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Static Versus Dynamic
Super-Resolution

Definitions and
Activity Map




Basic Super-Resolution Idea

Given: A set of degraded
(warped, blurred, decimated,

noised) images:

7
E

Required: Fusion of the
measurements 1nto a
higher resolution image/s




Static Super-Resolution (SSR)
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Low Resolution Measurements

Super-Resolution
Algorithm
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Dynamic Super-Resolution (DSR)

Dynamic
Super-Resolution
Algorithm
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Super-Resolution
Basics

Intuition and
Relation to Sampling theorems




Simple Example

For a given band-
limited image, the
Nyquist sampling
theorem states that if a
uniform sampling is
fine enough (=D),
perfect reconstruction
1S possible.




Simple Example

Due to our limited
camera resolution, we
sample using an
insufficient 2D grid
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Simple Example

However, we are
allowed to take a
second picture and
so, shifting the
camera ‘slightly to
the right’ we obtain
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Simple Example

Similarly, by
shifting down we
get a third image
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Simple Example

And finally, by
shifting down and
to the right we get
the fourth image
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Simple Example - Conclusion

It 1s trivial to see that
interlacing the four
images, we get that
the desired resolution
1S obtained, and thus
perfect reconstruction
1s guaranteed.

This is Super-
Resolution in its
simplest form

»
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Uncontrolled Displacements

In the previous
example we counted on
exact movement of the
camera by D 1n each
direction.

What if the camera
displacement is
uncontrolled?
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Uncontrolled Displacements

[t turns out that there 1s
a sampling theorem due
to Yen (1956) and
Papulis (1977) covering
this case, guaranteeing
perfect reconstruction
for periodic uniform
sampling if the sampling
density 1s high enough
(1 sample per each D-
by-D square).

_ 16 -




Uncontrolled Rotation/Scale/Disp.

In the previous
examples we restricted
the camera to move
horizontally/vertically
parallel to the
photograph object.

What if the camera
rotates? Gets closer to
the object (zoom)?
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Uncontrolled Rotation/Scale/Disp.

There is no
sampling
theorem
covering this
case
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1.

. Samples may be noisy — any

Further Complications

Sampling 1s not a point
operation — there 1s a blur

Motion may include
perspective warp, local
motion, etc.

reconstruction process must
take that into account.

-19-




Static
Super-Resolution

The creation of a single improved
image, from the finite measured
sequence of images
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SSR - The Model

Geometric Warp Blur Decimation
High- MG
O~ Lo
Image Resolution
vV, Images
X
Additive Noise
Y.
—N
©
AN
4 N N
—1
Y, =DHFEX+V,, V,~Now'l
C J k=1
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The Warp As a Linear Operation

Per every
point in X
find a
matching
point in Z

»
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Model Assumptions

We assume that the images Y, and the operators H,,
D,, F,,& W, are known to us, and we use them for
the recovery of X.

Y, — The measured images (noisy, blurry, down-sampled ..)
H, — The blur can be extracted from the camera characteristics
D, — The decimation 1s dictated by the required resolution ratio
F, — The warp can be estimated using motion estimation

W, — The noise covariance can be extracted from the camera

characteristics
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The Model as One Equation

N\

-

\

- DHF |
D,HF,

 DnHNEN
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A Thumb Rule on Desired Resolution

In th X1 10 DlHlFl |
n the
noiseless case ¥2 = D2}.12F2 X
we have ‘ '
_XN_ _DNHNFN_

Clearly, this linear system of equations should have
more equations than unknowns in order to make it
possible to have a unique Least-Squares solution.

