
Image Denoising and Beyond 
via Learned Dictionaries and       

Sparse Representations

Michael Elad
The Computer Science Department
The Technion – Israel Institute of technology
Haifa 32000, Israel

*

* Joint work with         

M. Aharon A.M. Bruckstein O. Bryt D.L. Donoho 

J. Mairal M. Protter B. Matalon G. Sapiro

J. Shtok J.L. Starck I. Yavneh M. Zibulevsky

Tel-Aviv University  
Applied Math Department 
Approximation Seminar
June 26, 2008



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad

2

Noise Removal?
Our story begins with image denoising …

Remove 
Additive 

Noise

Important: (i) Practical application; (ii) A convenient platform          
(being the simplest inverse problem) for testing basic ideas in image 
processing, and then generalizing to more complex problems.

Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, …
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Agenda

Part I – Denoising 
by Sparse & 
Redundant 

Representations
Part III – Dictionary Learning         

& The K-SVD Algorithm 

Part II – Theoretical & 
Numerical Foundations

Part V – Interesting 
& Recent 

Advancement

Part IV – Back 
to Denoising …

and Beyond

Part VI –
Summary & 
Conclusions

A signal/image model based on sparsity & 
redundancy is important and well-founded. 

This model can be used in designing very 
effective tools in signal/image processing. 

Our goal today 
is to show that 
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Part I
Denoising by Sparse         

& Redundant 
Representations
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Relation to 
measurements

Denoising By Energy Minimization 

Thomas Bayes
1702 - 1761

Prior or regularizationy : Given measurements  

x : Unknown to be recovered

( ) ( )xPryx
2
1

xf
2
2

+−=

Many of the proposed image denoising algorithms are related to the 
minimization of an energy function of the form

This is in-fact a Bayesian point of view, adopting the 
Maximum-A-posteriori Probability (MAP) estimation.

Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the images of interest. 
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The Evolution of Pr(x)

During the past several decades we have made all sort of guesses
about the prior Pr(x) for images:   

• Hidden Markov Models,

• Compression algorithms as priors, 

• …

( ) 2
2xxPr λ=

Energy

( ) 2
2xxPr Lλ=

Smoothness

( ) 2xxPr WLλ=

Adapt+ 
Smooth

( ) { }xxPr Lλρ=

Robust 
Statistics

( )
1

xxPr ∇λ=

Total-
Variation

( ) 1xxPr Wλ=

Wavelet 
Sparsity

( ) 0

0
xPr αλ=

Sparse & 
Redundant

α= Dxfor



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad

7

Sparse Modeling of Images 

M K

N

D
A fixed Dictionary

Every column in    
D (dictionary) is    
a prototype signal 
(atom).

The vector α is 
generated 
randomly with few 
(say L) non-zeros 
at random 
locations and with 
random values. 

A sparse 
& random 
vector

=

α
x

N
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α=

≤α−α=α
α

ˆx̂

L.t.sy
2
1

minargˆ
0
0

2
2

D

D

Dα-y=            -

Back to Our MAP Energy Function 

We L0 norm is effectively                                            
counting the number of                                          
non-zeros in α. 

The vector α is the                                                         
representation (sparse/redundant).

The core idea: while few (L out of K) atoms can be merged       
to form the true signal, the noise cannot be fitted well. Thus, 
we obtain an effective projection of the noise onto a very      
low-dimensional space, thus getting denoising effect. 

x
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There are Some Issues …

Numerical Problem: How should we solve or approximate the 
solution of the problem

or                                           ?

Theoretical Problem: If we are to approximate the solution 
somehow, how close will we get?

Practical Problem: What dictionary D should we use, such that all 
this leads to effective denoising? 

These are the topics of the next 2 parts.

