
36 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2009

Generalizing the Nonlocal-Means to
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Abstract—Super-resolution reconstruction proposes a fusion
of several low-quality images into one higher quality result with
better optical resolution. Classic super-resolution techniques
strongly rely on the availability of accurate motion estimation
for this fusion task. When the motion is estimated inaccurately,
as often happens for nonglobal motion fields, annoying artifacts
appear in the super-resolved outcome. Encouraged by recent de-
velopments on the video denoising problem, where state-of-the-art
algorithms are formed with no explicit motion estimation, we
seek a super-resolution algorithm of similar nature that will allow
processing sequences with general motion patterns. In this paper,
we base our solution on the Nonlocal-Means (NLM) algorithm.
We show how this denoising method is generalized to become
a relatively simple super-resolution algorithm with no explicit
motion estimation. Results on several test movies show that the
proposed method is very successful in providing super-resolution
on general sequences.

Index Terms—Nonlocal-means, probabilistic motion estimation,
super-resolution.

I. INTRODUCTION

S UPER-RESOLUTION reconstruction proposes a fusion of
several low quality images into one higher quality result

with better optical resolution. This is an Inverse Problem that
combines denoising, deblurring, and scaling-up tasks, aiming to
recover a high quality signal from degraded versions of it. Fig. 1
presents the process that explains how a low-resolution image
sequence is related to an original higher resolution movie

. During the imaging, the scene may become blurred due to
atmospheric, lens, or sensors’ effects. The blur is denoted by

, assumed for simplicity to be linear space and time invariant.
Similarly, the loss of spatial resolution due to the sensor array
sampling is modeled by the fixed decimation operator , rep-
resenting the resolution factor between the original sequence,
and the measured one. White Gaussian iid noise is assumed to
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Fig. 1. Imaging process to be reversed by super resolution.

be added to the measurements, both in order to refer to actual
noise in imaging systems, as well as for accommodating model
mismatches.

The super resolution goal is the recovery of from the input
set of images , reversing the above process. Such reconstruc-
tion relies on motion in the scene to recover details that are
finer than the sampling grid. Fig. 2 demonstrates how small de-
tails can be recovered when the motion between the images in
the sequence is known with a high degree of accuracy. The top
row in the figure is the input sequence. The middle row is the
up-scaled version of each image (unknown values are set to a
background color), shifted by the known translation between
the current image and the first (reference) image. The bottom
row shows the construction of the super resolution image, from
left to right. Initially, the first image is placed on the grid. Then,
every new image in the sequence is placed on the same grid, with
a displacement reflecting the motion it underwent. The merger
of all images represents the outcome of the super resolution al-
gorithm. We note that this description of the mechanics of super-
resolution is somewhat simplistic; In most cases, one cannot as-
sume the translations to be exact multiples of the high-resolu-
tion pixel sizes. This makes the estimation of accurate motion
parameters and the merger of all images much more complex
than described here.

While the above-described method is somewhat simplistic, it
is a faithful description of the foundations for all classic super
resolution algorithms. The first step of such algorithms is an
estimation of the motion in the sequence, followed by a fusion
of the inputs according to these motion vectors. A wide variety
of super resolution algorithms have been developed in the past
two decades; we refer to [1]–[26] as representatives of this vast
literature.

In the currently available super-resolution algorithms, only
global motion estimation (e.g., translation or affine global
warp) is accurate enough to lead to a successful reconstruction
of a super-resolved image. This is very limiting, as most actual
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Fig. 2. Super resolving an image using low resolution inputs with known trans-
lations. Reconstruction proceeds from left to right. Top: input images; middle:
corresponding up-scaled images, shifted using known translations; bottom: ac-
cumulated reconstruction by adding the current low resolution image to the
output canvas.

scenes contain motion that is local in its nature (e.g., a person
talking). Obtaining highly accurate local motion estimation,
known as optical flow, is a very difficult task, and particularly
so in the presence of aliasing and noise. When inaccurately
estimated motion is used within one of the existing recon-
struction algorithms, it often leads to disturbing artifacts that
cause the output to be inferior, even when compared to the
given measurements. This discussion leads to the commonly
agreed unavoidable conclusion that general content movies
are not likely to be handled well by classical super-resolution
techniques.

This severe restriction leads us to seek a different approach to
super-resolution. Can such an algorithm be proposed with no ex-
plicit motion estimation? Our starting point for this quest (after a
super-resolution algorithm that is able to process sequences with
a general motion pattern) is the video denoising application,
where several recent contributions demonstrate state-of-the-art
results with algorithms that avoid motion estimation [27]–[30].
Among these, we choose to take a closer look at the Nonlocal
Means (NLM) algorithm, with the aim to generalize it to per-
form super-resolution reconstruction.

The NLM is the weakest among the recent motion-estima-
tion-free video denoising algorithms, and yet, it is also the sim-
plest. As such, it stands as a good candidate for generaliza-
tion. The NLM is posed originally in [31] as a single image
denoising method, generalizing the well-known bilateral filter
[32], [33]. Denoising is obtained by replacing every pixel with
a weighted average of its neighborhood. The weights for this
computation are evaluated by using block-matching fit between
image patches centered around the center pixel to be filtered, and
the neighbor pixels to be averaged. Recent work has shown how
this method can be used for video denoising by extending the
very same technique to 3-D neighborhoods [27]. An improve-
ment of this technique, considering varying size neighborhoods
is suggested in [28], so as to trade bias versus variance in an at-
tempt to get the best mean-squared-error (MSE).

The NLM was proposed intuitively in [27] and [31], and,
thus, it is natural to try to extend it to perform super-resolu-
tion using a similar intuition. This intuition leads to independent
up-scaling of each image in the sequence using a smart interpo-
lation method, followed by NLM processing. However, exten-
sive experiments indicate that this intuitive method does not pro-
vide super-resolution results. For this reason, a more profound
understanding of the NLM filter is required for its successful
generalization to super-resolution.