Example: Assume that we have N images of M-by-M pixels,
and we would like to produce an image X of size
L-by-L. Then — L<4/N-M

_05 -



The Maximum-Likelihood Approach

Geometric Warp Blur Decimation
High- MG
O~ Lo
Image Resolution
vV, Images
X
Additive Noise

Y,
B--E-o-
AAN

Which X would be such that when fed to the above
system 1t yields a set Y, closest to the measured images ¢

-6 -




SSR - ML Reconstruction (LS)

Minimize: &2, (X)= iH Y, -DHEX
k=1

2
W

Oer, (X)
X

=0

Thus, require:

e N )
R=> EH,D;WDHE,
k=1

< N | RX=P
P=> FFHDW.Y, —

k=1
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SSR - MAP Reconstruction

Add a term which penalizes for
the solution 1mage quality

N
evapX)= Y | Yy —DkaFkZQKVk +AAX]
k=1

Possible Prior functions - Examples:
1. A{X}z XTSTW(XO )SX - simple spatially adaptive,
2. A{X } = p{SX } - M estimator (robust functions),

Note: Convex prior guarantees convex
programming problem
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Iterative Reconstruction

Assuming the prior A{X}=X'S"WSX is used

N

EHD WD HE +\AS'WS A

1 —_—
oy, | ) RATE
k=1

J

R =

( N
k:

For X : [1000 x1000] , the matrix R is sparse R e M'*1"

OPTION: Using the SD algorithm (10-15 iterations are enough)

N

X

Dl —

N
X - “ZFkT HEDEVVk [Xk -DHE X, ] - MQ\STWSXJ'
k=1
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Image-Based Processing

N

N
SD* Iteration: X, =X;—p> FHDW, [S_(k -D HEX. ] —pAS'WSX.
k=1

Back Simulated Weighted
projection error edges

All the above operations can be interpreted as
operations performed on images.

AND THUS

There 1s no actual need to use the Matrix-Vector
notations as shown here. This notations is
important for the development of the algorithm

* Also true for the Conjugate Gradient algorithm
- 30 -




SSR — Simpler Problems

Y
— —
E-ER-ER-o
v,

X

Y,
B0
VN

N 1N
X:{ZFJHEDEWI(DkaFk+kSTWS} > FHD WY,
k=1 k=1
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SSR — Simpler Problems

Single image de-noising

(Y =x+V} X=[1+28"WS|'Y
Single image restoration
(Y =HX+V! X =[HH+AS"WS| ' H"Y
Single image scaling
— X=[D'D+AS"WS|' DY
Motion compensation average
S c T T e T
(Y, =EX+V, ' X = {ZFk F,_+AS WS} ZFk Y.
- k=1 k=1

Using A{X}=X'STWSX

_32 -



Example 1
]

Synthetic case:

From a single image
create 9 3:1 1images
this way
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Example 1
o e

fﬁ ;l II.‘-.'L
W, o
AL ,}.l_ﬂ“ “ dﬂ.‘ﬁt-,cu’fﬂ

Arﬁl“"“ r:mﬂ“”‘“t

Synthetic case:

9 images, no
blur, 1:3 ratio

1'g Voo
Tm \B&gm

" The hlgherﬂ

resolution
original

One of the low-
resolution
1mages
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Example 2

16 1mages, ratio 1:2, PSF - assumed to be Gaussian with 6=2.5

I A

Taken Taken
from | I i from the
one of reconstructed
the “Ce gy AT A -

given
images




Dynamic
Super-Resolution

Low Quality Movie In —
High Quality Movie Out
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Dynamic Super-Resolution (DSR)

rements
'1 (or & 3 -: i -}"i-"-‘l:-clt'-‘l:‘l :q_._ e :
igates ] | e . gl
fcroring tePE |
g ¥

P
peiting of -1-| g

Dynamic
Super-Resolution
Algorithm




Modeling the Problem

Y (t —k)=M(t,k)X(t) + N(t, k) ?

HighI Resollution II{econsltructeld Images




DSR — Proposed Model

v (£ k) = MIGERIX (1) -+ N(EK).

kand F(t.k)=F(t—k+1)---F(t—1)F(t) J k=0
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DSR — From Model to ML

The DSR problem is referred to as a long sequence of SSR

problems.

Thus, Our model 1s

Using ML approach

. (X(t),t)zgkk Y (t—k)— DHF (t,k) X (1)

o

- Y(t—k)=DHF(tk)X(t)+N(t,k)

N(t, k) ~ N{Q, x‘kW‘l}where 0<i<l1

and F(t,k)=F(t—k+1)---F(t—1)F(t)

and this function should be minimized per each t.