L.t.symin 0
0

2
2

≤α−α
α

D 22
2

0
0 y.t.smin ε≤−αα

α
D
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Part II
Theoretical &               

Numerical Foundations 
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Our Goal  

This is a 
combinatorial 

problem, proven to 
be NP-Hard! Here is a recipe for solving this problem:

Set L=1 
Gather all the 
supports {Si}i
of cardinality L   

LS error > ε2  ?

22
2

0
0 y.t.smin ε≤−αα

α
D

Solve the LS problem 

for each support                                  

( ) i
2
2

Spsup.t.symin =α−α
α

D

Set L=L+1 
There are (K) 
such supports

L

Yes No

DoneAssume: K=2000, L=10 (known!), 1 nano-sec per each LS

We shall need ~8e+9 years to solve this problem !!!!!
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Lets Approximate   

22
2

0
0 y.t.smin ε≤−αα

α
D

Greedy methods

Build the solution 
one non-zero 

element at a time

Relaxation methods

Smooth the L0 and use 
continuous optimization 

techniques
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Relaxation: Basis Pursuit (BP)

ε≤−αα
α 2

0
0 y.t.sMin D

Instead of solving

ε≤−αα
α 21 y.t.sMin D

Solve Instead

This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (’95)].

The newly defined problem is convex (quad. programming).

Very efficient solvers can be deployed:

Interior point methods [Chen, Donoho, & Saunders (‘95)].

Sequential shrinkage for union of ortho-bases [Bruce et.al. (‘98)].

Iterated shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & Demole (‘04)]        
[Elad (‘05)] [Elad, Matalon, & Zibulevsky (‘06)].
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Go Greedy: Matching Pursuit (MP)

=
Next steps: given the previously 
found atoms, find the next one to 
best fit the rsidual.

The algorithm stops when the error            is below the destination 
threshold.

The MP  is one of the greedy 
algorithms that finds one atom 
at a time [Mallat & Zhang (’93)].

Step 1: find the one atom that  
best matches the signal. 

The Orthogonal MP (OMP) is an improved version that re-evaluates 
the coefficients by Least-Squares after each round.

2
y−αD
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Equivalence For  

Given a signal y with a representation           ,

assuming that                   , BP and OMP are

Guaranteed to find the sparsest solution. 

α= Dy

{ }DThr0 <α[Donoho & Elad (‘02)] 
[Gribonval & Nielsen (‘03)]

[Tropp (‘03)] 
[Temlyakov (‘03)]

Equivalence

MP and BP are different in general (hard to say which is better).

The above result corresponds to the worst-case, and as such, it is 
too pessimistic.

Average performance results are available too, showing much 
better bounds [Donoho (`04)] [Candes et.al. (‘04)] [Tanner et.al. (‘05)]             
[Elad (‘06)] [Tropp et.al. (‘06)]. 

y.t.sMin 0 =αα D
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BP Stability for 

For ε=0 we get a weaker version of the previous result.

Surprising - the error is independent of the SNR.

This result is useless for assessing denoising performance.

Worst case versus average performance [Candes et. al. (‘07)] [Donoho (‘07)].

Given a signal                with a representation

satisfying                          and bounded 

noise          , BP will give stability, i.e., 

{ }DThr5.00 <α

[Donoho, Elad & Temlyakov (‘06)] [Tropp (‘06)] [Donoho & Elad (‘07)]

Stability 1
vy +α= D

ε≤
2

v

{ } 2
1

2
2BP Constˆ ε⋅<α−α D

ε≤−αα
20 y.t.sMin D
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OMP Stability for

For ε=0 we get the results shown already.

Here the error is dependent of the SNR, and

There are additional results on the sparsity pattern recovery.

Given a signal                with bounded       
noise          , and a sparse representation, 

OMP will give stability, i.e., 

{ } { }
{ })k(min

Const
Thr

k

2
0 α

⋅ε
−<α

DD

[Donoho, Elad & Temlyakov (‘06)] [Tropp (‘06)]

Stability 2
vy +α= D

ε≤
2

v

{ } 2
3

2
2MP Constˆ ε⋅<α−α D

ε≤−αα
20 y.t.sMin D
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Part III
Dictionary Learning:         
The K-SVD Algorithm
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α=ε≤−αα=α
α

ˆx̂andy
2
1

.t.sminargˆ 22
2

0
0 DD

What Should D Be? 

