
Style Transfer

By Texture Synthesis

By: Michael Elad *

March 19, 2017

 This work was done during the

summer 2016 in Google-Research

Mountain-View, CA

* Joint work with

Peyman Milanfar

Gatys et. al. [2016]

Style-Transfer

Algorithm

Content Image

Style Image

Result Image

Terminology

- 2 -

This task is NOT well-defined, and

different interpretation of its goals lead

to qualitatively different results

More Specifically:

 Which parts of the content should be preserved and how?

 Are we allowed local contrast changes as part of the transfer?

 Should elements in the content be allowed to shift?

 Which color palette should the output adopt?

 How far can the hallucination be allowed to go?

 Which parts from the style-image qualify as style to be used?

 Where do we draw the line between copying of style and hallucination?

 What constitutes a successful style-transfer result?

Is the Goal Clear ?

- 3 -

Here is what

we get in our

work:

Spoiler

Content Style Result - 4 -

Here is what

we get in our

work:

Spoiler

Content Style Result - 5 -

This Talk

CNN based

Methods – The

Core Ideas

Texture-

Synthesis

Methods

and their

Relevance

The Proposed

Scheme

Results and

Discussion

Summary and

What Next?

- 6 -

Part 1

CNN Based Methods

The Core Ideas
[Presented for the Completeness of the Story]

- 7 -

CNN Based Style-Transfer [Gatys, Ecker, & Bethge, 2016]

The core ideas in this work are

 Use an image-recognition pre-trained Convolutional Neural Network

(CNN) as a feature extractor (VGG-16).

 Form the style-transfer problem as an energy minimization, where the

final result should be

 - Close in the feature-domain to the content image, and

 - Close in the correlation-domain to the style one.

 The results are beautiful, leading to the renewed interest in style-

transfer.

ETotal X = α VGGk X − VGGk C 2
2

 +β Corr VGGj X − Corr VGGj S 2

2

- 8 -

Gatys’ Results

Gatys et. al. [2016]

- 9 -

The Concept of CNN Inversion

Observation:

The upper path

describes a CNN-

based texture-

synthesis algorithm

We will come back

to this later on

T
a

k
e

n
 fro

m
 G

a
ty

s
’ 2

0
1

6
 P

a
p

e
r

- 10 -

Corr VGGj X − Corr VGGj S 2

2

VGGk X − VGGk C 2
2

Gatys’ Style-Transfer Algorithm
T

a
k
e

n
 fro

m
 G

a
ty

s
’ 2

0
1

6
 P

a
p

e
r

- 11 -

Gatys’ Style-Transfer Algorithm
T

a
k
e

n
 fro

m
 G

a
ty

s
’ 2

0
1

6
 P

a
p

e
r

Observation: This

method poses a highly

demanding optimization

procedure that runs back

and forth over the VGG –

this is the main

shortcoming of this work.

- 12 -

Improving this Algorithm

 One trivial approach: Create many triplets of content-, style-,

and result-images, and train a CNN to accomplish the same

style-transfer task → Tough.

 A simplification: Fix the style image and train the CNN to

match the input content image to the output stylized result

→ Still Tough.

EDirect θ = 𝐓θ C, S − Gatys C, S 2
2

ES θ = 𝐓θ C − Gatys C, S 2
2

- 13 -

Improving this Algorithm

 Improved idea: Instead of the above, use the VGG itself + the energy

minimized by [Gatys, Ecker, & Bethge, 2016] to perform the training:

 This is the idea behind the following: [Johnson, Alahi, & Li, 2016]

and [Ulyanov, Lebedev, Vedaldi, &Lempitsky 2016].

ES X = α VGGk 𝐓θ C − VGGk C 2
2

 +β Corr VGGj 𝐓θ C − Corr VGGj S 2

2

ETotal X = α VGGk X − VGGk C 2
2

 +β Corr VGGj X − Corr VGGj S 2

2

- 14 -

Observation:

Note that this

way we have

moved from

Per-Pixel to

Perceptual

loss

A Closer Look
T

a
k
e

n
 fro

m
 J

o
h

n
s
o

n
’s

 2
0

1
6

 P
a

p
e

r

Comments:
1. The above has been suggested also for single-image super-resolution.