_ 40 -
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Minimizing & (X (t).t)= > 2 |Y (t—k)-DHF (t,k) X (t)|
k=0

Solving the ML

2

W

amounts to solving the linear set of equations L(t)X(t) = Z(t)

where

(DHF (t.k)|

L(t) = ixk | W| DHF (t,k) |

t—1
Z(t)=Y \"| DHF(t,k)
k=0

| WY (t-k)

Note that (apart from the need to solve the
linear set), one has to compute L and Z per
cach t all over again, and the summations
length grow linearly 1n t.

_41] -




Recursive Representation

L(t)= ixk DHF (t,k)

Z(t):ikk DHF(t,k)| WY(t-k)
Simplifies to (Using F(t,k)=F(t—k+1) ---F(t-1)F(t) )

L(t)=AF (t)L(t—1)F(t)+ H ' WH
Z(t)=F" ()Z(c—1)+ H WY(t)
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Alternative Approach

Instead of continuing with the previous model and
recursive representation, we adopt a different point
of view.

The new point of view 1s based on State-Space
modeling of our problems

This new model leads to better-understanding of the
required algorithmic steps towards an efficient
solution.

The eventual expressions with the alternative
method are exactly the same as the ones shown
previously.

_43 -
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DSR - The Model (1)

V(1)

X(t-1)
G(t)
9 X(t)

Dela X(t) - High-resolution image
y G(t) - Warp operation

V(t) - Sequence innovation
X(t)=G(t)X(t—1)+ V(t)

assumed ~N{0,Q"(¢)]
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DSR - The Model (2)

N(t)

X(t) Y(t)
H(z q,
n Y(t) - Measured image

H(t) - Blur

. Q D - Decimation
S - Laplacian a A

N(t) - additive noise

~N{0. W (1))

u(t) i
] ] ) _ - . S - Laplacian
U(t) - Non-smooth.
X(t) _ DH(t) X(t)—l' N(t) t ~N{0,R1(:)}
o || s T u)
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DSR - The Model (3)

X(t)=G(t)X(t—1)+ V(t)

&

Y(t)] [DH(t) (t)+'_N__(t)'

]
e

These two equations form a

forcing spatial smoothness & temporal motion
compensated smoothness
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DSR - Reconstruction By KF
| X(t)=G(t)X(t-1)+V(t)
The model 13 Y (t)=H, (t)X(t)+ N, (t)
given 1n a State- j
Space form where V(t)~Ni0,Q"(t)}
N (£) ~ N0, W (1))

In order to estimate X(t) in time, we need to apply

The basic idea: 1. Since all the inputs are Gaussians, so 1s X(t)
2. We know all about X(t) if 1its two first moments
are known - X(t)~ N{X(t), P(t)}

_47 -




KF: Mean-Covariance Pair

1. We start by knowing the pa1r< (t—1), P(t - 1)>
2. Based on X(t)=G(t)X(t—1)+V(t) we get the

P(t)=G(t)P(t-1)G"(£)+Q"(t)
X(t)=G(t)X(t-1)

3. Based on Y,(t)=H,(t)X(t)+ N, (t) we get the

P() B(0)+ H (W, (0, (0]

Update Equaﬁ"“S X(t) = PP ()X()+ HL ()W, ()Y, (¢)

_48 -
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KFK: Information Pair
Information pair is defined by <Z(t)£(t)> = <13‘1 (t)X(t), P (t)>
The recursive equations become:

£l)= GO -6 1)+ Q" (1)
<> <>c<t> (t-12e-1)
|

Undate: 0= HI+HLOW,(0H, (1)
P 20 =20+ (W0, (0

Interpolation:

Presumably, there 1s nothing to gain 1n using the
information pair, over the mean-covariance pair

_49 -




Information Pair Is B

etter !!