Our Assumption: Good-behaved Images                               
have a sparse representation

D should be chosen such that it sparsifies the representations

The approach we will take for 
building D is training it,   

based on Learning from          
Image Examples

One approach to choose D is 
from a known set of transforms 
(Steerable wavelet, Curvelet, 

Contourlets, Bandlets, …)
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Each example is                    
a linear combination                   

of atoms from D

Measure of Quality for D

D≈X A

Each example has a 
sparse representation with 

no more than L atoms

L,j.t.sxMin
0

0j
P

1j

2

2jj
,

≤α∀−α∑
=

D
AD [Field & Olshausen (‘96)]

[Engan et. al. (‘99)]
[Lewicki & Sejnowski (‘00)]

[Cotter et. al. (‘03)]
[Gribonval et. al. (‘04)]

[Aharon, Elad & Bruckstein (‘04)] 
[Aharon, Elad & Bruckstein (‘05)]
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The K–SVD Algorithm – General 

DInitialize         
D

Sparse Coding
Use Matching Pursuit

Dictionary 
Update

Column-by-Column by  
SVD computation over 
the relevant examples

[Aharon, Elad & Bruckstein (‘04,‘05)]

XT
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K–SVD: Sparse Coding Stage

D

XT

L,j.t.sxMin
p

pj
P

1j

2

2jj ≤α∀∑ −α
=

D
A

D is known!  
For the jth item           

we solve 

L.t.sxMin p
p

2

2j ≤α−α
α

D

Solved by                            
A Pursuit Algorithm
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K–SVD: Dictionary Update Stage

D We refer only to the 
examples that use the 

column dk?dk =

Fixing all A and D apart 
from the kth column, 
and seek both dk and 
the kth column in A to 
better fit the residual!

We should solve:

2

F

T
kk,d

dMin
kk

E−α
α
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Part IV
Back to Denoising …

and Beyond –
Combining It All



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad

25

Our prior

Extracts a patch 
in the ij location

The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400). 
As N grows, the complexity and the memory 
requirements of the K-SVD become 
prohibitive. 

So, how should large images be handled?

L.t.s

xyx
2
1

ArgMinx̂

0

0ij

ij

2

2ijij
2
2}{,x ijij

≤α

∑ α−µ+−=
α

DR

From Local to Global Treatment

DN

k

The solution: Force shift-invariant sparsity - on each patch of size         
N-by-N (N=8) in the image, including overlaps [Roth & Black (‘05)]. 
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Option 1:

Use a database of images,

We tried that, and it works fine (~0.5-1dB                 
below the state-of-the-art). 

Option 2: 

Use the corrupted image itself !!  

Simply sweep through all patches of size                     
N-by-N (overlapping blocks), 

Image of size 10002 pixels      ~106

examples to use – more than enough.

This works much better!

What Data to Train On?
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K-SVD

L.t.sxyxArgMinx̂
0

0ij
ij

2

2ijij
2
22

1

,}{,x ijij

≤αα−µ+−= ∑
α

DR
D

x=y and D known

L.t.s

xMin

0
0

2
2ijij

≤α

α−=α
α

DR

Compute αij per patch 

using the matching pursuit

x and αij known

∑ α−
α ij

2

2ijxMin DR

Compute D to minimize

using SVD, updating one 
column at a time

D and αij known

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
αµ+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
µ+= ∑∑

−

ij
ij

T
ij

1

ij
ij

T
ij yIx DRRR

Compute x by

which is a simple averaging 
of shifted patches

Application 2: Image Denoising

D?