2. The trained “Transform Net” is restricted to one chosen style image.
- 15 -

Part 2

Texture Synthesis Methods

and Their Relevance

- 16 -

Texture Synthesis as a Path to the Transfer
T

a
k
e

n
 fro

m
 G

a
ty

s
’ 2

0
1

5
 P

a
p

e
r

 Style-transfer via CNN by

Gatys is a generalization of

an earlier work that targeted

texture-synthesis
[Gatys, Ecker & Bethge, 2015]

 The idea was to minimize:

 We see here a path of

generalizing a texture-synthesis

method to treat the style-transfer.

Corr VGGj X −

 Corr VGGj S
2

2

- 17 -

So, What is Texture Synthesis?

 Definition: Texture Synthesis is

the process of synthesizing a

new texture image from a given

texture sample image, while

avoiding a direct copy.

 Texture synthesis can be done

in various ways (indeed, CNN is

a new comer to this game).

 The shown results are taken from
[Kwatra, Essa, Bobick,& Kwatra, 2005],

based on multi-scale patch-

matching and fusion.

T
a

k
e

n
 fro

m
 K

w
a

tra
’s

 2
0

0
5

 P
a

p
e

r

- 18 -

Note: No one says that these algorithms

are restricted to texture only

How Texture-Synthesis is Done?

 There are many existing algorithms out there, and most share the

same ingredients:

- Multi-resolution treatment

- Patch-matching (in some feature domain)

- Deployment of Approximate Nearest Neighbor (ANN)

- Drawing pixels at random from a conditional distribution

- Fusing patches by Belief-Propagation, or other methods.

 Key work in this field: [Efros & Leung 1999] [Efros & Freeman 2001]

[Wei & Levoy 2000] [Liang, Liu, Xu, Guo, & Shum, 2001]

[Kwatra, Essa, Bobick, & Kwatra 2005] [Lefebvre & Hoppe 2006] …..

 Variants over these: texturizing 3D shapes, texture-synthesis on

surfaces, parametric models for textures, …
- 19 -

Texture

(Style)

Example

Synthesized

Image Texture Synthesis

Algorithm

Underlying Rationale of Our Work

 An underlying assumption behind our work is:

 Style-Transfer can be obtained by taking any

 good performing Texture Synthesis algorithm and

 modifying it to take the content image into account

 Desired Property: Style-transfer applied with an empty

content image should reduce to plain texture-synthesis.

Content

Image Modifications

Our plan: Taking

Kwatra’s Texture

Synthesis

algorithm [2005]

and modifying it to

meet the style-

transfer goal

- 20 -

Various

Background: Lets Go Back in Time …

 Ideas similar to Style-Transfer appeared in

the early 2000’s, although in a less daring

way (and with less impressive results).

 Those came as a side-results (anecdotal)

to texture-synthesis work.

 One of the earliest is [Efros and Freeman, 2001]

“quilting” patches for texture-synthesis.

 As a by-product to the above, they offered a

Texture-Transfer process, by augmenting the

synthesis by a matching of the local shades

of the content.
 - 21 -

Background: “Analogies”

 Another closely related idea was the concept of “analogies”: Given a

pair of input image and stylized form, apply the stylization on a new

image [Hertzmann, Jacobs, Oliver, Curless, & Salesin, 2001].

 The core algorithm is

reminiscent of “classic”

texture-synthesis

methods, using motives

such as pyramidal

decomposition, patch-

matching, approximate

nearest neighbor, …

 Texture-transfer is achieved as a special case of the algorithm. - 22 -

Kwatra’s Texture-Synthesis in a Nutshell

 Core engine: Matching patches from the given texture S to the

image X being built, iteratively minimizing an energy functional:

 Assume that at the t-th iteration we have the image Xt . The algorithm

consists of two steps that remind of the EM Algorithm:

 Patch Matching: for each patch in location [i,j] in Xt , find the NN

patch from the style. Perform this over a sampled grid covering X.