In order to gain a better understanding of the NLM, we pro-
pose redefining it as an energy minimization task. We show that

the novel penalty term we propose indeed leads when minimized
to the NLM. We then carefully extend the penalty function to
the super-resolution problem. We show how a tractable algo-
rithm emerges from the minimization of this penalty function,
leading to a local, patch-based, super-resolution process with no
explicit motion estimation. Empirical tests of the derived algo-
rithm on actual sequences with general motion patterns are then
presented, thus demonstrating the capabilities of the derived al-
gorithm.

The structure of the paper is as follows. Section II describes
the NLM denoising filter, as posed in [31]. This section can be
skipped by readers who are familiar with the NLM. Section III
introduces an energy function to be minimized for getting a de-
noising effect for a single image; We show that this minimiza-
tion leads to a family of image denoising algorithms, NLM in-
cluded as a special case. We also provide a simpler penalty func-
tion addressing the same goal, which will be effectively used
in the later part of the paper. Section IV proposes a general-
ization of the introduced energy function to cope with resolu-
tion changes, thereby enabling super-resolution reconstruction.
In this section we also derive the eventual super-resolution al-
gorithm we propose, and discuss its numerical structure. Sec-
tion V shows results on sequences with general motion, demon-
strating the successful recovery of high frequencies. We con-
clude in Section VI, outlining the key contribution of this work,
and describing several directions for further research.

II. BILATERAL AND THE NLM DENOISING FILTERS

We begin our journey with a description of the bilateral and
the NLM filters, as the development that follows relies on their
structure. The description given in this section is faithful to the
one found in [31] and [32]. The bilateral and the NLM filters are
two very successful image denoising filters. While not the very
best in denoising performance, these methods are very simple to
understand and implement, and this makes them a good starting
point for our needs.

Both the bilateral and the NLM filters are based on the as-
sumption that image content is likely to repeat itself within some
neighborhood. Therefore, denoising each pixel is done by aver-
aging all pixels in its neighborhood. This averaging is not done
in a blind and uniform way, however. Instead, each of the pixels
in the relevant neighborhood is assigned a weight, that reflects
the probability that this pixel and the pixel to be denoised had
the same value, prior to the additive noise degradation. A for-
mula describing these filters looks like1

(1)

where stands for the neighborhood of the pixel ,
and the term is the weight for the -th neighbor
pixel. The input pixels are , and the output result in that
location is .

The two filters differ in the method by which the weights
are computed. The weights for the bilateral filter are computed

1As we shall see next, in this framework the coefficients ���� �� �� �� are all
restricted to be positive. This is a shortcoming, which can be overcome by ex-
tending the framework to higher order—see [34].
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based both on radiometric (gray-level) proximity and geometric
proximity between the pixels, namely

(2)

The function takes the geometric distance into account, and
as such, it is monotonically nonincreasing. It may take many
forms, such as a Gaussian, a box function, a constant, and more.
The parameter controls the effect of the grey-level difference
between the two pixels. This way, when the two pixels that are
markedly different, the weight is very small, implying that this
neighbor is not to be trusted in the averaging.

The radiometric part in the weights of the NLM is computed
slightly differently, by computing the Euclidean distance be-
tween two image patches centered around these two involved
pixels. Defining as an operator that extracts a patch of a
fixed and predetermined size (say pixels) from an image,
the expression ( is represented as a vector by lexico-
graphic ordering) results with a vector of length being the
extracted patch. Thus, the NLM weights are given by

(3)

Obviously, setting to extract only a single pixel, the bilat-
eral filter emerges as a special case of the NLM algorithm.

We note that there are various other ways to choose the
weights in (1), and the above separable choice of the weights
(product of radiometric and Euclidean distance terms) is only
one choice. For example, the steering kernel may provide
an interesting alternative, taking into account the correlation
between the pixel positions and their value [34]. Nevertheless,
in this paper we shall restrict our choice of weights to those
used by the NLM.

III. NLM VIA ENERGY MINIMIZATION

Both the bilateral and the NLM filters described-above were
presented intuitively as algorithmic formulas, as in (1). We
claim that both these filters can be derived by minimizing a
properly defined penalty function. Following the rationale and
steps taken in [33] and [35], we present such a penalty function,
and show how these algorithms emerge from it. This will
prove valuable when taking the next step of generalizing these
methods to a super-resolution reconstruction algorithm, as will
be shown in Section IV. Sections III-A and III-C present two
possible and novel penalty functions for denoising, and derive
from both the NLM algorithm and some variations of it. The
readers interested in the super-resolution portion of this work
can start their reading in Section III-C.

A. Penalty Function

The penalty function we start with reflects two forces: i) We
desire a proximity between the reconstructed and the input im-
ages—this is the classic likelihood term; and ii) We would like
each patch in the resulting image to resemble other patches in
its vicinity. However, we do not expect such a fit for every pair,
and, thus, we introduce weights to designate which of these
pairs are to behave alike. Putting these two forces together with
proper weighting,2 we propose a maximum a posteriori proba-
bility (MAP) penalty of the form

(4)

The first term is the log-likelihood function for a white and
Gaussian noise. The second term stands for a prior, representing
the (minus) log of the probability of an image to exist. The
weights in the above expression, , are assigning a
confidence that the patches around and are to be
close to each other. Computing these weights can be done in a
number of ways, one of which is using (3) and using instead
of the unknown . In order to keep the discussion simple, from
this point on we shall assume that the weights are
the NLM ones. It is important to note that the patch extraction
operator used for computing the weights (as in (3)) and the
operator used in the penalty term are generally of different
sizes.

