segmentation was applied,
and which led to unpleasant outcome. This failure is reflected
mostly by the loss of critical details that make these photos
recognizable. This is especially important for images
containing faces, as in the second example.

F. A Closer View of the Optimization Process

We turn to briefly present the inner operations of our
proposed algorithm, and how the result is incrementally built.
Figure 17 shows the input content- and style-images we start
with. The very first step taken is palette-transfer of the content
image to match that of the style, and this is shown as well in

Fig. 16. Failure due to No-Segmentation: These two results are obtained
by our algorithm, and in both we applied no segmentation. As can be seen,
the important content parts are treated badly and lost.

Fig. 17. A Closer view of the process: Top: The input content- and
style-images and the color-transferred content to initiate the algorithm with.
Bottom: The edge-based segmentation used by the algorithm.

Fig. 18. A Closer view of the process: The penalty function in Equation (14)
as a function of the iterations. Notice the separation of the whole graph into
the three resolution levels, and in each the separation to different patch-sizes.
Each part is marked with the penalty function it is targeting.

this figure. Also shown is the content segmentation map to be
used within the algorithm.

Figure 18 presents the penalty term in Equation (14), which
is the core of our optimization process.6 First, observe that the
entire graph is separated into three parts, each representing
a different resolution layer in the pyramidal treatment. The
left-most corresponds to images of size 100 × 100 pixels,
the second operates on 200 × 200 pixels images, and the
last (right-most) considers the native image resolution of
400 × 400 pixels. Each of these is initialized with an image
augmented by strong additive Gaussian noise.

Within each layer, we sweep through several patch sizes,
from the biggest to the smallest. In each such case, we target an

6We could have shown the full term with the content-match as in (13), but
this will obscure some important effects that take place in the different stages
of the algorithm.

12 IEEE TRANSACTIONS ON IMAGE PROCESSING

optimization objective function EL ,n, where L is the resolution
layer and n is the patch-size. For each of these, we apply
several steps:

1) Patch-Matching: Given the temporary image X we seek
the nearest neighbors for each patch on a sampled grid �.
Since we are using approximated NN, we are not necessarily
getting a descent in the function height in this stage.

2) Patch-Aggregation: Given the found NN patches, we
update the image X using IRLS, and this causes a sharp drop
in the function value. One can see that the choice to run 10
iterations seems to be too generous, and 2 − 3 would have
been sufficient. This leads to the image X̃ .

3) Content-Enforcement: Given the image X̃ , we merge the
content to it in chosen areas based on the segmentation map,
and this necessarily leads to an increase in the function height.
This gives the image X̂ .

4) Palette-Transfer: The final step is to enforce the style
palette on X̂ , which is typically accompanied by a further
increase in the function height.

Observe that in the very last stage (when handling E1,7, we
omit the content-enforcement and the palette-transfer stages,
since we aim to get delicate processing of the content regions
as well.

How do the images look as the algorithm evolves? Figure
19 aims to answer this by presenting for each resolution
layer the initialization image, the images after each patch-
aggregation step, and the images obtained after the content-
enforcement and the palette-transfer. As can be observed,
the image is refined and improved as we go up the pyra-
mid and down the patch-size, and one could envision
omitting a few of these steps without much harm to the
final image.

G. Parameters and Their Influence

We conclude the presentation of experimental results with
demonstration of the influence of the key parameters that
control our algorithm – the pyramid height L, the patch-sizes
to use n, and their overlap, d .

Figure 20 shows the same content+style images, treated
by our algorithm (using Edge-Based segmentation) while
varying the depth of the pyramid, L. As can be clearly seen,
the higher the pyramid, the larger are the portions adopted
from the style. When L is too high (4 in our case), we
get a richer outcome, but at the risk of copying complete
pieces from the style image, instead of hallucinating new
combinations. On the other extreme of L = 1, the result is
more conservative, leaning on the common and local brush-
strokes, being somewhat similar to the results by [3].

Figure 21 presents two sets of results obtained by the
proposed algorithm, where the difference is in the set of patch-
sizes used. The full list of sizes is n = [33, 21, 13, 9, 5], and
the corresponding sub-sampling skips are d = [28, 18, 8, 5, 3].
The experiments performed are

1) experiment1 - n = [33, 21, 13, 9, 5],
2) experiment2 - n = [33, 21, 13, 9],
3) experiment3 - n = [33, 21, 13], and
4) experiment4 - n = [33, 21].