(for our application)

1. Experimental results indicate that the information

5-1

r

matrix 1s sparser:

\. 7

2. We intend to avoid the use of Q(t). Therefore, 1t 1s

natural to achieve simplifying the eg

uation

—1

£(t)=[G(L (t-1)6" () +Q (1)
while approximating Q(t).
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Avoiding Q(t)

Instead of using  L(t) [G(t (t—-1)G"(t )WLQ_l(t)T1

Approximate Q'(t) = a(t)G(t)L ' (t—1)G(t)

and obtain that  [(t)=——F ()L(t-1)F) [G(t)=F(t)]




The Pseudo-RLS Algorithm

Vo

1. Initialize: L(0)=¢’I, Z(0)=0, X(0)=0
2. Fort>0,

< Update the information pair
L(t) = 2(t)F" (t)L(t — )F(t)+ Hy (W, ()H, (t)
Z(t)=MeF" (¢)2(t 1)+ Hy (W, (Y. ()

< Compute the output by | X(t)=1L"(t)Z(t)

Problem: Need to invert the
information matrix

_50 -




The R-SD Algorithm

N

1. Initialize: L(0)=¢’, Z(0)=0, X(0)=0
2. Fort>0,
< Update the information pair, as before

< Compute the output by R-SD iterations:

N

X (t) = G(t)XR (t ~ 1)

Adopted from the
and for k=1.2. ... R: assumed model
X, (0 =X, () - L)X, (1) - 2(0)]
Note: but

error does not propagate

- 53 -



Dynamic Super-Resolution

Va\

X(t)=f1Y(t), X(t-1 o R

Super-Resolution

Algorithm

High Resolution Reconstructed Images e




The R-LMS Algorithm
1. Initialize: X(0)=0
2. Fort>0,

< Compute the output by R-SD iterations using
the intermediate information pair:

N N

%, (1) =G(1)X, (1-1)
and for k=12, ... ,R:

N

R, (1)=X, (1) -uHL ()W, ()] B, (X, ()X, ()]

Also obtained if
or if 1s set to zero
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The Information Matrix

L(t) =A(t)F " ()L(t —1)F(t)+ M(t)

Under some very reasonable assumptions, it 1Is PROVEN that

the the information matrix remains

0.05 Density versus iterations - An Example

0.04

il

HHHHHIIIHIIIIIIII%
A R

1 10 100
- 56 -
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Convergence Properties

1. Bounds on the dynamic estimation error for the
proposed Kalman Filter approximations (the P-RLS,
the R-SD and the R-LMS) are obtained.

2. An important role in these convergence theorems
plays the term

N

XPRLS(t) _G<t)X PRLS (t_l) H

which stands for the amount of variation (innovative
data) that exists in the sequence. The higher this term,
the higher 1s the expected error.
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Results - Part 1

Dynamic Estimation Comparison - Low dimension (N=100)
synthetic case

MSE versus iterations - A Comparison
10

. Pseudo-RLS

Kalman Filter

0.1

0.01
0 20 40 60 80 100
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Results - Part 2

Higher dimension (N=2500) synthetic image sequences

Note: the
motion and
blur operations
are assumed to

be known
apriori

1st 2 5th 50th 7 5th 1 Ooth




Sequence 1

7 5th 1 Ooth

Measurements

Bilinear Interpolation |
5-LMS no Regularization |
5-LMS + Regularization |

5-SD + Regularization §




Sequence 1
[Pure translation]

Measurements

Bilinear Interpolation

5-LMS no Regularization |

5-LMS + Regularization |

5-SD + Regularization §

- & i STIUrn
1d L) L)
snapsh [xh :

AR
motian ¢ UON_COMP =
1 st 25th SOth

i

L= ]

-
oy
i | e .'_ L SIEIsrn
| LJE‘-.E.-MI

| B
sk "ala ]
~1 tion_cemp ~=0MR.M
T aSIavrn
Shai .
| tion_comp ~~OMR-M
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Conclusions

Both Static and Dynamic super-resolution paradigms are
presented, along with their solutions.

Very simple yet general models are proposed for both
problems.

The SSR problem is presented as a classic inverse problem,
and treated as such.

The DSR problem is shown to require KF for its solution.
Due to the dimensions involved, approximations are
developed and analyzed.

Simulations show promising results, both for the SSR and
the DSR.