The notation stands for the support of the entire image.
Thus, the second term sweeps through each and every pixel

in the image, and for each we require a proximity to sur-
rounding patches in its neighborhood.

B. Derivation of the NLM Filter

Assuming the weights are predetermined and considered as
constants, we can minimize this penalty term with respect to
by zeroing its derivative

(5)

In order to simplify this equation, we open the brackets

2The reason for the factor 1/4 in the second term will be made clear shortly.
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(6)

We proceed by invoking two assumptions: i) The neighborhood
is symmetric, i.e., if , then is
also true; and ii) The weights are symmetric, i.e.,

. Both these assumptions are natural—typical neigh-
borhood definitions satisfy the first condition, and the weights
of the NLM satisfy the second one. Using these two assump-
tions, we get the following two equalities:

A formal proof (Theorem 1) for these equalities is given in Ap-
pendix A. Using these, (6) simplifies and becomes

(7)

As can be seen, the choice 1/4 in the original definition led to a
simpler final outcome.

While solving the above equation directly is possible in prin-
ciple, it requires an inversion of a very large matrix. Instead,
we adopt an iterative approach based on the fixed-point strategy
[36], [37]. Denoting the outcome of the previous iteration,
and the desired outcome of the current iteration, we rewrite
(7) with assignments of iteration stage per each instance of the
unknown . The equation we propose is

(8)

which leads to the relation

(9)

Notice that the term generates a scalar,
being a function of —we shall denote this as .

In the obtained equation, the right-hand-side (RHS) creates an
image by manipulating image patches: for each location
in the image, we copy surrounding neighboring patches in loca-
tions to the center position , multiplied by the weights

. Once built, this image is added to with a proper
weight .

The matrix multiplying on the left-hand-side is a diagonal
positive definite matrix (see Appendix A). This matrix’s only
task is normalization of the weighted average that took place
on the RHS. As this matrix is invertible, the new solution is
obtained by

(10)

When using the fixed-point method, as we did above, every
appearance of the unknown in the equation is assigned with an
iteration number. Among the many possible assignments, one
should seek one that satisfies two important conditions: i) The
computation of from should be easy; and ii) The ob-
tained iterative formula should lead to convergence. As for the
first requirement, we indeed have an assignment that leads to
a simple iterative step. Convergence of the above algorithm is
guaranteed if the overall operator multiplying is conver-
gent, i.e.,

(11)

where is the spectral radius of . It is easily seen that for
sufficiently large , this condition is met. Nevertheless, we do
not worry about convergence, as we will be using the above for
one iteration only, with the initialization of . This means
that the output for the denoising process is , obtained by

(12)

The above computation is done just as described above, with the
obvious substitution of . This process is quite reminis-
cent of the way NLM and the bilateral filters operate, and yet it
is different. The obtained algorithm is a more general and more
powerful denoising algorithm than NLM.

In order to see how the NLM emerges from this formulation
as a special case, we shall assume further that the patch extrac-
tion operation we use, , extracts a single pixel in location

. This change means that is in fact the single pixel
. Thus, in this case we have
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(13)

The term implies that a zero image is generated, and the
value is inserted to location . Using this property in (12),
we obtain a pixel-wise denoising formula

(14)

This formula seems familiar, as it is effectively the same as
the one in (4), with a slight modification due to the additional

. This means that under the simplifying assumption we made
about , the first iteration of the developed algorithm reduces
to NLM. A natural question to ask is: Does the above formula
still stands for a patch-based algorithm? The answer is positive,
as the weights may be computed using patches, as the NLM
does. Thus, the next natural question to ask is: Why have we
used a patch extraction operation in the definition of the penalty
in (4)? The answer to this is the generalization that follows next
for the super-resolution case.

C. Bayesian Versus Proximity—An Alternative Path

The penalty term in (4) was formed like a MAP estimator,
having a likelihood term that ties the measurements to the un-
known, and a regularization term, posing a prior on the desired
outcome

In the previous section, we developed a general denoising
scheme based on the above penalty, showing that the NLM and
the bilateral filters arise from it as special cases. Recall that one
of the last steps in the derivation was the use of a single iteration
and initialization with . This basically means that the
prior term requires pixels in the output image to have similar
grey values to pixels in the corresponding neighborhood in ,
provided they have similar surrounding. This idea can be put
directly into the penalty term, giving

(15)
Targeting now the minimization of this penalty term, we null the
derivative of this function with respect to , getting the equation

(16)

This time we do not need the fixed-point strategy, as a simple
solution is easily derived, leading to

(17)

Notice the resemblance between this formula and the one ob-
tained by a different route in (12). In fact, for , the two for-
mulas are the same. Furthermore, following the same assump-
tions and steps that led us from (12) to (14), it is clear that
pixel-wise, the above aligns perfectly with the NLM filter, as
written in (1), namely

D. Introducing the Temporal Domain

We shall use hereafter the penalty function in (15) to derive
further algorithms, due to its simplicity, and the fact that it leads
directly to the NLM. Before we turn to super-resolution, we
must introduce the temporal axis into the penalty function, so
as to process a sequence of images and not just a single one, as
done so far. The following small changes in (15) lead to such a
treatment

(18)

The above expression makes use of the input sequence ,
summing over all these images. The term remains a 2-D
patch, but one that is extracted at location from the image
at time . The image remains a single image, representing
the desired output image to be created. Let us assume that this
image aims to become a denoised version of . This fact is
used only within the computation of the weights ,
which matches a reference patch with the candidate
ones , both 2-D. The temporal distance, can also
influence the weight , just as spatial distances and
do in (3).

Assuming that the patches extracted by the operator are of
size of one pixel,3 using the same algebraic steps as shown in
the previous sub-section we get a closed-form formula for the
computation of

(19)

This is a generalization of the NLM to handle video sequences,
and was shown to be an effective algorithm in [27].