Fig. 19. A Closer view of the process: The intermediate results obtained in
each of the three resolution layers (100×100, 200×200, and 400×400 pixels)
results. In each group we present the initialization image as augmented with
noise (first row), the set of images X̃ (second row), and their fusion with
the segmented content, X̂ (third row). The output of this process is the
last X̃ image (without merging the content).

Fig. 20. Effect of L - the pyramid depth: These results are obtained
by running the proposed algorithm for varying L from 1 (left) to 4 (right)
on two examples. The original content and style images referring to these
experiments are found in earlier reported results.

We see that the most important difference appears in the
content region, in which a more textured result is obtained
when avoiding the smaller patch-sizes. Interestingly, we could
suggest the application of the finer patch-sizes without the
content-enforcement stage, thereby getting refinement of the
final outcome (everywhere) without losing the textured fore-
ground.

ELAD AND MILANFAR: STYLE TRANSFER VIA TEXTURE SYNTHESIS 13

Fig. 21. Effect of n - the patch-sizes used: These results are obtained
by running the proposed algorithm for varying set of patch-sizes from
n = [33, 21, 13, 9, 5] (left) to n = [33, 21] (right) on two examples. The
original content and style images referring to these experiments are found in
earlier reported results.

Fig. 22. Effect of d - the subsampling: These results are obtained by
running the proposed algorithm for varying density of subsampling from very
coarse (left) to relatively dense (right). The original content and style images
referring to these experiments are found in earlier reported results.

Finally, we come to test the effect of the amount of
overlap between adjacent patches in the sub-sampled grid
�. We apply the proposed algorithm with the patches-sizes
n = [33, 21, 13, 9], and change d to be more and more dense,
by the following settings:

1) experiment1 - d = [28, 18, 11, 8] (≈ n
1.2),

2) experiment2 - d = [23, 15, 9, 6] (≈ n
1.22),

3) experiment3 - d = [16, 10, 6, 4] (≈ n
1.24), and

4) experiment4 - d = [8, 5, 3, 2] (≈ n
1.28).

The conclusion from this experiment is very clear – there is
almost no visual benefit in using a denser grid �, as the results
obtained remain almost the same for small amount of overlap.7

Naturally, since the density of � has an immediate impact on
the run-time (the complexity of the algorithm is linear with the
density), we prefer to use coarse sampling, as indeed practiced
in all our reported experiments.

H. Computational Complexity

The proposed algorithm has been implemented in
Matlab (2015b) without exploiting parallel options or Mex
accelerations. The reported tests were performed on a Desktop
Windows machine (3.5GHz E5-1650 v3 Intel Xeon CPU,
32 GByte RAM, 64-bits operating system). In measuring the
running time of this algorithm, we assume that all the tree
files for the fast-nearest-neighbor are pre-loaded to memory
(this takes 20 − 30 seconds). The run-time for the whole
implementation stands on 25−50 seconds for an image of size
400 × 400 pixels. The varying times are due to possible dif-
ferences in the patch-sizes used. Indeed, the most demanding

7The changes that are seen are due to the randomness of the algorithm.

part of the algorithm is the patch-matching, and especially the
one that takes place in the very last full-resolution iterations.

When compared to Gatys’ algorithm [36], the proposed
scheme is much faster and simpler, and being of roughly the
same complexity as the algorithm proposed by Frigo et al. [3].
When compared to the more recent CNN methods that train a
feed-forward network to perform the style transfer [37]–[39],
it is hard to make claims about run-times as the
implementations are very different. However, a clear benefit
of our algorithm is the ability to work with any pair without
pre-training, as the convolutional neural networks require.

V. CONCLUSIONS

This paper puts forward a novel texture synthesis-based
solution to the style transfer problem. The foundations of the
proposed algorithm are adopted from the texture synthesis
algorithm by Kwatra et al. [1], and those are augmented by
proper modifications/additions in order to achieve the new goal
of transferring style from one image to the content of another.
This work shows that effective and satisfactory style transfer
is within reach with this paradigm.