Motion estimation 1s a bottleneck 1n the recovery processes.
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Fast SSR (1) -
A Special Case

What if the same camera is used
and the motion is pure
translational?
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SSR - The Model

Geometric Warp Blur Decimation
High- MG
O~ Lo
Image Resolution
vV, Images
X
Additive Noise
Y.
—N
©
AN
4 N N
—1
Y, =DHFEX+V,, V,~Now'l !
C J k=1
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The Model as One Equation

( N
—]
\ J k=1
Y| [ DHF | [V | [V R O I
Vs v, \f '

Y, |_| Do v Y2 .o

X+
Yn| | DNHNEN] [ VN VN O WA |
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Iterative Reconstruction

( A

N
R=3 F'HID/W,D,H,F, .
k=l

E | RX=P
P= ZFkT HEDEW(Xk N D
\ =

J

For X : [1000 x1000] , the matrix R is sparse R e M'* 1

OPTION: Using the SD algorithm (10-15 iterations are enough)

N

W
X =X - HZFkT HEDE“@ [Xk _DkaFka]
k=1

234+
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Basic Assumptions

H,=H — The blur operation is the same for all the images and
it 1s a linear-space-invariant operation, 1.€., it has a
block-Circulant form.

D,=D — The decimation operation 1s the same for all the
images and 1t 1s a uniform sub-sampling operator

F, — The warps are all pure translations, and thus all have
a block-Circulant form. More over, we assume a
nearest-neighbor representation (one non-zero entry
in each row and it 1s ‘1°)

W, =cl- The noise 1s Gaussian and white and thus the
covariance matrix 1s the identity matrix up to some
constant
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Using the Iterative SD

A

X, HZFTHTDTWk Y, -DHEX |

_J+1

N

X. MZFTHTDT [Y ~-DHEX ]—

2 ]+1
X —uH'S E'D']Y, - DEHX |
k=1

where we use the fact that

block-Circulant matrices commute
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Important Shortcut

Define Z = HX ; and get

K., =X, -uH"Y E'D'[Y, - DR HK, |

==+l
k=1

N

Qéﬁl=2§-—HfﬂﬂTjélf])T[§l'—[“ﬂ2;]==
k=1

=7 —uHH" {ZFEDT\_Q —iFkTDTDFij} =7 —uHH' (E—RZJ.)
k=l

k=l
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Descent Direction - Theory

m~~/ NT

Given the quadratic function* {§ } = % XTRX -P x+c¢,

it’s optimal Solution satisfies R&Opt P.

Any algorithm of the form X, | =X — OLM(RX — ?)

converges to X . for sufficiently small a. and M>0.

—opt

In our case M=HH! (positive semi-definite). It means that the

N N

error X; — X, in the null space of M cannot converge.

* R is assumed to be positive definite
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Positive Semi-definite M

~~/

% =% -oM(R%, - P)

29+l

(Xjﬂ _opt) (I OLMRy —opt)

If v 1s 1n the null-space of M, then a vector u = R 'v

1s in the null-space of MR. For such a vector we get

(I — ocMIN{JyHg =
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Positive Semi-definite M

XO _opt — eO T f

In the null-space of MR
Orthogonal to the null-space of MR

+f = (- aMR )" (6, +£,)= (- aMR )¢, + £,

_J+1 = S

The null-space of MR is characterized by
frequencies (since M=HH! and H is a low-pass-filter).
Thus, no-convergence there 1s of no consequence, and this 1s

especially true 1f proper 1nitialization 1s used.
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Whatis P ?

It turns out that this 1s a

P — ZFI;F DT Yk ? motion-compensated

average of the input images

=1
Inverse
Yl Interpolation Displacement
N T
D' F N
Zero Inverse
XN Interpolation Displacement

D' K
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Whatis R ?

N Huge matrix,
R=>ED'DE ? butdue to our
k=1 assumptions ...