Let us explain this formula in words, as a similar structure
will serve us in the next Section quite similarly. Each output

3We remind the reader that the patch size related to the weights-computation
is different than the one in the penalty function itself in general.
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pixel is computed as a weighted average of pixels in its 3-D
neighborhood in the input sequence . We would like pixels that
originally had the same grey level to have high weights, and the
weights are computed in a way that reflects this.

By taking a slightly different perspective, we can regard the
weight as reflecting the (relative) probability that
the pixel in the image to be denoised has gone to (or come
from) the pixel in the image . This is a very basic mo-
tion estimation approach for each pixel. However, since for each

, there may be several nonzero values, this implies that
each pixel may be assigned with several motion vectors, and
not just one, as in classical motion estimation methods. Indeed,
the above expression suggests that all motion vectors are al-
lowed, and considered according to the probability that they ac-
tually took place based on the patch matching they exhibit. This
way, one could consider the above as a fuzzy motion estimation
process, rather than an explicit one. Fig. 3 presents the concept
of fuzzy motion estimation. A specific pixel on the scene at time

(the left image), has several equally probable destinations in
the surrounding images (including the same image at time ).
This can be done for any pixel, some having many probable des-
tinations, and some only a few.

An important benefit to the above fuzziness is the ability to
get a stronger denoising effect. Whereas exact motion estima-
tion leads to a correspondence between the reference patch and
a single match in every other image, the NLM approach may
find several good matches due to spatial (and not just temporal)
redundancy. As seen in Fig. 3, several very good matches can be
found and, thus, when averaged, lead to a more effective noise
suppression due to the independence between the noise in each
of those patches.

Generalization of the NLM approach to video denoising was
shown to be very effective [27]–[29], leading to state-of-the-art
results, while leaning strongly on the fuzziness of the estimated
motion. These methods’ successes encourage us to seek ways
to exercise the same fuzzy motion estimation concept in other
video processing tasks, where it is commonly assumed that ex-
plicit motion estimation is a mandatory step. One such task is
super-resolution. In the rest of this paper we focus on a super-
resolution scheme that relies on fuzzy, rather than explicit, mo-
tion estimation, generalizing the NLM as presented above.

IV. SUPER RESOLUTION WITH NO EXPLICIT

MOTION ESTIMATION

A. Super-Resolution Penalty Function

The main advantage of the fuzzy motion approach is its flex-
ibility, allowing it to handle complex scenes. Whereas classic
super resolution methods make many limiting assumptions re-
garding the motion in the scene, this is not the case with fuzzy
motion estimation, which can handle local motions, occlusions,
and so on. Our goal in this section is to exploit this flexibility
to perform super-resolution on sequences with arbitrary motion
patterns, thus avoiding the global motion limitation.

Developing a super resolution algorithm will again begin with
writing a proper penalty term and minimizing it. The input to
this algorithm is the set of low resolution images . For clarity

Fig. 3. NLM’s fuzzy motion estimation: A patch in the reference image at time
� (marked with a thick line) has several probable locations in the other images,
and also within the same image itself (marked with narrow lines).

of description, we target one high resolution image at a time
(instead of working on the entire sequence at once). The usage
of a capital letter to denote the output image, and lower-case
letters to denote the input sequence, serves to remind us that
they are indeed of different scales.

Since we want to exploit the insight gained in previous sec-
tions, we aim at defining a penalty function that is similar to
that written for the video denoising problem in (18). However,
the target image and the input images are not of the same
scale, forcing a change to the penalty term. This change should
reflect the fact that undergoes blurring and decimation steps,
in order to account for the different scales. This leads us to the
following preliminary (and not final!) proposal:

(20)

Introduced into the penalty term are two operators we have
met in the introduction: —the blurring operator, and —the
decimation operator. Applying these operators on simulates
the imaging process, bringing to the same resolution as the
input sequence . The additional TV (Total Variation) expres-
sion comes to regularize the deblurring that should take place in
this expression [38], forcing piece-wise smoothness of the de-
sired image, by accumulating the norms of the gradients with

norm.
Taking a close look at the penalty term we have just written

reveals that it cannot provide super resolution reconstruction. By
denoting , it is clearly seen the above is identical to
the video denoising penalty term in (18) for . This means that
minimizing this penalty term effectively divides the problem
into two parts—the first performs denoising of the input se-
quence, and the second that interpolates and de-blurs the re-
sulting image.

The reason this penalty term is not able to perform super res-
olution is the fact that the operator “sees” only of
the pixels in the image ( is the decimation factor) because of
the decimation that precedes it. In order to solve this problem,
we reverse the order of the patch extraction and decimation, so
that a patch is first extracted from , and then decimated to
the same resolution level as to be compared to a patch from
it. This change requires a change in the operator as well, as
we no longer use the constant decimation grid of the image. In-
stead, we introduce the notation —a patch decimation op-
eration that ensures that the center pixel of the patch is on the
decimation grid.
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Fig. 4. Relation between the patch sizes � and � � �������� demonstrated
on specific examples: ��� �� � [3,1], [3,2], and [3,3].

Fig. 5. Description of the expression� � ���� � in (21).

Since there are two different scales (and sizes) of patches
used, we also must differentiate between the patch extraction
operators. To this end, we denote by and the high- and
low-resolution patch extraction operators respectively. Their
sizes are linked through the value of the scaling parameter :
whereas extracts a patch of size pixels (arbitrary),

extracts a patch of size pixels, where .
The relation between these sizes is further explained in Fig. 4.
This transforms the penalty term in (20) into

(21)

Fig. 5 presents a block diagram to explain this penalty. As
can be seen, different size patches are extracted from and ,
and brought to the same grounds by a decimation operation.

Note: The term is no longer applicable as
before, since now and are pixels on different res-
olution grids. Therefore, we introduce a new notation re-
ferring to the equivalent low-resolution neighborhood of ,
i.e., is short for the full notation s.t.

