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Static Versus Dynamic 
Super-Resolution

Definitions and                      
Activity Map
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Basic Super-Resolution Idea 
Given: A set of degraded 
(warped, blurred, decimated, 
noised) images:

Required: Fusion of the 
measurements into a 

higher resolution image/s
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Static Super-Resolution (SSR)

Static 
Super-Resolution

Algorithm

{ }N321 Y,,Y,Y,YfX̂ K=

1Y

X̂

2Y NY

Low Resolution Measurements

High Resolution 
Reconstructed Image

t
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Dynamic Super-Resolution (DSR)
Low Resolution Measurements

High Resolution Reconstructed Images

( ) ( ) ( ){ }K,1tY,tYftX̂ −=

( ){ }ttY

( ){ }ttX̂

Dynamic 
Super-Resolution

Algorithm

t

t
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Super-Resolution     
Basics

Intuition and                         
Relation to Sampling theorems
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Simple Example

D

For a given band-
limited image, the 
Nyquist sampling 
theorem states that if a 
uniform sampling is 
fine enough (≥D), 
perfect reconstruction 
is possible.

D
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Simple Example

Due to our limited 
camera resolution, we 
sample using an 
insufficient 2D grid

2D

2D
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However, we are 
allowed to take a 
second picture and 
so, shifting the 
camera ‘slightly to 
the right’ we obtain 

Simple Example

2D

2D
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Simple Example

Similarly, by 
shifting down we 
get a third image

2D

2D



- 13 -

And finally, by 
shifting down and 
to the right we get 
the fourth image

2D

2D

Simple Example
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Simple Example - Conclusion

It is trivial to see that 
interlacing the four 
images, we get that 
the desired resolution 
is obtained, and thus 
perfect reconstruction 
is guaranteed.

This is Super-
Resolution in its 
simplest form
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Uncontrolled Displacements

In the previous 
example we counted on 
exact movement of the 
camera by D in each 
direction. 

What if the camera 
displacement is 
uncontrolled?
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Uncontrolled Displacements

It turns out that there is 
a sampling theorem due 
to Yen (1956) and 
Papulis (1977) covering 
this case, guaranteeing 
perfect reconstruction 
for periodic uniform 
sampling if the sampling 
density is high enough 
(1 sample per each D-
by-D square).
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Uncontrolled Rotation/Scale/Disp.

In the previous 
examples we restricted 
the camera to move 
horizontally/vertically 
parallel to the 
photograph object. 

What if the camera 
rotates? Gets closer to 
the object (zoom)?
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Uncontrolled Rotation/Scale/Disp.

There is no 
sampling 
theorem 
covering this 
case
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Further Complications

2. Motion may include 
perspective warp, local 
motion, etc.

1. Sampling is not a point 
operation – there is a blur

3. Samples may be noisy – any 
reconstruction process must 
take that into account.
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Static                      
Super-Resolution

The creation of  a single improved 
image, from the finite measured 

sequence of images
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SSR - The Model
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The Warp As a Linear Operation

F[j,i]=1

X Z

Per every 
point in X 

find a 
matching 
point in Z
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Model Assumptions

We assume that the images Yk and the operators Hk, 
Dk, Fk,& Wk are known to us, and we use them for 
the recovery of X.
Yk – The measured images (noisy, blurry, down-sampled ..)

Hk – The blur can be extracted from the camera characteristics

Dk – The decimation is dictated by the required resolution ratio

Fk – The warp can be estimated using motion estimation

Wk – The noise covariance can be extracted from the camera  

characteristics
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A Thumb Rule on Desired Resolution
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In the 
noiseless case 

we have 

Clearly, this linear system of equations should have 
more equations than unknowns in order to make it 
possible to have a unique Least-Squares solution.