A fundamental question that accompanied us during this
work and the extensive experiments is When can we expect
the algorithm to succeed?, or What constitutes a successful
outcome? These questions brought us to identify various
additional avenues for further improvements to this algorithm.
Among these, we would like to highlight the following few:
1. We learned of the good and the bad effects that the palette-
transfer stage brings to the style transfer task. Further work
is required to better design this stage and tailor it to lead to
better quality transfer results. Our treatment of this part so far
has been shallow, essentially adopting an existing solution.
2. The match between the scale of objects appearing in the
style and the content images was also found to play a central
role in the tendency of the transfer process to lead to pleasing
result. That being said, all the tests reported here assumed
fixed size images of 400 × 400 pixels, both for the style and
the content, and this means that other sizes are scaled to this
size. The transfer results are expected to be entirely different
as we change the scale of one image versus the other, and more
study is required here for better understanding this effect, and
how to use it in order to automatically choose the scale of one
versus the other that will lead to a successful outcome.
3. Our algorithm relies on segmentation, although we have
shown that even without this stage, it may operate well under
some circumstances. This calls for more work in order to
remove the need for segmentation altogether, while preserving
the quality of the results obtained.
4. Another delicate matter is the possibility that this algorithm
(and indeed, any other texture synthesis based method) would
shamelessly copy pieces from the style image. The way to
prevent this is to enrich the patch data-set, and this could be
done in various ways, some of them simple (rotations, scaled
versions, etc.), and some are more sophisticated (e.g. running
a CNN-based texture synthesis on the style image via [35] in
order to get many more feasible patches).
5. Last but not least, our algorithm is still quite conservative
when handling segmented content parts of the image. We envi-

14 IEEE TRANSACTIONS ON IMAGE PROCESSING

sion modifications to the algorithm that will allow changing
the content while preserving its essence (clearly, this calls for
a clear definition of what is important and what is not in a
given content).

We enjoyed working on this project, perhaps due to the
artistic nature of the quest. We hope that the readers of this
paper will share this joy.

REFERENCES

[1] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” ACM Trans. Graph., vol. 24, no. 3,
pp. 795–802, 2005.

[2] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proc. CCGIT, 2001, pp. 341–346.

[3] O. Frigo, N. Sabater, J. Delon, and P. Hellier, “Split and match: Example-
based adaptive patch sampling for unsupervised style transfer,” in Proc.
CVPR, Jun. 2016, pp. 553–561.

[4] A. Done, A. A. Efros, and T. K. Leung, “Texture synthesis by non-
parametric sampling,” in Proc. ICCV, vol. 2. Sep. 1999, pp. 1033–1038.

[5] M. Ashikhmin, “Synthesizing natural textures,” in Proc. ACM Symp.
Interact. 3D Graph., 2001, pp. 217–226.

[6] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,” ACM
Trans. Graph., vol. 24, no. 3, pp. 777–786, Jul. 2005.

[7] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” ACM
Trans. Graph., vol. 25, no. 3, pp. 541–548, 2006.

[8] C. Barnes, E. Schechtman, E. Finkelstein, and D. Goldman, “Patch-
Match: A randomized correspondence algorithm for structural image
editing,” ACM Trans. Graph., vol. 28, no. 3, pp. 1–24, 2009.

[9] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The graycode filter kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 382–393,
Mar. 2007.

[10] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in Proc. VISAPP, vol. 1. 2009,
pp. 331–340.

[11] C. Barnes, E. Schechtman, D. Goldman, and E. Finkelstein,
“The generalized patchmatch correspondence algorithm,” in Proc.
ECCV, 2010, pp. 29–43.

[12] C. Xiao, M. Liu, N. Yongwei, and Z. Dong, “Fast exact nearest patch
matching for patch-based image editing and processing,” IEEE Trans.
Vis. Comput. Graphics, vol. 17, no. 8, pp. 1122–1134, Aug. 2011.

[13] K. He and J. Sun, “Computing nearest-neighbor fields via propagation-
assisted KD-trees,” in Proc. CVPR, 2012, pp. 111–118.

[14] I. Olonetsky and S. Avidan, “TreeCANN-KD tree coherence approxi-
mate nearest neighbor algorithm,” in Proc. ECCV, 2012, pp. 602–615.

[15] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu, “PatchTable:
Efficient patch queries for large datasets and applications,” ACM Trans.
Graph., vol. 34, no. 4, p. 47, Aug. 2015.

[16] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
“Image analogies,” in Proc. SIGGRAPH, 2001, pp. 327–340.

[17] L. Cheng, S. Vishwanathan, and X. Zhang, “Consistent image analogies
using semi-supervised learning,” in Proc. CVPR, Jun. 2008, pp. 1–8.

[18] P. Benard et al., “Stylizing animation by example,” ACM Trans. Graph.,
vol. 32, no. 4, p. 119, Jul. 2013.

[19] W. Freeman, T. Jones, and E. Pasztor, “Example based super-resolution,”
IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65, Mar. 2002.