 Aggregation: Given all the matched patches, merge them to

one image Xt+1 by averaging them.

min
X

E X = min
X

 min
kl

𝐑ijX − 𝐐klS 2

2

ij∈Ω

- 23 -

Kwatra’s Texture-Synthesis In a Nutshell

 As said, the above process is only the core engine of the algorithm.

 On top of this, the following key ideas are used:

 Operating in several scales over a Gaussian Pyramid of the desired image,

generate from coarse to fine.

 Within each resolution level, using patches of varying sizes from large to small.

 Initializing the algorithm with random assignment of patches.

 Performing Nearest-Neighbor searech with the tree K-Means.

 Replacing plain averaging by a robust-statistics one.

- 24 -

Kwatra’s Texture-Synthesis In a Nutshell

 As said, the above process is only the core engine of the algorithm.

 On top of this, the following key ideas are used:

 Operating in several scales over a Gaussian Pyramid of the desired image,

generate from coarse to fine.

 Within each resolution level, using patches of varying sizes from large to small.

 Initializing the algorithm with random assignment of patches.

 Performing Nearest-Neighbor searech with the tree K-Means.

 Replacing plain averaging by a robust-statistics one.

 This algorithm produces high-quality texture-

synthesis results and thus can be relied upon

for being migrated to the style-transfer task.

 As we shall see hereafter, we adopt all these

ingredients in our algorithm, and accompany

them with the necessary modifications to get

the desired transfer.

- 25 -

Frigo’s Style-Transfer Algorithm [Frigo, Sabater, Delon & Hellier, 2016]

 This work proposes a novel style-transfer method based on texture-synthesis,

leading to much faster algorithm (compared to Gatys).

 It relies on patch-matching and multi-scale treatment ideas, but it has a very

different reasoning, which leads to a substantially different algorithm.

 The algorithm is best explained by this figure, which exposes the core essence

of their work: A quad-Tree partition of the image:

- 26 -

 A given patch is matched to the Style

Image, to find its nearest-neighbor. If the

distance is small enough AND the inner

variance of the patch is small, stop the

division. Otherwise, divide to four and

proceed further down the tree.

 At the end of the above process, every

patch has several potential neighbors

from the style image. A Belief-

Propagation (BP) is ran in order to fit all

these patches into one coherent image.

Overlaps are simply averaged.

Frigo’s Method: More Details

- 27 -

Part 3

The Proposed Scheme

- 28 -

Our Algorithm: Core Features

 Being a follow-up to Kwatra’s method, our algorithm contains most

of the ingredients mentioned before (patch-matching, multi-res.,

multi-size patches, robust and iterative energy minimization, …).

 Moreover - when our algorithm is ran over a flat (no content) image,

it reduced to a plain texture-synthesis process.

 On the above foundations, we introduce several key modifications

that turn the process into a style-transfer algorithm.

 Comment: Our algorithm works in the RGB domain, and thus 3D

patches are manipulated in it.

- 29 -

Our Algorithm: Objective Function(s)

- 30 -

EL,n X =
1

c
 min

kl
𝐑ijX − 𝐐klS 2

2

ij∈Ω

 + X − C 𝐖
2 + λρ X

Patch-matching quality

measured w.r.t. the

Style image

Match to the

content in

selected regions

Good-

quality

image

There is one such energy

function for each image’

resolution L (over the pyramid)

and the chosen patch size, n.