Example: Assume that we have N images of M-by-M pixels, 
and we would like to produce an image X of size 
L-by-L. Then – MNL ⋅≤
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X

High-
Resolution

Image
H

H

Blur       
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V1
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Additive Noise

Y1
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Low-
Resolution

Images

The Maximum-Likelihood Approach 

Which X would be such that when fed to the above 
system it yields a set Yk closest to the measured images?
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SSR - ML Reconstruction (LS) 
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SSR - MAP Reconstruction
Add a term which penalizes for                   

the solution image quality

( ) { }XAXY X
N

1k

2
kkkk

2
MAP k

λ+−=ε ∑
=

WFHD

1.                                           - simple spatially adaptive,

2.                           - M estimator (robust functions),

{ } ( ) XXXXA 0
TT SWS=

{ } { }XXA Sρ=

Possible Prior functions - Examples:

Note: Convex prior guarantees convex 
programming problem
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Iterative Reconstruction
{ } XXXA TT WSS=Assuming the prior            is used



















=

λ+=

∑

∑

=

=
N

1k
kk

T
k

T
k

T
k

N

1k

T
kkkk

T
k

T
k

T
k

YP WDHF

WSSFHDWDHFR

PX̂=R
For , the matrix R is sparse [ ]10001000:X̂ ×

66 1010 ×∈MR

OPTION: Using the SD algorithm (10-15 iterations are enough)
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Simulated 
error

Weighted 
edges

Back 
projection

Image-Based Processing

All the above operations can be interpreted as 
operations performed on images.

AND THUS

There is no actual need to use the Matrix-Vector 
notations as shown here. This notations is 

important for the development of the algorithm

[ ] j

N

1k

T
jkkkkk

T
k

T
k

T
kj1j X̂X̂YX̂X̂ ∑

=
+ µλ−−µ−= WSSFHDWDHFSD* Iteration:

* Also true for the Conjugate Gradient algorithm
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SSR – Simpler Problems
 

Single image de-noising  

 

Single image restoration  

 

Single image scaling  

 

Motion compensation average  
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Example 1

Synthetic case:

From a single image 
create 9 3:1 images 
this way



- 34 -

Example 1

The higher 
resolution 
original

One of the low-
resolution 

images

The 
reconstructed 

result

Synthetic case:

9 images, no 
blur, 1:3 ratio
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16 images, ratio 1:2, PSF - assumed to be Gaussian with σ=2.5

Example 2

Taken 
from 

one of 
the 

given 
images

Taken      
from the 
reconstructed 
result
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Dynamic                    
Super-Resolution

Low Quality Movie In –
High Quality Movie Out
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Dynamic Super-Resolution (DSR)
Low Resolution Measurements

High Resolution Reconstructed Images

( ) ( ) ( ){ }K,1tY,tYftX̂ −=

( ){ }ttY

( ){ }ttX̂

Dynamic 
Super-Resolution

Algorithm

t

t
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Modeling the Problem
Low Resolution Measurements

High Resolution Reconstructed Images

( ){ }ttY

( ){ }ttX̂

t

t

( ) ( )k,tN)t(X)k,t(ktY +=− M ?

Bypass
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DSR – Proposed Model
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DSR – From Model to ML
The DSR problem is referred to as a long sequence of SSR 
problems.

Thus, Our model is

Using ML approach

and this function should be minimized per each t.
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Solving the ML
( )( ) ( ) ( ) ( )

t 1 22 k

k 0
X t , t Y t k t, k X t

−

=

ε = λ − −∑ W
DHF%Minimizing

amounts to solving the linear set of equations

where
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L DHF W DHF

DHF W

% %

%

Note that (apart from the need to solve the 
linear set), one has to compute L and Z per 
each t all over again, and the summations 
length grow linearly in t. 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tY1tZttZ

t1ttt
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WHHFLFL

+−λ=

+−λ=

Recursive Representation
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Simplifies to (Using                                            )( ) ( ) ( ) ( )t,k t k 1 t 1 t= − + −F F F F% L
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Alternative Approach

Instead of continuing with the previous model and 
recursive representation, we adopt a different point 
of view.

The new point of view is based on State-Space 
modeling of our problems

This new model leads to better-understanding of the 
required algorithmic steps towards an efficient 
solution.

The eventual expressions with the alternative 
method are exactly the same as the ones shown 
previously.

Bypass
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DSR - The Model (1)

G(t)
X(t-1)

V(t)

X(t)

Delay

( ) ( ) ( ) ( )tV1tXttX +−= G

X(t) - High-resolution image
G(t) - Warp operation 
V(t) - Sequence innovation

assumed ( ){ }t,0~ 1-QN

The System’s Equation
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H(t) D
X(t)

N(t)
Y(t)

( ) ( ) ( ) ( )
( )






+








=








tU
tN

tX
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0
tY

S
DH

Y(t) - Measured image
H(t) - Blur
D - Decimation
N(t)  - additive noise

S - Laplacian 
U(t) - Non-smooth. 