.

The penalty term we have defined above is the one we shall
focus on hereafter. Next, we show how to use this penalty term
as the basis for a practical and simple super resolution algorithm.
The first step we take is a separation of the deblurring from the
fusion of the images. Using the substitution , the first
problem we have is the estimation of from the measurements

. This is done by minimizing the energy function

(22)

Once found, we use the found to estimate by minimizing

(23)

The second part is a classic simple deblurring problem. This
is of course an under-determined problem (since is usually
singular), and needs regularization. We will not discuss how to
solve it here, see [39]–[44] for a background view of this field,
along with several state-of-the-art deblurring methods.

The idea of breaking the super-resolution task into two
parts—fusing the inputs and then deblurring—has been sug-
gested previously in [13], [18], [20], and [21]. In the case
of pure translational motion, and when both problems are
treated as maximum-likelihood (which is not done here), such
a separation is equivalent to the joint solution. It is important to
note that in the derivation proposed above, the separation is not
optimal, and leads to inferior results. However, the separation
allows for a much simpler algorithm (both conceptually and
implementation-wise), so the sub-optimality is the price to be
paid for this simplicity.

The fusion stage in (22) seems to lack regularization, and
as such, one may question its stability. Stability is gained
through the weights—those should be computed in such a
way that ensures that every pixel has at least a few “quality”
(assigned a meaningful weight) destinations. Furthermore, by
also assigning a nonzero weight to the original value of the
pixel, further stability is obtained, guaranteeing that in case
no appropriate patches are found, the result will default to the
initial estimate.

We shall leave the deblurring aside, and focus hereafter on
the fusion of the measurements. This will allow us to simplify
the description of the algorithm. The next step is deriving the
penalty function in (21) with respect to , and finding the zero
intersection

(24)

This leads to the solution
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(25)

which can be further simplified, by defining

(26)

leading to

(27)

The right term that involves the measurements per-
forms a series of simple operations that include: (i) Extraction
of patches from the measurements; (ii) Zero-padding interpola-
tion of these patches (done by ); (iii) An accumulation of the
resulting patch with a proper weight at the destination location.

Following the same rationale as the one practiced for (9),
the matrix to be inverted in the above expression is a diagonal
one and positive semi-definite, normalizing the accumulation
in each pixel. The term extracts a patch
from location , scales it down and then up again by zero
padding, and finally puts it back into the same original location.
Thus, this is a diagonal matrix with 1-es for the pixels surviving
this path, and zeros elsewhere. The matrix to be inverted is a
weighted sum of such diagonal matrices, and, thus, it is diag-
onal as well. If every pixel gets some accumulation, this
matrix is strictly positive definite, and its inversion is permitted.

B. Simplified Numerical Algorithm

We again follow the path of Section III, and propose a special
and simplified case where the patch extraction operator
extracts only one pixel. This means that extracts a patch
of size pixels, to become one pixel after the decimation
operation .4 This simplifies the penalty function in (22), since

and , leading to

(28)

This functional is separable, handling every pixel in the target
image separately. This implies that an independent penalty
can be written for every destination pixel

4Note that this change of patch-sizes applies only to the penalty term itself,
and does not effect the patch size for the weights computation.

(29)

leading to a closed-form solution

(30)
In order for this solution to exist, it is enough that for each pixel

there exists at least one none-zero weight .
Notice that the above formula looks exactly the same as the

one used for video denoising, posed in (19). Are the two equiv-
alent? The answer is negative, due to two important reasons.
First, there is a gap between the definitions of the neighborhoods

and . Whereas for the video denoising this
neighborhood is defined simply as the set of all neighbors for
the central location , the neighborhood referred to in (30)
considers locations that after scaling up by are neighbors
of .

The second difference between (19) and (30) refers to the
weights to be used. As described earlier, we want the weight

to reflect the probability that the pixel and
the pixel originated from the same place. This compu-
tation will be based on the similarity of the area around both
pixels, in the same manner the weights for the NLM are com-
puted (since they serve a similar purpose), as described in (3).
The function that takes into account the geometric distance be-
tween the patches is set to be constant, thereby giving no pref-
erence to nearby patches over distant ones. This allows more
robustness to various motion patterns, including patterns that
contain large motions. However, in some cases, it may be ben-
eficial to assign higher weights to patches closer temporally or
geometrically.

However, for matching these two areas, we need to address
the fact that the neighborhoods around the pixels in and in
are not of the same scale. We can address this in one of two ways:
(i) Down-sample the neighborhood in the high-resolution image
and bring it down to the low resolution grid; or (ii) Up-sample
the low-resolution neighborhood to match the high-resolution
one. In our tests we have found that these two options perform
similarly well, with a small advantage to the second (and more
complex) one.

As in the denoising case, the computation of the weights re-
quires the use of the unknown . Instead, the weights are com-
puted by using an estimated version of being a scaled-up
version of the reference frame we aim to super-resolve. This
scale-up is done using a conventional image interpolation algo-
rithm such as bilinear, bicubic or the Lanczos method [45], [46].

The interpolated images are only crude estimates of the de-
sired outcome, and, therefore, the weights computed by relying
on these estimated are also somewhat crude. Since after one iter-
ation of the algorithm we obtain a better estimate, it is possible
to use these new estimates for re-computing the weights, and
computing a better still estimate of the desired outcome. This
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TABLE I
SUMMARY OF THE CORE OF THE SUPER RESOLUTION

ALGORITHM—PROCESSING ONE IMAGE USING A GIVEN INITIAL

ESTIMATE FOR THE SUPER-RESOLVED SEQUENCE

process may be iterated several times, although in our simula-
tions we use only two such iterations (i.e., one iteration that re-
lies on the interpolated frames for computing the weights, and
a second iteration that relies on the results of the first iteration).
This means that all frames are first processed using the interpo-
lated frames for the weights computation, and only then is the
second iteration applied. If throughput constraints do not allow
this, it is possible to compute the weights in the second itera-
tion while still using the interpolated versions of all frames, and
a new estimate is only used for the currently processed frame.
This requires some minor modifications to the weights compu-
tation.