Obtained by

segmentation

Overall Process

- 31 -

 min
X

E3,33

 min
X

E3,21

 min
X

E3,13

 min
X

E3,9

 min
X

E2,9

 min
X

E2,13

 min
X

E2,21

 min
X

E2,33

 min
X

E1,33

 min
X

E1,21

 min
X

E1,13

 min
X

E1,9

Initial X

Scale-

up 2:1

Scale-

up 2:1

Final X

The Inner Minimization

- 32 -

EL,n X =
1

c
 min

kl
𝐑ijX − 𝐐klS 2

r

ij∈Ω

 + X − C 𝐖
2 + λρ X

 We address the above minimization task using:

 - ADMM [Boyd, Parikh, Chu, Peleato, & Eckstein, 2011] and

 - The Plug-and-Play-Prior approach

 [Venkatakrishnan, Bouman, & Wohlberg, 2013]

 This approach essentially decouples the above into a series

of updates, per each term separately.

 An interesting feature – no need for an explicit choice of ρ X
- it is replaced by a denoising algorithm.

The Inner Minimization

- 33 -

EL,n X =
1

c
 min

kl
𝐑ijX − 𝐐klS 2

r

ij∈Ω

 + X − C 𝐖
2 + λρ X

Instead, we approximate the solution by several iterations of the ADMM:

 Applying the patch matching by Tree-K-Means Approximate NN

on PCA-projected patches.

 Fusing the patches as in Kwatra’s alg. via IRLS (handling r ≠ 2).

 Blending back the original content with the outcome using

 Applying post-process smoothing on the outcome (Domain-Transform

filtering).

X = (𝐈 +𝐖)−1(X +𝐖C)

Segmentation and Its Role

- 34 -

 Segmentation is used to direct the

style-transfer process which parts of

the content to be (more) preserved.

 We experimented with several

options and their combinations:
 - Edge-based methods + region filling.

 - Affinity-based (bilateral) segmentation.

 - Face detection + grabcut.

 The segmentation leads to the

creation of W, which is used in the

content blending stage in the

algorithm.

No Segmentation?

- 35 -

 Due to the sensitivity w.r.t. the segmentation, there is a desire to avoid

segmentation altogether. Could it be done in our scheme?

 Our answer: Sometimes it can be done.

 We experimented with 𝐖 = α as a replacement to segmentation.

X = 𝐈 +𝐖 −1 X +𝐖C =
1

1 + α
X +

α

1 + α
C

α = 0 α → ∞

Texture synthesis Sometimes works well No transfer

α = 0.3

Color (Palette)-Transfer

- 36 -

 We have the flexibility of using ANY palette – simply bring the content-

and the style-images to common grounds, and proceed regularly.

 All our experiments use the style-palette: artistic result, and richer.

 Various methods to transfer a given image to a new palette – we used

the built-in Matlab function of histogram matching (not the best option).

 Pre-processing the style image could help increasing the success of the

style-transfer task (removal of too dark/bright areas, …).

 Our algorithm projects to the palette, both as a pre-processing of the

content image, and also within each iteration, due to the desire to force

the algorithm to preserve the diversity of the style image.

Summary: Key Modifications over Kwatra’s …

In the initialization of the algorithm:

 Optional: Apply strong edge-preserving spatial filtering (Domain-

Transform) on the content Image, in order to remove small details

from the final artistic result.

 Apply color-transfer from the style image to the content one, prior

to initiating the algorithm.

 Build a mask image to define the content regions to be preserved.

This mask is based on several segmentation methods.

 Initialize the whole algorithm by the content image + strong noise.

- 37 -

Summary: Key Modifications over Kwatra’s …

Within the iterative part:

 After each aggregation step, we fuse the content Image with the

result by a weighted average, using the mask image.

 We apply color-transfer from the style image to the result, in order

to prevent a drift from the color richness existing in the style.

 Our (approximate) nearest-neighbor is based on dimensionality

reduction + tree-based search.

- 38 -

Part 4

Results and Discussion

- 39 -

Parameters Used

- 40 -

 All images are of size 400 × 400 pixels.

 The patch-sizes are [33, 21, 13, 9, (5)].