( ){ }t,0~ 1-WN

( ){ }t,0~ 1-RN

The Measurements Equation

DSR - The Model (2)

U(t)

S - Laplacian
0
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DSR - The Model (3)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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These two equations form a
Spatio-Temporal Prior           

forcing spatial smoothness & temporal motion 
compensated smoothness



- 47 -

DSR - Reconstruction By KF

In order to estimate X(t) in time, we need to apply 

Kalman Filter (KF)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ){ }
( ) ( ){ }t,0~tAN

t,0~tVwhere
tNtXttY

tV1tXttX

1

1

AAA

−

−

+=
+−=

WN
QN

H
G

The model is 
given in a State-
Space form

The basic idea: 1. Since all the inputs are Gaussians, so is X(t)

2. We know all about X(t) if its two first moments 

are known - ( ) ( ) ( ){ }tˆ,tX̂~tX PN
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KF: Mean-Covariance Pair

( ) ( )1tˆ,1tX̂ −− P1. We start by knowing the pair

( ) ( ) ( ) ( )tV1tXttX +−=G

( ) ( ) ( ) ( ) ( )
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2. Based on                                     we get the

Prediction Equations:
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3. Based on                                       we get the 

Update Equations:
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KF: Information Pair
( ) ( ) ( ) ( ) ( )tˆ,tX̂tˆtˆ,tẐ 11 −−= PPLInformation pair is defined by

The recursive equations become:

Presumably, there is nothing to gain in using the 
information pair, over the mean-covariance pair
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Interpolation:

Update:
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Information Pair Is Better !!
(for our application)

1. Experimental results indicate that the information 
matrix is sparser: -1

=

2. We intend to avoid the use of Q(t). Therefore, it is 
natural to achieve simplifying the equation                     

while approximating Q(t). 
( ) ( ) ( ) ( ) ( )[ ] 11T1 tt1tˆtt~ −−− +−= QGLGL
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Avoiding Q(t)

Instead of using

Approximate

and obtain that  

( ) ( ) ( ) ( ) ( )[ ] 11T1 tt1tˆtt~ −−− +−= QGLGL

( ) ( ) ( ) ( ) ( )t1tˆttt T11 GLGQ −α≈ −−

( ) ( )[ ]tt1 FG =−( ) ( ) ( ) ( ) ( )t1tˆt
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1t~ T FLFL −
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The Pseudo-RLS Algorithm

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )tYtt1tẐtttẐ

tttt1tˆtttˆ

AA
T
A

T

AA
T
A

T

WHF

HWHFLFL

+−λ=

+−λ=

( ) ( ) ( ) 00X̂,00Ẑ,0ˆ 2 ==ε= IL1. Initialize:

2. For t > 0,

Update the information pair

Compute the output by ( ) ( ) ( )tẐtˆtX̂ 1−=L

Problem: Need to invert the 
information matrix
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The R-SD Algorithm
( ) ( ) ( ) 00X̂,00Ẑ,0ˆ 2 ==ε= IL1. Initialize:

2. For t > 0,

Update the information pair, as before

Compute the output by R-SD iterations:

and for k=1,2, … ,R: 

( ) ( ) ( )1tX̂ttX̂ R0 −=G

( ) ( ) ( ) ( ) ( )[ ]tẐtX̂tˆtX̂tX̂ kk1k −µ−=+ L

Adopted from the 
assumed model

Note:                                but 
error does not propagate

( ) ( ) ( )tẐtˆtX̂ 1
R

−≠L



- 54 -

Low Resolution Measurements

High Resolution Reconstructed Images

( ) ( ) ( ){ }1tX̂,tYftX̂ −=

( ){ }ttY

( ){ }ttX̂

Dynamic 
Super-Resolution

Algorithm

t

t

Dynamic Super-Resolution
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The R-LMS Algorithm
( ) 00 =X̂1. Initialize:

2. For t > 0,

Compute the output by R-SD iterations using 
the intermediate information pair:

and for k=1,2, … ,R: 