C. Proposed Algorithms—A Summary

We now summarize the two algorithms previously described.
First, we describe in Tables I and II the general super-resolution
algorithms that were developed in this section. The simpler ver-
sion that uses low-resolution patches of one pixel is obtained

TABLE II
SUMMARY OF THE ENTIRE SUPER RESOLUTION ALGORITHM—USED FOR

RESOLVING ALL THE FRAMES IN THE SEQUENCE

by using the proper assignments for and (while not
changing ).

The complexity of these two algorithms is essentially the
same as that of their NLM counterparts, with the addition of
a deblurring process, which can be considered negligible. The
core of the algorithm, which also requires most of the compu-
tations, is computing the weights. Considering a nominal case
with a search area of 31 31 low-resolution pixels in the spatial
domain, and 15 images in the temporal axis, we have 14,000
pixels in this spatio-temporal window. For each pixel in the
search area, the block difference is computed, with a block size
of 13 13 (high-res.) pixels. Thus, there is a total of almost
2,400,000 operations per pixel. This amount is of course very
large, and must be reduced in order to make the algorithm prac-
tical. We will now describe a few speedup methods for the pro-
posed algorithm. Several of the methods to speedup the NLM
algorithm were suggested originally in [47], and were adopted
in our simulations.

1) Computing the weights can be done using block differ-
ences in the low-resolution images, instead of on the in-
terpolated images. This saves a factor of .

2) Computing fast estimations for the similarity between
blocks, such as the difference between the average grey
level or the average direction of the gradient, can eliminate
many nonprobable destinations from further processing.
Such an approach was suggested in [47], and was found to
be very effective for the original NLM algorithm.

3) If the patch used to compute the weights is rectangular
with equal weights to all pixels, the computation of the
weight can be sped up dramatically. Using the Integral
Image , the block differ-
ence can be computed using a small constant number of
calculations per pixel, regardless of block size. Using such
a patch structure has only a slight effect on the quality of
the outputs [48].
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Fig. 6. Results for the synthetic text sequence. (a) Original (ground-truth) image. (b) Pixel replicated image, 13.47 dB. (c) Lanczos interpolation, 13.84 dB.
(d) Deblurred Lanczos interpolation, 13.9 dB. (e) Result of shift-and-add algorithm [18], [20], 18.4 dB. (f) Result of proposed algorithm, 18.48 dB.

4) A coarse-to-fine approach reduces the effective search area
for each pixel, thus reducing the number of required calcu-
lations.

5) The search area can be adapted to the temporal distance,
making it small for nearby images and growing for images
further away, also reducing the total effective search area.

6) Since weights are symmetrical, half the calculations can be
saved, by applying computed weights to both participating
patches.

7) Since most of the algorithm is local in nature, it lends it-
self easily to parallelization. As 4 and 8 processor configu-
rations are currently widely available, this can be used for
speeding up the algorithm by about one order of magni-
tude.
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Fig. 7. Results for the synthetic text sequence, with one image missing. Left: result of shift-and-add algorithm [18], [20], 18.16 dB. Right: result of proposed
algorithm, 17.7 dB.

These suggested speedup methods can reduce the complexity
by at least 3–4 orders of magnitude without a noticeable drop in
the quality of the outputs. This makes the proposed algorithm
practical. As for the memory requirement, the proposed algo-
rithm uses approximately as much memory as required to hold
the entire processed sequence in the high resolution scale. This
is usually not a limitation.

V. EXPERIMENTAL RESULTS

A. Experiments

In this section, we validate the potential of the proposed algo-
rithm (we use the simpler version discussed in Section IV-B) by
presenting the obtained results of processing several image se-
quences. We start with one synthetic (text) sequence with global
motion that comes to demonstrate the conceptual super-resolu-
tion capabilities of the proposed algorithms. Then we turn to
three real sequences with a general motion pattern. As there
are no published methods that perform super resolution on such
general sequences, the comparison we provide is to a single
image up-sampling using the Lanczos algorithm [45], [46] that
effectively approximates the Sinc interpolation.

The Lanczos interpolation also serves as a benchmark for the
synthetic case, even though super resolution algorithms that rely
on global motion estimation can process this specific sequence
quite successfully. This is because the benchmark for the pro-
posed algorithm should also be able to handle all sequences, and
not limited to the global motion case.

All the tests in this section are prepared in the following
manner: An input sequence is blurred using a 3 3 uniform
mask, decimated by a factor of 1:3 (in each axis), and then con-
taminated by an additive noise with . All images are in
the input range [0,255].

The first test is a very simple synthetic test, that motion-es-
timated-based super-resolution algorithms are expected to re-
solve well, intended to show that the proposed algorithm in-
deed achieves super resolution. A text image is used to generate
a 9-image input sequence, by applying integer displacements
prior to blurring, decimation and the addition of noise. The dis-
placements are chosen so that the entire decimation space is cov-
ered (i.e., and ). The result for

this test is shown in Fig. 6, including a comparison to the results
obtained by the regularized shift-and-add algorithm [18], [20],
which is a conventional motion-estimation-based super-resolu-
tion algorithm . The block size used for computing the weights

was set to 31 31, since the motion in the sequence is lim-
ited to displacements, and a larger block allows capturing the
true displacement better (for true sequences, this size will be
greatly reduced, as explained later). The value of that moder-
ates the weights was set to 7.5 (due to the large differences be-
tween white and black values in the scene). Two iterations were
ran on the entire sequence, the first iteration used for computing
the weights for the second iteration.