Complexity of this algorithm: O(N2×K×L×Iterations) per pixel. For N=8, 
L=1, K=256, and 10 iterations, we need 160,000 (!!) operations per pixel.
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Initial dictionary 
(overcomplete DCT) 64×256

Image Denoising (Gray) [Elad & Aharon (‘06)]

Source

Result 30.829dB

The obtained dictionary after  
10 iterations

Noisy image 

20=σ

The results of this algorithm compete favorably with 
the state-of-the-art. 
In a recent work that extended the algorithm to use 
multi-scale patches, we get the best published 
denoising performance [Mairal, Sapiro & Elad (‘08)].
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Original            Noisy (12.77dB)     Result  (29.87dB)

Our experiments lead to state-of-the-art denoising results, 
giving ~1dB better results compared to [Mcauley et. al. (‘06)]

which implements a learned MRF model (Field-of-Experts)

Denoising (Color) [Mairal, Elad & Sapiro (‘06)]

When turning to handle color images, the 
direct generalization (working with R+G+B 
patches) leads to color artifacts. 

The solution was found to be a bias in the 
pursuit towards the color content. 
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Result

Our experiments lead to state-of-the-art inpainting results.

Original        80% missing

Inpainting [Mairal, Elad & Sapiro (‘06)]
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Original                         Noisy (σ=25)            Denoised (PSNR=27.62)

Original                         Noisy (σ=15)            Denoised (PSNR=29.98)

Video Denoising [Protter & Elad (‘06)]

When turning to handle video, one could 
improve over the previous scheme in two 
important ways:

1. Propagate the dictionary from one 
frame to another, and thus reduce the 
number of iterations; and 

2. Use 3D patches that handle the motion 
implicitly.

3. Motion estimation and               
compensation can and should be 
avoided [Buades, Col, and Morel (‘06)].  

Our experiments lead to state-of-the-art video 
denoising results, giving ~0.5dB better results on 

average compared to [Boades, Coll & Morel (‘05)] and 
comparable to [Rusanovskyy, Dabov, & Egiazarian (‘06)]
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Image Compression [Bryt and Elad (‘06)]

The problem: Compressing photo-ID images.

General purpose methods (JPEG, JPEG2000)                               
do not take into account the specific family. 

By adapting to the image-content (PCA/K-SVD),                                       
better results could be obtained.

For these techniques to operate well, train
dictionaries locally (per patch) using a                                            
training set of images is required.

In PCA, only the (quantized) coefficients are stored,           
whereas the K-SVD requires storage of the indices                             
as well.

Geometric alignment of the image is very helpful                         
and should be done [Goldenberg, Kimmel, & Elad (‘05)]. 
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Results   
for 550

Bytes per    
each file

15.81

14.67

15.30

13.89

12.41

12.57

10.66

9.44

10.27

6.60

5.49

6.36

Image Compression Results
Original

JPEG

JPEG-2000

Local-PCA

K-SVD
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Results   
for 400

Bytes per    
each file

18.62

16.12

16.81

12.30

11.38

12.54

7.61

6.31

7.20

?

?

?

Image Compression Results
Original

JPEG

JPEG-2000

Local-PCA

K-SVD
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Part V
Interesting & Recent        

Advancement 
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What If …

Consider the denoising problem

and suppose that we can find a 
group of J candidate solutions

such that   

22
2

0
0 y.t.smin ε≤−αα

α
D

{ }J
1jj =

α

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

ε≤−α

<<α
∀

22

2j

0

0j

y

N
j

D

Basic Questions:
What could we do with such a 
set of competing solutions in 
order to better denoise y? 

Why should this work? 

How shall we practically find 
such a set of solutions?

These questions were studied          
and answered recently                     
[Elad and Yavneh (’08)]
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Motivation

Why bother with such a set? 

Because of the intriguing relation                       
to example-based techniques,                      
where several nearest-neighbors               
for the signal are used jointly.

Because each representation conveys          
a different story about the desired               
signal.

Because pursuit algorithms are                   
often wrong in finding the sparsest 
representation, and then relying                         
on their solution becomes too sensitive.