( ) ( ) ( )0 R
ˆ ˆX t t X t 1= −G

( ) ( ) ( ) ( ) ( ) ( ) ( )T
k 1 k k AA A A

ˆ ˆ ˆX t X t t t t X t Y t+
 = −µ − H W H

Also obtained if 
or if         is set to zero ( )tλ

( ) ( ) ( )1
R

ˆ ˆ ˆX t 1 t 1 Z t 1−− ≅ − −L
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Under some very reasonable assumptions, it is PROVEN that 

the the information matrix remains SPARSE

( ) ( ) ( ) ( ) ( ) ( )tt1tˆtttˆ T MFLFL +−λ=

Density versus iterations - An Example

1  10    100     

0.05 

0.04

0.03

0.02

0.01

0.0

The Information Matrix
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Convergence Properties
1. Bounds on the dynamic estimation error for the 

proposed Kalman Filter approximations (the P-RLS, 
the R-SD and the R-LMS) are obtained.

2. An important role in these convergence theorems 
plays the term

which stands for the amount of variation (innovative 
data) that exists in the sequence. The higher this term, 
the higher is the expected error.

( ) ( ) ( )PRLS PRLS
ˆ ˆX t t X t 1− −G
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Results - Part 1
Dynamic Estimation Comparison - Low dimension (N=100) 

synthetic case

1-LMS

3-SD

Pseudo-RLS

Kalman Filter

0                   20                40                  60   80               100

10

1

0.1

0.01

MSE versus iterations - A Comparison
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Higher dimension (N=2500) synthetic image sequences
Results - Part 2

Note: the 
motion and 
blur operations 
are assumed to 
be known 
apriori

1st 25th 50th               75th              100th

Measured sequence:3 by 3 uniform 
blurring, 2:1 decimation, noise        .

The original sequence:                        
Image size: 50 by 50

F

E
D

C

B
A

The 5-LMS algorithm's output, no 
regularization

Bilinear interpolation of the 
measured sequence

The 5-LMS algorithm's output, 
with regularization

The 5-SD algorithm's output, 
with regularization

5=σ
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[Displacement+zoom]
1st 25th 50th         75th            100th

Sequence 1

Measurements

Bilinear Interpolation

5-LMS no Regularization

5-LMS + Regularization

5-SD + Regularization 

1st 25th 50th         75th            100th
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Sequence 1

Measurements

Bilinear Interpolation

5-LMS no Regularization

5-LMS + Regularization

5-SD + Regularization 

[Pure translation]
1st 25th 50th         75th            100th
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[Pure rotation]
Sequence 1

Measurements

Bilinear Interpolation

5-LMS no Regularization

5-LMS + Regularization

5-SD + Regularization 

1st 25th 50th         75th            100th
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Conclusions
Both Static and Dynamic super-resolution paradigms are 
presented, along with their solutions.

Very simple yet general models are proposed for both 
problems. 

The SSR problem is presented as a classic inverse problem, 
and treated as such.

The DSR problem is shown to require KF for its solution. 
Due to the dimensions involved, approximations are 
developed and analyzed.

Simulations show promising results, both for the SSR and 
the DSR.

Motion estimation is a bottleneck in the recovery processes.
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Fast SSR (1) -
A Special Case

What if the same camera is used 
and the motion is pure 

translational?
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SSR - The Model

{ }
N

1k

1
kkkkkkk ,0~V ,VXY 

=

−









+= WNFHD

X

High-
Resolution

Image
H

H

Blur       

1

N

F =I1

FN

Geometric Warp

D

D1

N

Decimation

V1

VN

Additive Noise

Y1

YN

Low-
Resolution

Images
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{ }
N

1k

1
kkkkkkk ,0~V ,VXY 

=

−









+= WNFHD

The Model as One Equation
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Iterative Reconstruction
N

T T T
k k k k k k k

k 1
N

T T T
kk k k k

k 1

P Y

=

=

 =  
 
 =
  

∑

∑

R F H D W D H F

F H D W
PX̂=R

For , the matrix R is sparse [ ]10001000:X̂ ×
66 1010 ×∈MR

OPTION: Using the SD algorithm (10-15 iterations are enough)
N

T T T
j 1 j k jk k k k k k k

k 1

ˆ ˆ ˆX X Y X+
=

 = −µ − ∑F H D W D H F
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Basic Assumptions
Hk=H – The blur operation is the same for all the images and 

it is a linear-space-invariant operation, i.e., it has a 
block-Circulant form.