We also ran a similar test, displaying the behavior of the pro-
posed algorithm and shift-and-add approach when one of the
images from the set is omitted. The results for this test are dis-
played in Fig. 7.

Even though the proposed algorithm does not exploit the fact
the motion in the sequence is only global translation, it still
achieves good results. The text is almost completely readable in
the result of the proposed algorithm. This shows that sub-pixel
details (relative to the low resolution grid) are indeed recov-
ered by the proposed algorithm. In terms of Peak Signal to
Noise Ratio (PSNR),5 a 3:1 pixel-replication in each axis leads
to 13.47 dB, the Lanczos interpolation gives 13.84 dB, a de-
blurred Lanczos interpolation gives 13.9 dB, the regularized
shift-and-add gives 18.4 dB, and the proposed algorithm gives
18.48 dB, slightly out-performing the classic approach. For the
test with one image omitted, the shift-and-add gives 18.16 dB,
while the proposed algorithm slightly under-performs with a
result of 17.7 dB. The similarity in performance between the
shift-and-add approach and the proposed approach attests to the
power of the proposed method, as even though it does not rely
directly on the global motion assumption, it achieves similar re-
sults to a successful method that does.

It is obvious that while the PSNR measures of the
shift-and-add approach and the proposed algorithm are similar,
the results of the shift-and-add are visually more pleasing. This
is to be expected, since this approach is able to fully benefit

5Defined as �� ��� �����
�
����, where MSE is the mean-squared-error

obtained per pixel.
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Fig. 8. Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from the
“Miss America” sequence. From left to right: Low resolution image; original
image (ground truth); Lanczos interpolation; result of the proposed algorithm.

from the global motion assumption, while the proposed algo-
rithm does not. This is due to the proposed algorithm trading
off quality for increased robustness to general motion patterns
(which the shift-and-add approach can’t cope with).

When observing the resulting images of the proposed algo-
rithm, they seem somewhat over-sharpened. In fact, applying
less deblurring iterations results in a more visually pleasing re-
sult, however, the objective PSNR measure yields a lower value

Fig. 9. Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from the
“Foreman” sequence. From left to right: Low resolution image; original image
(ground truth); Lanczos interpolation; result of the proposed algorithm.

for these images. It seems like a stronger deblurring mechanism,
applied to the results of the fusion stage, can generate results that
are both visually pleasing and relatively accurate reconstruc-
tions. Since the novelty of this paper lies in the fusion stage,
we have not experimented with other such mechanisms.

We now turn to test the proposed algorithm on real se-
quences, containing general motion patterns, which represent
the actual problem the proposed algorithm is designed to tackle.
The 3 sequences we test on are usually used for testing com-
pression algorithms, referred to as “Miss America,” “Foreman,
” and “Suzie.” The super-resolution results for these sequences
(scaling up by a factor of 3 to 1 in each axis) are shown in
Figs. 8–10, respectively. All of these sequences (original,
low-quality, Lanczos interpolation and processed sequences)
appear in the first author’s website, at http:\\www.cs.tech-
nion.ac.il\~matanpr\NLM-SR.

Each result shows several (3rd, 8th, 13th, 18th, 23rd, and
the 28th) frames from each sequence (each row represents one
frame). For each frame, the input low resolution image, the
ground truth image, the result of the Lanczos interpolation, and
the result of the proposed algorithm are presented from left to
right. It is very evident that the results of the proposed algo-
rithm are dramatically better when compared to the Lanczos in-
terpolation—the output is sharper, contains more details, and is
more visually pleasing. It is important to note, that we display
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TABLE III
MEAN-PSNR RESULTS FOR THE THREE TEST SEQUENCES. THIS TABLES GIVES THE PSNR FOR THE PIXEL-REPLICATED SEQUENCES,

THE LANCZOS INTERPOLATION, THE LANCZOS INTERPOLATION WITH CONSEQUENT DEBLURRING, AND THE RESULTS

OF THE PROPOSED ALGORITHM (FIRST AND SECOND ITERATION)

Fig. 10. Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Suzie” sequence. From left to right: Low resolution image; original image
(ground truth); Lanczos interpolation; result of the proposed algorithm.

the results of the Lanczos interpolation without any postdeblur-
ring. Applying deblurring to the Lanczos interpolation results
in a slightly sharper image, but one that also contains unwanted
artifacts [as can be seen in Fig. 6(c) and (d)] and the PSNR mea-
sures are also equivalent.

In processing all of these sequences, all 30 frames partici-
pated in the reconstruction of each image. The similarity block
size used for computing the weights was 13 13, and did
not vary between the different tests. The search area (i.e., the
size of the neighborhood ) was determined manually, in order
to reduce computation time:6 a search area of 13 13 pixels in
each image for the “Miss America” sequence, 21 21 for the
“Foreman” sequence, and 31 31 for the “Suzie” sequence.
The parameter was set to 2.2 for all sequences. Two iterations
were again used, where the first provides the updated weights
for the second iteration. Just to put things into perspective, we
add that the entire simulation is done on Matlab, running on a
regular Pentium 3 GHz (2-GB RAM) machine, requiring ap-
proximately 20 s per frame for the most demanding case—the

6Applying a bigger search area results in an only slightly different super-
resolution outcome.

“Suzie” sequence with high-resolution frame size of 210 250
pixels.

Table III presents the mean PSNR for each of the three test se-
quences, evaluating the quality of the pixel-replicated scaled-up
sequence, the Lanczos interpolation, and the results we obtain
after the first and the second iterations of the proposed algo-
rithm. While the super-resolution results show higher PSNR, we
see that i) the PSNR gain is mild, and does not reflect the visual
quality of the sequences obtained; and ii) Even though the first
iteration result is typically inferior in visual quality, its PSNR
assessment tends to be higher.