… Maybe there are “deeper” reasons? 

1α

2α

D

D

2ε≤−

2ε≤−
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Generating Many Representations 

Our Answer: Randomizing the OMP

Ki1forrdzmin)i(ECompute 1n
i

z
≤≤−⋅= −

{ }=

=α−=

=α=

0

00

0

Sand

yyr

0,0n

D

ε≤
2

nr

1nn +=

Initialization

Main Iteration

1.

2.

3.

4.

5.

)i(E)i(E,Ki1.t.siChoose 00 ≤≤≤∀

{ } nn Spsup.t.symin:LS =α−α=α
α

D
nn yr:sidualReUpdate α−= D

}i{SS:SUpdate 0
1nnn ∪= −

Stop

{ })i(EcexpyprobabilitwithiChoose 0 ⋅−∝

YesNo
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Lets Try 

100
00 =α

y

Proposed Experiment :

Form a random D. 

Multiply by a sparse vector α0 (             ).

Add Gaussian iid noise (σ=1) and obtain   .

Solve the problem 

using OMP, and obtain       . 

Use RandOMP and obtain                  .

Lets look at the obtained representations …

100

200

D

{ }1000

1j
RandOMP
j =

α

0α

100y.t.smin
2
2

0
0 ≤−αα

α
D

+ =
v y

OMPα
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Some Observations 
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Random-OMP cardinalities
OMP cardinality
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Random-OMP denoising
OMP denoising

0 5 10 15 20
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Random-OMP denoising
OMP denoising

0

0

RandOMP
iα

2
20

2
20

y α−

α−α

D

DD

2
2

y−αD

We see that

• The OMP gives 
the sparsest 
solution

• Nevertheless, it  
is not the most 
effective for 
denoising.

• The cardinality of 
a representation 
does not reveal 
its efficiency. 
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The Surprise …

0 50 100 150 200
-3

-2

-1

0

1

2

3

index

va
lu

e

 

 

Averaged Rep.
Original Rep.
OMP Rep.

∑ α=α
=

1000

1j

RandOMP
j1000

1
ˆ

Lets propose the average 

as our representation

This representation IS 
NOT SPARSE AT ALL but 
its noise attenuation is: 
0.06 (OMP gives 0.16)



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad

42

Is It Consistent? Yes!

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2
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0.35
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0.45
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OMP Denoising Factor

R
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P
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r

 

 

OMP versus RandOMP results
Mean Point

Here are the results of 
1000 trials with the 
same parameters …
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The Explanation – Our Signal Model

K

N

D
A fixed Dictionary

α

x
Signal Model Assumed

D is fixed and known

α is built by:

Choosing the support S w.p. P(S) 
of all the 2K possibilities Ω,

Choosing the coefficients using iid
Gaussian entries* N(0,σx): P(α|S).

The ideal signal is x=Dα.

* Not exactly, but this does not change our analysis.

The p.d.f. of the signal P(x) is: ( ) ( ) ( )∑=
Ω∈S

SPSxPxP
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The Explanation – Adding Noise

K

N

D
A fixed Dictionary

α

x

y
v

+
Noise Assumed:
The noise v is additive 
white Gaussian vector   
with probability Pv(v)

The p.d.f. of the noisy signal P(y), and the 
conditionals P(y|S) and P(S|y) are clear and 

well-defined (although nasty).

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

σ

−
−⋅= 2

2

2

yx
expCxyP
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( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ
⋅

σ+σ

σ
∝

2

2
S

22
x

2
x

2

y
expySP

Projection of the signal y 
onto the support S

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=αα−⋅=
α

Spsup.t.sDyArgMinyS D

Some Algebra Leads To

{ } ( ) ( )∑ ⋅⋅
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Implications:
The best estimator (in terms of L2 error) is a weighted 

average of many sparse representations!!! 
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As It Turns Out …

The MMSE estimation we got requires a sweep through all 2K

supports (i.e. combinatorial search) – impractical. 