Dk=D – The decimation operation is the same for all the 
images and it is a uniform sub-sampling operator

Fk – The warps are all pure translations, and thus all have 
a block-Circulant form. More over, we assume a 
nearest-neighbor representation (one non-zero entry 
in each row and it is ‘1’)

Wk=cI– The noise is Gaussian and white and thus  the 
covariance matrix is the identity matrix up to some 
constant
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N
T T T

j 1 j k jk k k k k k k
k 1

ˆ ˆ ˆX X Y X+
=

 = −µ − ∑F H D W D H F

Using the Iterative SD

[ ]

[ ]∑

∑

=

=
+

−µ−=

=−µ−=

N

1k
jkk

TT
k

T
j

N

1k
jkk

TTT
kj1j

X̂YX̂

X̂YX̂X̂

HDFDFH

DHFDHF

where we use the fact that 

block-Circulant matrices commute
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R~P~ ==

Define                     and getjj X̂Ẑ H=

Important Shortcut

( )

N
T T T

j 1 j k jk k
k 1

N N
T T T T T T

j k j j jk k k
k 1 k 1

ˆ ˆ ˆZ Z Y Z

ˆ ˆ ˆ ˆZ Y Z Z P Z

+
=

= =

 = −µ − = 

 = −µ − = −µ −  

∑

∑ ∑

HH F D DF

HH F D F D DF HH R% %

N
T T T

j 1 j k jk k
k 1

ˆ ˆ ˆX X Y X+
=

 = −µ − ∑H F D DF H
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Descent Direction - Theory

optj x̂x̂ −

In our case M=HHT (positive semi-definite). It means that the

error                   in the null space of M cannot converge.

Is it a Problem?

( )P~x̂~x̂x̂ jj1j −α−=+ RM

optx̂

Any algorithm of the form

converges to          for sufficiently small α and M>0.

{ } cxP~x~xxf
TT

2
1 +−= RGiven the quadratic function*                                  ,

P~x̂~
opt =Rit’s optimal Solution satisfies                    .

* R is assumed to be positive definite
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Positive Semi-definite M
( )

( ) ( ) ( )opt0
1j

opt1j

jj1j

x̂x̂~Ix̂x̂

P~x̂~x̂x̂

−α−=−

−α−=

+
+

+

RM

RM

If v is in the null-space of M, then a vector

is in the null-space of         .  For such a vector we get 

v~u 1−= R

RM~

( ) uu~I
1j

=α−
+

RM
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Positive Semi-definite M

( ) ( ) ( ) 00
1j

00
1j

1j1j f̂ê~If̂ê~If̂ê +α−=+α−=+
++

++ RMRM

00opt0 f̂êx̂x̂ +=−

In the null-space of

Orthogonal to the null-space of 

RM~

RM~

The null-space of          is characterized by very high

frequencies (since M=HHT and H is a low-pass-filter). 

Thus, no-convergence there is of no consequence, and this is 

especially true if proper initialization is used.

RM~
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What is P ?

?DF∑
=

=
N

1k
k

TT
k YP~

Zero 
Interpolation

TD

Inverse 
Displacement

T
1F

1Y

Zero 
Interpolation

TD

Inverse 
Displacement

T
NFNY

P~

It turns out that this is a 
motion-compensated 

average of the input images
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?DFDFR ∑
=

=
N

1k
k

TT
k

~

A. This matrix is a diagonal matrix,

B. Its main diagonal entries are all integers,

C. The [j,j] entry represents the count of contributing 
pixels from the Y-sequence to the j-th pixel in X, and

D. We hereby assume that sufficient measurements are 
given and thus [ ] 1j,j~,j ≥∀ R

What is R ?
Huge matrix, 
but due to our 
assumptions …
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To Conclude

( )jT
j1j Ẑ~P~ẐẐ RHH −µ−=+

P~~Ẑ 1
opt

−=R and it is easy to compute this solution – One 
division by integer per pixel !!!!

Having found         , since it is defined by

We have to apply a classic image restoration procedure 

to recover           (can be done without iterations).          

optẐ

jj X̂Ẑ H=

optX̂
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Should We be Surprised ?

Every low-quality 
image fills some 
pixels in the higher 
resolution grid. 