[20] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level
vision,” Int. J. Comput. Vis., vol. 40, no. 1, pp. 25–47, 2000.

[21] R. Rosales, K. Achan, and B. J. Frey, “Unsupervised image translation,”
in Proc. ICCV, 2003, pp. 472–478.

[22] R. Hashimoto, H. Johan, and T. Nishita, “Creating various styles of
animations using example-based filtering,” in Proc. Comput Graph. Int.,
Jul. 2003, pp. 312–317.

[23] J. Hays and I. Essa, “Image and video based painterly animation,” in
Proc. 3rd Int. Symp. Non-Photorealistic Animation Rendering, 2004,
pp. 113–120.

[24] X. Wang and X. Tang, “Face photo-sketch synthesis and recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 1955–1967,
Nov. 2009.

[25] H. Lee, S. Seo, S. Ryoo, and K. Yoon, “Directional texture transfer,” in
Proc. 8th Int. Symp. Non-Photorealistic Animation Rendering (NPAR),
2010, pp. 43–48.

[26] W. Zhang, C. Cao, S. Chen, J. Liu, and X. Tang, “Style transfer via
image component analysis,” IEEE Trans. Multimedia, vol. 15, no. 7,
pp. 1594–1601, Jul. 2013.

[27] Y. Shih, S. Paris, F. Durand, and W. T. Freeman, “Datadriven hallucina-
tion of different times of day from a single outdoor photo,” ACM TOG,
vol. 32, no. 6, pp. 1–11, 2013.

[28] Y. Shih, S. Paris, C. Barnes, W. T. Freeman, and F. Durand, “Style
transfer for headshot portraits,” ACM Trans. Graph., vol. 33, no. 4,
pp. 148–160, 2014.

[29] J. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg, “State of
the art: A taxonomy of artistic stylization techniques for images
and video,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 5,
pp. 866–885, May 2013.

[30] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer
between images,” IEEE Comput. Graph. Appl., vol. 21, no. 5, pp. 34–41,
Sep./Oct. 2001.

[31] F. Pitie and A. Kokaram, “The linear Monge–Kantorovitch linear colour
mapping for example-based colour transfer,” in Proc. IETCVMP, 2007,
pp. 1–9.

[32] H. S. Faridul et al. “Colour mapping: A review of recent methods,”
Extensions Appl., Comput. Graph. Forum, vol. 35, no. 1, pp. 59–88,
2016.

[33] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. (Jun. 2016).
“Preserving color in neural artistic style transfer.” [Online]. Available:
https://arxiv.org/abs/1606.05897

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015, pp. 1–14.

[35] L. A. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using
convolutional neural networks,” in Proc. NIPS, 2015, pp. 262–270.

[36] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Proc. CVPR, Jun. 2016,
pp. 2414–2423.

[37] J. Johnson, A. Alahi, and F.-F. Li, “Perceptual losses for real-time style
transfer and superresolution,” in Proc. ECCV, 2016, pp. 694–711.

[38] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images,” in
Proc. ICML, 2016, pp. 1349–1357.

[39] D. Ulyanov, A. Vedaldi, and V. Lempitsky. (Jul. 2016). “Instance
normalization: The missing ingredient for fast stylization.” [Online].
Available: https://arxiv.org/abs/1607.08022

[40] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
Process. Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.

[41] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, p. 122,
Jan. 2011.

[42] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. GlobalSIP, Dec. 2013,
pp. 945–948.

[43] D. P. O’Leary, “Robust regression computation using iteratively
reweighted least squares,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3,
pp. 466–480, 1990.

[44] E. S. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Trans. Graph., vol. 30, no. 4,
pp. 1–69, 2011.

[45] H. Talebi and P. Milanfar, “Nonlocal image editing,” IEEE Trans. Image
Process., vol. 23, no. 10, pp. 4460–4473, Oct. 2014.

[46] Y. Romano, J. Isidoro, and P. Milanfar, “RAISR: Rapid and accu-
rate image super resolution,” in Proc. IEEE TCI, Nov. 12016,
pp. 110–125.

[47] R. Carsten, V. Kolmogorov, and A. Blake, “GrabCut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, 2004.

[48] C. Li and M. Wand, “Combining Markov random fields and convo-
lutional neural networks for image synthesis,” in Proc. CVPR, 2016,
pp. 2479–2486.

[49] T. Q. Chen and M. Schmidt. (Dec. 2016). “Fast patch-based style transfer
of arbitrary style.” [Online]. Available: https://arxiv.org/abs/1612.04337

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