A. This matrix 1s a ,
B. Its main diagonal entries are all integers,

C. The [j,j] entry represents the count of contributing
pixels from the Y-sequence to the j-th pixel in X, and

D. We hereby assume that sufficient measurements are
given and thus Vj, R[j,j]>1
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To Conclude

Z,,=2,~yHH' (P-RZ)

n~~/

Z R_1 P and 1t 1s easy to compute this solution — One
Zopt = division by integer per pixel !!!!

N

Having found Z

Z;=HA,

We have to apply a classic image restoration procedure

since 1t 1s defined by

/\

to recover X . (can be done without iterations).
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Should We be Surprised ?

Every low-quality
image fills some
pixels in the higher
resolution grid.

Some pixels will be
filled more than
once — good for
noise removal
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Adaptive Non-Iterative Restoration

N |
Using X = [HTH + kSTWST HTX 1s edge preserving but not
space-1nvariant.

I 1
Instead use X = _HTH + MSTST HTX

I 1
X, = _HTH+7LZSTST H'Y
where Ay <Agp <As.
Thus, X, and X, can be computed using 2D-FFT. The final result

should be obtained using a diagonal weight matrix W with values
in the range [0,1] (1-edge, 0-smooth):

XFinal = WXI T (I - W)X2
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Fast SSR (2) -
Periodic-Step SD

A numerical method to speed-up
convergence
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Relation to Super-Resolution

\ N

Xk:DkaFk}—(_I_YkD VkNN{()’VVk_I} >

J k=1

-

N\

\

Y, | | DHE | |V,
E;Z _ IkJ?JEZ 2§+_:¥;
_)Sﬂ_ _I)NIINF&_ _Eaﬂ_
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Basic Assumptions

A sequence of measurements y(k) 1s obtained sequentially.

These measurements correspond linearly to an unknown
vector x through y(k) =C' (k)§ + n(k)

Y] [ ') | [n0)
y(2) - C'(2) - n(2)
yB3)|=| - QT.(3) e |xH n(3)
)| | @) | )




Basic Assumptions

Assumption 1 — we have enough measurements, 1.¢., if we
write y=Cx+1n, CeM"™ then L>N and C is full-
rank.

— If LS (ML) 1s applied, we get
fix}=y-Cx|. = Min. = x=(C’C)'C"y

Assumption 2 — x is high dimensional [N elements] and
thus the above solution 1s practically impossible

Turn to 1terative methods
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Simple Iterative Method - SD

) =fy-of = min = T _cr(yocy)

Using the Steepest-Descend 1dea we get
R =X, —pC’ (X — CXk) =
L
=%, > CO)ly() - C" ()R]
=1

So we see that the gradient 1s built from L separate
contributions, each obtained from a different measurement
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Decomposition of the Gradien

A 2 T A e
X =X —HC Yy —CX, )=
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Periodic-Step SD

L
Instead of using Xkﬂ = Xk — MZ Q(J)[Y(J) — QT (J)ﬁk]
i=1

update the estimate of x for each
SCALAR measurement
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Related Work

This idea of breaking the gradient into several parts and
updating the estimate after each of them 1s well-known,
especially in cases where sequential measurements are
obtained. Two such classic examples:

Neural Network training (see Bertsekas’s book)
Signal Processing (see LMS by Widrow et.al.)
In 1mage restoration and super-resolution problems, we may

consider updating our output image after every pixel in the
measurements. The benefit 1s convergence speed-up.
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Analysis Results

Convergence 1s guaranteed 1f 0 <p < 1!213{2/ o j)Q(j)}
The convergence 1s to the LS optimal solution only if
Infitisimal step-size u—0,
Diminishing step-size p,—0, or if

C 1s square.

In all other cases, the convergence is to a deviated
solution.

In the SSR case, we are not interested in exact solution !!!!

Rate of convergence 1s dramatically improved (compared
to SD, NSD, CG, Jacobi, GS, & SOR)
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SSR - Simulation Results

SYNTHETIC CASE

25 1mages were created from
one 100-by-100 pixels image
using

*Motion - Affine,

*Blur — 3-by-3 uniform,

*Noise — Gaus. white c=3.

These 25 images were fused
to create a 200-by-200 pixels
output.

This algorithm effectively
converges after one iteration

Original

LS result
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