Beyond the usual and common complaint on the inability of
PSNR to grasp image quality in general, it seems that our algo-
rithm in particular is very sensitive to this measure. One possible
reason for this could be the fact that in avoiding explicit motion
estimation, the result we obtain is slightly shifted (or warped)
with respect to the reference it aims to recover. This, of-course,
leads to a disastrous drop in PSNR. Another reason that may ac-
count for such behavior is the over-sharpening that the deblur-
ring stage introduces. We intend to further explore this matter in
our future work, as we hope to provide visually pleasing results
that are also backed up by good PSNR behavior.

B. Discussion

The results obtained are very encouraging, being artifact-free
and of high quality. Still, we believe that these results could be
further improved and extended in various ways. The manual se-
lection of the various parameters could be replaced by an adap-
tive setting of their values. One specific parameter of importance
is the filtering parameter , effecting the weights computation.
Selecting this parameter in a locally adaptive way seems like
a natural step to take, allowing the algorithm to adapt better to
both small and large details.

Similarly, an adaptive selection of the window size (both for
the weights computation and in the algorithm itself), as done in
[28] and [29], can improve the algorithm’s performance. A large
block can help estimate the motion more accurately. A small
block can better adapt to general and varying motion. Adap-
tively selecting the window size, as in [28], is expected to de-
liver much better results than just settling for a global tradeoff.

A similar, yet somewhat different concept, is a better con-
trol over the search area. While the estimated motion pattern
is fuzzy, reducing the number of candidate locations can help
reduce complexity and improve the results. Relying on some
coarse optical flow computation as a preceding step for the fuzzy
motion estimation can bring these improvements. An alternative
is computing a coarse fuzzy motion pattern in a coarser scale,
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and proceeding to search in the actual scale only around the
likely coarse destination.

A somewhat different direction for further research is
adopting the fuzzy motion concept in other approaches to the
super resolution problem. In the video denoising field, the very
successful NLM was followed by even more successful con-
tributions using fuzzy motion, such as the SW3D [29] and the
method relying on sparse and redundant representations [30].
We believe that these approaches, and others, can also serve as
the basis for more successful super resolution algorithms that
do not rely on explicit motion estimation.

VI. SUMMARY

This paper introduces a novel and successful super resolution
algorithm, which does not rely on explicit motion estimation. In-
stead, a local and patch-based approach is combined with fuzzy
motion estimation. This allows the algorithm to handle diverse
motion fields, instead of the common global motion limitation
that characterizes traditional super-resolution methods.

The algorithm developed here is an extension of the very suc-
cessful video denoising Nonlocal-Means algorithm, reported in
[31]. Its ability to denoise image sequences without explicit mo-
tion estimation, which was previously considered necessary in
this field, led us to start our search for an explicit-motion-esti-
mation-free super resolution algorithm there.

By analyzing the forces existing in the NLM algorithm, we
were able to write an energy function, whose minimization leads
to a powerful denoising algorithm, of which the NLM is a spe-
cial case. Then, we extended this energy function to the super
resolution problem, by making the necessary changes. Starting
from this energy minimization, we developed a simple yet very
effective super resolution algorithm.

Finally, we have processed some real sequences that contain
complex motion patterns with the proposed algorithm. The ob-
tained results are artifact free and of high quality, thus proving
the ability of the proposed method to handle general sequences.
Lastly, we have made several suggestions as to directions for
further research.

APPENDIX A
PROOFS

Theorem 1: Assuming that
1) implies , and
2) ,

the following two equalities hold true:

(A1)

and

(A2)

Proof: We start with (A1). Both sides of this equation
describe processes where image patches are piled with proper
weights. Consider an arbitrary location in the resulting
image, and lets see which patches are accumulated at this point
as a center one. Recall that the operator assigns a patch to
location .

Looking at the Left-Hand-Side (LHS), the only patch to be
positioned in location (i.e., to be multiplied by )
is , but this is done several times, accumulating a total
weight of .

The Right-Hand-Side (RHS) performs a slightly more in-
volved accumulation. Among all pixels in the image, only
those that are neighbors to are relevant, and each of
those contributes one patch of the form with a weight

. Thus, again, we obtain that only one patch is used,
but accumulated several times. The total weight of this accumu-
lation is given by . Due to the sym-
metry of the weights, we have

(A3)

which is the same as the LHS accumulated weight.
Turning to the equality in (A2), we adopt a similar analysis.

Starting this time with the RHS, the overall patches to be accu-
mulated in location (i.e., those multiplied by ) are
given by

In the LHS, only pixels that have in their neigh-
borhood are relevant in the outer summation. For those, only
one neighbor, the one, is relevant, as this is the only one
multiplied by , and, thus, positioned in the location we
consider. Thus, the accumulation in this case becomes

(A4)

and due to the symmetry of the weights, this is the same as the
RHS term.

Theorem 2: The matrix
is diagonal and positive definite.

Proof: Consider first the term for an arbitrary
position. This matrix is positive semi-definite by defini-

tion, due to the multiplication of a matrix by its adjoint. Fur-
thermore, as an operator that manipulates an image, the multi-
plication by extracts a patch from location . The later
multiplication by creates a zero-filled image, with the same
patch returned to the location. Thus, this matrix is a diag-
onal matrix, with ones on the main diagonal for pixels belonging
to the patch, and zeros elsewhere.

We assume that the weights and, thus, also
, are non-negative by their definition, and, thus, the

matrix is a non-negative weighted
average of positive semi-definite and diagonal matrices. Thus,
the result is also diagonal and semi-definite. The addition of

preserves the diagonal structure, and lifts the smallest
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eigenvalue of the overall matrix to , thus leading to a
strictly positive-definite matrix, as claimed.
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