Some pixels will be 
filled more than 
once – good for 
noise removal



- 78 -

Adaptive Non-Iterative Restoration
[ ] YX̂ T1TT HWSSHH

−
λ+=Using                                                  is edge preserving but not 

space-invariant.

( ) 21Final X̂IX̂X̂ WW −+=

Thus, X1 and X2 can be computed using 2D-FFT. The final result 
should be obtained using a diagonal weight matrix W with values 
in the range [0,1] (1-edge, 0-smooth):

[ ] YX̂ T1T
1

T
1 HSSHH

−
λ+=

[ ] YX̂ T1T
2

T
2 HSSHH

−
λ+=

2opt1 λ<λ<λ

Instead use 

where                         . 
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Fast SSR (2) -
Periodic-Step SD

A numerical method to speed-up 
convergence
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{ }
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+= WNFHD

Relation to Super-Resolution
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Basic Assumptions
A sequence of measurements y(k) is obtained sequentially. 

These measurements correspond linearly to an unknown 
vector x through ( ) ( ) ( )knxkCky T +=

( )
( )
( )

( )

( )
( )
( )

( )

( )
( )
( )

( )





















+























=























Ln

3n
2n
1n

x

LC

3C
2C
1C

Ly

3y
2y
1y

T

T

T

T

M
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M

LL

LL

LL
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Basic Assumptions
Assumption 1 – we have enough measurements, i.e., if we 
write , then             and C is full-
rank. 

→ If LS (ML) is applied, we get

Assumption 2 – x is high dimensional [N elements] and 
thus the above solution is practically impossible 

[ ]NLM,nxy ×∈+= CC

{ } ( ) yx̂.Minxyxf T1T2

2
CCCC −

=⇒⇒−=

Turn to iterative methods

NL ≥
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Simple Iterative Method - SD

{ } { } ( )2 T

2

f x
f x y x Min. y x

x
∂

= − ⇒ ⇒ = −
∂

C C C

( )
( ) ( )[ ]∑

=

+

−µ−=

=−µ−=
L

1j
k

T
k

k
T

k1k

x̂jC)j(yjCx̂

x̂yx̂x̂ CC

Using the Steepest-Descend idea we get

So we see that the gradient is built from L separate 
contributions, each obtained from a different measurement
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( )
( ) ( )[ ]∑

=

+

−µ−=

=−µ−=
L

1j
k

T
k

k
T

k1k

x̂jC)j(yjCx̂

x̂yx̂x̂ CC

Decomposition of the Gradient
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Periodic-Step SD 

( ) ( )[ ]∑
=

+ −µ−=
L

1j
k

T
k1k x̂jC)j(yjCx̂x̂Instead of using 

update the estimate of x for each    
SCALAR measurement

( ) ( )j 1 j j
L L L

T
k k kˆ ˆ ˆx x C j y( j) C j x

for k 0,1, 2,3, ....
and for each k, sweep j 1,2,3, ,L

++ + +
 = −µ − 

=
= K
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Related Work

This idea of breaking the gradient into several parts and 
updating the estimate after each of them is well-known, 
especially in cases where sequential measurements are 
obtained. Two such classic examples:

Neural Network training (see Bertsekas’s book)

Signal Processing (see LMS by Widrow et.al.)

In image restoration and super-resolution problems, we may 
consider updating our output image after every pixel in the 
measurements. The benefit is convergence speed-up.
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Analysis Results
Convergence is guaranteed if

The convergence is to the LS optimal solution only if 

Infitisimal step-size µ→0,

Diminishing step-size µk→0, or if

C is square.

In all other cases, the convergence is to a deviated 
solution.

In the SSR case, we are not interested in exact solution !!!!

Rate of convergence is dramatically improved (compared 
to SD, NSD, CG, Jacobi, GS, & SOR)

( ) ( ){ }jCjC/2Min0 T

Lj1 ≤≤
<µ<
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SSR - Simulation Results
SYNTHETIC CASE

25 images were created from 
one 100-by-100 pixels image 
using 
•Motion - Affine, 
•Blur – 3-by-3 uniform, 
•Noise – Gaus. white σ=3.

These 25 images were fused 
to create a 200-by-200 pixels 
output.  

This algorithm effectively 
converges after one iteration

Original       Bilinear int.

LS result            PSSD Result