Similarly, an explicit expression for P(x/y) can be derived and 
maximized – this is the MAP estimation, and it also requires a 
sweep through all possible supports – impractical too.

The OMP is a (good) approximation for the MAP estimate. 

The RandOMP is a (good) approximation of the Minimum-Mean-
Squared-Error (MMSE) estimate. It is close to the Gibbs sampler of 
the probability P(S|y)P(S) from which we should draw the weights. 

Back to the beginning: Why Use Several Representations?
Because their average leads to provable better noise suppression. 
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Example 
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1. Emp. Oracle
2. Theor. Oracle
3. Emp. MMSE
4. Theor. MMSE
5. Emp. MAP
6. Theor. MAP
7. OMP
8. RandOMP

The following results 
correspond to a small 
dictionary (20×30), 
where the combinatorial 
formulas can be 
evaluated as well.

Parameters: 

• N=20, K=30 

• True support=3

• σx=1

• J=10

• Averaged over 1000     
experiments

Known 
support
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Part VI                    
Summary and              

Conclusion
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Today We Have Seen that …

In our work on we 
cover theoretical, 
numerical, and 

applicative issues 
related to this model 

and its use in practice. 

What do    
we do?  

Sparsity, Redundancy,      
and the use of examples
are important ideas that 
can be used in designing 

better tools in 
signal/image processing 

What            
next?

Improving the model
Improving the dictionaries 
Demonstrating on other 
applications (graphics?)
…

More on these (including the slides, the papers, and a Matlab toolbox) in 
http://www.cs.technion.ac.il/~elad
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Thank You

M. Aharon O. Bryt J. Mairal M. Protter R. Rubinstein   J. Shtok

All this Work is Made Possible Due to

my teachers and mentors

colleagues & friends collaborating with me

and my students 

G. Sapiro J.L. Starck I. Yavneh M. Zibulevsky

A.M. Bruckstein D.L. Donoho
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Interesting Model:
Simple: Every generated   
signal is built as a linear 
combination of few atoms
from our dictionary D

Rich: A general model: the 
obtained signals are a union     
of low-dimensional Gaussians
(or Laplacians).

Familiar: We have been  
using this model in other 
context for a while now 
(wavelet, JPEG, …).

Sparseland Signals Are Special

Multiply 
by D

αD=x

M 
α
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K–Means For Clustering 

DInitialize         
D

Sparse Coding
Nearest Neighbor

Dictionary 
Update

Column-by-Column by  
Mean computation over 
the relevant examples

XT

Clustering: An extreme sparse representation  
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Our experiments lead to state-of-the-art demosaicing
results, giving ~0.2dB better results on average,              

compared to [Chang & Chan (‘06)]

Demosaicing [Mairal, Elad & Sapiro (‘06)]

Today’s cameras are sensing only one                        
color per pixel, leaving the rest to be              
interpolated.

Generalizing the previous scheme to                    
handle demosaicing is tricky because                             
of the possibility to learn the mosaic                       
pattern within the dictionary.

In order to avoid “over-fitting”, we have handled the 
demosaicing problem while forcing strong sparsity
and only few iterations. 

The same concept can be deployed to inpainting.
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Image Compression Results

Results   
for 820

Bytes per    
each file

11.99

10.83

10.93

10.49

8.92

8.71

8.81

7.89

8.61

5.56

4.82

5.58

Original

JPEG

JPEG-2000

Local-PCA

K-SVD
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Image Compression

Training set (2500 images)Detect main features and warp 
the images to a common 

reference (20 parameters) 

O
n the training set

Divide the image into disjoint 
15-by-15 patches. For each 

compute mean and dictionary

Per each patch find the 
operating parameters (number 

of atoms L, quantization Q) 

Warp, remove the mean from 
each patch, sparse code using L 

atoms, apply Q, and dewarp

On the        
test image