 The sub-sampling gaps are [28, 18, 8, 5, (3)].

 The pyramids built have Lmax = 3 resolution layers.

 The robust fusion uses exponent r = 0.8.

 Per each energy-function EL,n X we apply 5 iterations.

Results (0): A Closer Look at the Process

- 41 -

Segmentation mask

obtained using the

edge-based method

Color-

Transferred

image

Results (0): A Closer Look at the Process

- 42 -
 𝐑ijX − 𝐐klS 2

r

ij∈Ω

 The error shown is

Results (0): A Closer Look at the Process

- 43 -

100100

200200

400400

Results (1): Face Segmentation

- 44 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 45 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 46 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 47 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 48 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 49 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 50 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 51 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 52 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 53 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 54 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 55 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 56 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 57 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 58 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 59 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 60 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 61 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 62 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 63 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 64 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Last

Results (1): Face Segmentation

- 65 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 66 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (1): Face Segmentation

- 67 -

 Face parts from the style?

 Palette-transfer and its effect

 Segmentation and its effect

 Modifying content?

Results (2): Edge-Based Segmentation

- 68 -

Results (2): Edge-Based Segmentation

- 69 -

Results (2): Edge-Based Segmentation

- 70 -

Results (2): Edge-Based Segmentation

- 71 -

Results (2): Edge-Based Segmentation

- 72 -

Results (2): Edge-Based Segmentation

- 73 -

Results (2): Edge-Based Segmentation

- 74 -

Results (2): Edge-Based Segmentation

- 75 -

Results (2): Edge-Based Segmentation

- 76 -

Results (2): Edge-Based Segmentation

- 77 -

Results (2): Edge-Based Segmentation

- 78 -

Results (2): Edge-Based Segmentation

- 79 -

Results (2): Edge-Based Segmentation

- 80 -

Results (2): Edge-Based Segmentation

- 81 -

Results (2): Edge-Based Segmentation

- 82 -

Results (2): Edge-Based Segmentation

- 83 -

Results (3): No Segmentation Results

- 84 -

Results (3): No Segmentation Results

- 85 -

Results (3): No Segmentation Results

- 86 -

Results (3): No Segmentation Results

- 87 -

Results (3): No Segmentation Results

- 88 -

Results (3): No Segmentation Results

- 89 -

Results (3): No Segmentation Results

- 90 -

Results (3): No Segmentation Results

- 91 -

Results (4): No Content Results

- 92 -

Results (4): No Content Results

- 93 -

Results (4): No Content Results

- 94 -

Results (4): No Content Results

- 95 -

Results (4): No Content Results

- 96 -

Results (4): No Content Results

- 97 -

Results (5): Tendency to Randomness

- 98 -

Results (5): Tendency to Randomness

- 99 -

Results (6): Comparison to Gatys’

- 100

-

Results (7): Comparison to Frigo’s

- 101 - Content Image Frigo’s Results Our Results

Relation to Frigo’s Method

Similarities/Differences to Our Scheme:

 Their Belief-Propagation is replaced by the iterative IRLS refinement.

 The quadtree division is replaced by the segmentation in our scheme.

 In our work, every pixel is covered by various patch sizes and not just one.

 We (optionally) filter the input image in order to get a “more artistic” result.

 Our work allows better ‘hallucination’, as we may deviate from the content in

permitted regions, and simply match the current solution to the style image.

 If Frigo’s method is ran on an empty content image, it simply copies a portion

of the style image.

