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The Super-Resolution Problem

Blur (H)
and
Decimation (S)

Our Task: Reverse the process —
recover the high-resolution image
from the low-resolution one
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Single Image Super-Resolution

Z, Recovery?

Algorithm

The reconstruction process should rely on:
Ul The given low-resolution image

d The knowledge of S, H, and statistical properties of v, and
 Image behavior (prior).

In our work:

L We use patch-based sparse and redundant representation
based prior, and

0 We follow the work by Yang, Wright, Huang, and Ma [CVPR
2008, IEEE-TIP — to appear], proposing an improved algorithm.
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Core Idea (1) - Work on Patches

Every patch from y, should go
through a process of resolution
enhancement. The improved
patches are then merged together
Into the final image (by averaging).

v
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We interpolate the low-res.
yf Image in order to align the
coordinate systems

yg — ng

Enhance

Resolution
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Core Idea (2) — Learning pang e ai os

Enhance

Eﬁ‘?

Resolution 4

We shall perform a sparse We shall construct the high
decomposition of the low- res. patch using the same
res. patch, w.r.t. a learned Sparse representation,
dictionary A, imposed on a dictionary A,

and now, lets go into the detalls ...
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The Sparse-Land Prior pon & s, o)

Extraction of a patch fromy,
In location k is performed by

pE — Rkyh

Position k
< m >
Model Assumption: Every such patch ' ’
can be represented sparsely over the
dictionary A;: n h
Vp, 3q, such that . .
h ~
pe = A g, and |q.f| <<n d,
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Low Versus High-Res. Patches

Interpolation
Q

Position k

4
P, €<—?—> P,

z,=SHy, +v HLpE -p,

‘Ss
2

O L = blur + decimation + interpolation.
O This expression relates the low-res.
patch to the high-res. one, based on
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Low Versus High-Res. Patches

Position k We interpolate the low-res.
Image in order to align the
coordinate systems

| - Interpolation
8 = ,‘%‘ : ;

h !
‘ka i pk
gy IS ALSO the sparse

representation of
the low-resolution

patch, with respect
to the dictionary LA;..
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Training the Dictionaries — General

Training pair(s)
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Training the Dictionaries — General

Training pair(s)

We obtain These will
a set of be used
matching _f0|_r the

patch-pairs dictionary
training
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Alternative: Bootstrapping

The given image
to be scaled-up

v

Simulate the degradation process

WGN

Blur (H)

and
Decimation (S)

X, =SHz, +V

Use this pair of images

to generate the

patches for the training
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Pre-Processing High-Res. Patches

High-Res
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Low-Res

X,

Interpolation E ' j]

=

= {0, ],

Patch size: 9%9
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Pre-Processing Low-Res. Patches

Low-Res X

» .
Interpolation

patches of size
9x9 from each of —
these images, and {pk }
concatenate them k

to form onpatehtsize: ~30
of length 324
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Pre-Processing Low-Res. Patches

Low-Res X

Interpolation

We extract
patches of size
9%9 from each of (—/ Dimensionality /
these images, and {pk } Reduction {pk }
concatenate them K K

to form one vector
of length 324
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Training the Dictionaries: A,

K )k

For an image of size
1000><1000 pixels,
there are ~12,000
examples to train on

Given a low-res. Patch to be scaled-up, we start the
resolution enhancement by sparse coding it, to find q,:

min o _qukHz st. [af, <L
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Training the Dictionaries: A,

Given a low-res. Patch to be scaled-up, we start the

Remember

min p, _qukHz st. [af, <L

And then, the high-res. Patch is obtained by
ﬁE = A0,

Thus, A, should be designed such that
h 2 -
2Pk~ Ay, ——>min
k
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16



Training the Dictionaries: A

min Iy, - th = min

v

h

2
h .
2P~ A |, > mir
K

U However, this approach disregards the fact that the resulting high-

res. patches are not used directly as the final result, but averaged

due to overlaps between them.
U A better method (leading to better final scaled-up image) would
be — Find A, such that the following error is minimized:
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~
The constructed image
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Overall Block-Diagram

Ay A,

Training the high- Training the low-
res. dictionary res. dictionary

Ine or off-line

The recovery

algorithm
(next slide)
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The Super-Resolution Algorithm

[0 1-1]
h*[Ol-l]T
-*[-121]

| yﬁ
:
|
|
|
|
* [ T
:- [-12 1]
:
|
|
|
|

Interpolation

14
Shy p—
Extract Sparse coding Multiply by A,

patches multiply by using A, to and combine
B to reduce compute by averaging

dimension qk the overlaps h

<)
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Relation to the Work by Yang et. al.

We interpolate to avoid
We use a direct A A coordinate ambiguity
approach to the (
training of A, Training the high- Training the low-
res. dictionary res. dictionary

We use OMP for

sparse-coding We can train on
We train on a We train using the given image

difference-image the K-SVD or a training set

algorithm
The recovery H¢
algorithm
(previous slide) ~We reduce
We avoid post- dimension prior
to training

processing
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Relation to the Work by Yang et. al.

We interpolate to avoid

We use a direct =~ A\ Ag coordinate ambiguity 7
approach to the 4
training of A, Training the high- Training the low-
res. dictionary res. dictionary B

We use OMP for
sparse-coding

.We train on a — We train using
difference-image

Bottom line: The proposed
algorithm is much simpler, much
faster, and, as we show next, it
also leads to better results

The recovery
algorithm
(previous slide)
We avoid p0

processing to training

o . .
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Results (1) — Off-Line Training

timization problem:
nt ice thar

are mo
Since 1990 1 i
ic control sy

1ons have b

. nd networks, electronic

statisties, and fir . Convex optimiza found wids
binatorial optimization anc al optimization, where it is

the op as Wi \pPproxims: utions. We
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The training image: 717x717
pixels, providing a set of
54,289 training patch-pairs.
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Results (1) — Off-Line Training

AN AImang vanoty of I raclicml I roh
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Results (2) — On-Line Training

e

. A W\ W\ N
L W WNR

1

[ {ii )45 N | TR W
Scaled-Up (factor 2:1) using the
proposed algorithm, PSNR=29.32dB
(3.32dB improvement over bicubic)

Representation
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Results (2) — On-Line Training

The Original Bicubic Interpolation SR result
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Results (2) — On-Line Training

The Original Bicubic Interpolation SR result
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Comparative Results — Off-Line

Barbara 26.24
Coastguard 26.55
Face 32.82
Foreman 31.18
Lenna 31.68
Man 27.00
Monarch 29.43
Pepper 32.39
PPT3 23.71
Zebra 26.63
Average 28.76
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Comparative Results - Example

Yang et. al.
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Comparative Results - Example

o . .
Image Super-Resolution Using Sparse
M Representation

By: Michael Elad

29



Summary

Single-image scale-up — The rules of the game: use

an important problem, the given image, the known
with many attempts to degradation, and a

solve it in the past decade. sophisticated image prior.

We introduced modifications Yang et. al. [2008] — a very

to Yang's work, leading to a elegant way to incorporate
simple, more efficient alg. sparse & redundant

with better results. representation prior

More work is required to improve
further the results obtained.
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A New Book

Thank You
Very Much !
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From Theory to App\ications: in

and Image processing

&) Springer
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