- 102 -

Results (8): Failure Cases

- 103 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 104 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 105 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 106 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 107 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 108 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 109 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 110 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 111 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (8): Failure Cases

- 112 -

 Poor Palette-Transfer

 Poor Segmentation

 Mismatch Between Content and Style

 Poorly Chosen Style Image

 Poor Results without Segmentation

Reasons for Failing:

Results (9): Parameters and Their Influence

- 113 -

L=1 L=2 L=3 L=4

The higher the pyramid, the larger the elements taken from the

style image, but at the risk of getting large pieces copied

Results (9): Parameters and Their Influence

- 114 -

L=1 L=2 L=3 L=4

The higher the pyramid, the larger the elements taken from the

style image, but at the risk of getting large pieces copied

Results (9): Parameters and Their Influence

- 115 -

[33, 21, 13, 9, 5] [33, 21, 13, 9] [33, 21, 13] [33, 21]

The smaller the patches used, the more refined the result

obtained. In the content areas, this means getting closer to the

original content

Results (9): Parameters and Their Influence

- 116 -

[33, 21, 13, 9, 5] [33, 21, 13, 9] [33, 21, 13] [33, 21]

The smaller the patches used, the more refined the result

obtained. In the content areas, this means getting closer to the

original content

Results (9): Parameters and Their Influence

- 117 -

Varying density of subsampling from very coarse (left) to relatively dense

The conclusion: It does not influence the results so much, and

therefore we prefer coarse overlaps, as it reduced dramatically

the computational cost of the algorithm.

- 118 -

Do You Want the Code?

Well, sorry, we cannot give the code !!

BUT

Elias Wang and Nicholas Tan can
(students from Stanford doing their final project in EE368

who simply replicated our work to the letter)

ewang314/EE368_Final_Project

Part 5

Summary and

What Next?

- 119 -

- 120 -

Summary

 We have introduced an extension of Kwatra’s texture-synthesis

work, to handle the style-transfer problem.

 The results are appealing, and the algorithm is relatively simple and

fast. The main computational load is in the patch-matchings.

 One major benefit of the proposed scheme is that it is explicit, and

as such the results are relatively easy to interpret and modify.

 Another benefit is the potential of this algorithm to have a very short

run-time, while being able to operate on any pair of style+content

pair.

- 121 -

Details of the Proposed Method

 Preserving content regions?

 → Segmentation is used to define the regions to preserve.

 Local contrast changes?

 → Yes, although we did not incorporate this into our scheme.

 Shifts in the content image?

 → We control these shifts by the size of the patch sizes

 Color palette to adopt?

 → We are not limited, but we adopted the style one due to its expected richness.

 Hallucination allowed?

 → As much as we want – we have control over it.

 Parts qualify as style?

 → Easily defined. We used all.

 Copying vs. hallucination?

 → The maximal patch-size and the richness of the style control this effect

 Predicting success?

 → We have guidelines for success (matched-scale, palette-transfer, style richness)

- 122 -

Immediate Improvements

 Better designing the palette-transfer algorithm:

 - Avoid the creation of too dark/bright areas

 - Create false-colors that do not exist in the style image

 - Lead to better matching between content and style.

 Controlling the sharpness in the segmented content regions, to be

robust to the palette-transfer stage.

 Modify the nearest-neighbor strategy to use image-search (e.g.

PatchMatch) instead of the current method.

 Enrich the style-patch database by rotations, scaled versions, mirroring,

and contrast/brightness modifications. How about running texture-

synthesis (by CNN?) on the style to create newer versions of it to add.

 Can we exploit the case where the style image is given off-line?

- 123 -

Longer Term Steps

 Modifying the metric to include orientation in edge areas, in order to

lead to content modification of the form obtained by CNN methods.

 Seek ways to bypass the segmentation altogether while producing

good results.

 Using different stopping criteria for each region, so that the smallest

patch sizes does not operate uniformly in the image domain.

 Fixing automatically the style- and the content-images resolutions

for a best fit.

 Handling video?

 Better energy minimization formulation?

 Apply the algorithm in the CNN feature domain, matching patches in

the activation images?

 Develop a “destyliaziation”, to strip the effect of the style form an image

 Match the minimal patch-size used to the style “elements”.

 Is our method approximate the minimization of Gatys?

 After matching the patches, we may re-orient them for better matching

the local orientation [Vivek’s idea]

- 124 -

Thank You

