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Noise Removal?

Our story begins with image denoising ...
E . <4

Remove
Additive
Noise

d Important: (i) Practical application; (ii) A convenient platform
(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

d Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, ...




Agenda
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d A signal/image model based on sparsity &
redundancy is important and well-founded.

O This model can be used in designing very
effective tools in signal/image processing.




Denoising by Sparse
& Redundant
Representations
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Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to the
minimization of an energy function of the form

1
)= Syl = Pr()

y : Given measurements Relation to

Prior or regularization
x : Unknown to be recovered measurements

A This is in-fact a Bayesian point of view, adopting the
Maximum-A-posteriori Probability (MAP) estimation.

[ Clearly, the wisdom in such an approach is within the

. . . - . Thomas Bayes
choice of the prior — modeling the images of interest. 1703 - 1761




The Evolution of Pr(Xx)

During the past several decades we have made all sort of guesses
about the prior Pr(x) for images:

Pri) = 2fxy Pr(x)= ALy Prix)=2lLxff,  Prix)=2plx]
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e Compression algorithms as priors,
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Sparse Modeling of Images

A fixed Dictionary

D

J

\

f B
| |
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ |
[ ]
[ ]
[ |
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

\ b

L]

A sparse
& random
vector

A Every column in
D (dictionary) is
a prototype signal
(atom).

Y\ A

\
O The vector a is

generated

& ] randomly with few
X (say L) non-zeros
— at random
locations and with
random values.




Back to Our MAP Energy Function

0 We L, norm is effectively 1 p)
counting the number of —H X 2V Hz

non-zeros in . 2

d The vector a is the
representation (

d The core idea: while few (L out of K) atoms can be merged
to form the true signal, the noise cannot be fitted well. Thus,
we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.




There are Some Issues ...

d Numerical Problem: How should we solve or approximate the
solution of the problem

: 2 .
min Do - XHz s.t. HgHg <L or min HgHg st. |Da —xHi <g? ?

d Theoretical Problem: If we are to approximate the solution
somehow, how close will we get?

A Practical Problem: What dictionary D should we use, such that all
this leads to effective denoising?

These are the topics of the next 2 parts.




Theoretical &
Numerical Foundations
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Our Goal

combinatorial
problem, proven to

Here is a recipe for solving this problem: be NP-Hard!

in el 2 _ 2 £
L |Da - <
nlan HQHO S ‘ o XHZ <€ This is a

Gather all the Solve the LS problem

. 2
Set L=1 supports {S;}, —*|min Do -y[; st supp(a)=Si—{ LS error > £2?
 of cardinality L -

1

Assume: K=2000, L=10 (known!), 1 nano-sec per each LS

for each support

Set L=L+1 <

\ 4
Done




Lets Approximate

: 0 N 2 p
mO:n HQLHO S.t. HD@ XHZ <eg

AN

Relaxation methods

Smooth the L, and use
continuous optimization

techniques

Greedy methods

Build the solution
one non-zero
element at a time




Relaxation: Basis Pursuit (BP)

Instead of solving Solve Instead
Minjoly st. Doy, < Minjol, st. [Pu-, <2

A This is known as the Basis-Pursuit (BP)
d The newly defined problem is convex (quad. programming).

A Very efficient solvers can be deployed:
= Interior point methods
= Sequential shrinkage for union of ortho-bases

= Jterated shrinkage




Go Greedy: Matching Pursuit (MP)

f IIIIIIIIIIIIIIIIIIIIIIIIIIH

O The MP is one of the greedy EESEiiE: SEEEE
algorithms that finds one atom EEEEEEE
at a time [Mallat & Zhang ('93)].

| Step 1: flnd the one atom that ;llll:lllllll==l=lI=l:::llll4
the signal.

[ 4 )
]
| . g

O Next steps: given the previously
found atoms, find the next one to
the rsidual.

Q The algorithm stops when the error |Da.- sz is below the destination
threshold.

d The Orthogonal MP (OMP) is an improved version that re-evaluates
the coefficients by Least-Squares after each round.
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Equivalence For Min|aj, st Da=y

Equivalence  Given a signal y with a representationy = Da,
assuming that |a, < Thr{D}, BP and OMP are

Guaranteed to find the sparsest solution.

d MP and BP are different in general (hard to say which is better).

A The above result corresponds to the worst-case, and as such, it is
too pessimistic.

d Average performance results are available too, showing much
better bounds




BP Stability for Min|of, st. [Da-y|, <&

Given a signal y =Da + Vv with a representation

satisfying |al, < 0.5Thr{D} and bounded
noise |v|, <&, BP will give stability, i.e.,

Stability 1

Gigp — gHg < Const; {D}- &2

A For ¢e=0 we get a weaker version of the previous result.

A Surprising - the error is independent of the SNR.

O This result is useless for assessing denoising performance.
O Worst case versus average performance




OMP Stability for Min|af, st [Da-y|, <e

> Given a signal y =Da +Vv with bounded
Stability 2 noise |v|, < and a sparse representation,

.Const;, {D}
ThriD} - 2
aly < ThrD ming {oe(k)]
OMP will give stability, i.e.,

2

[ For £e=0 we get the results shown already.
A Here the error is dependent of the SNR, and
A There are additional results on the sparsity pattern recovery.




Dictionary Learning:
The K-SVD Algorithm
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What Should D Be?

& = arg mianug s.t. %H Da. -y H; < g?

o

Our Assumption: Good-behaved Images
have a sparse representation

Y

D should be chosen such that it sparsifies the representations

\ 4 \ 4

One approach to choose D is The approach we will take for
from a known set of transforms building D is training it,
(Steerable wavelet, Curvelet, based on Learning from
Contourlets, Bandlets, ...) Image Examples




Measure of Quality for D

X .. B

Min ZH ~xf st o <

Each example is Each example has a
a linear combination sparse representation with
of atoms from D no more than L atoms




The K-SVD Algorithm — General

Initiali
ni Blze D
|

Sparse Coding

Use Matching Pursuit

]

Dictionary
Update

Column-by-Column by




K—SVD: Sparse Coding Stage

B,

D is known!
For the jt item
we solve

Min Da—x> st [P <L

Solved by
A Pursuit Algorithm




K—SVD: Dictionary Update Stage

We should solve:

- 2
Min !lx . EH

Qk,(l“ ‘ \ \ F
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We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kth column,
and seek both d, and
the kt" column in A to

better fit the residuall!




Back to Denoising ...
and Beyond —
Combining It All
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From Local to Global Treatment

d The K-SVD algorithm is reasonable for low- ) K

dimension signals (N in the range 10-400).

As N grows, the complexity and the memory

requirements of the K-SVD become N D
prohibitive.

A So, how should large images be handled?

d Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps [Roth & Black ('05)].

2

% = ArgMin 1”5 - XH; : uZHRijZ - D@ijuz
j

X0 3ij

0
ot fo st
=90 | Our prior




What Data to Train On?

Option 1:
d Use a database of images,

d We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:
A Use the corrupted image itself !

a Simply sweep through all patches of size
N-by-N (overlapping blocks),

A Image of size 10002 pixels == ~10°
examples to use — more than enough.

L This works much better!
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Application 2: Image Denoising

- gy b1l - Ryx - D, st fugly <t

x=y and D known X and o known D and U known

o=’

Compute ay; per patch Compute D to minimize Compute x by

1
- Moitn‘ Rijx - DQHZ MinZHRijg — Dchi X = [I+ “ZRiJTRiJ'] [X+ MZRiJTDgij]
o o : :

0
: s.t. ‘@Ho _S L : using SVD, updating one  which is a simple averaging
using the matching pursuit column at a time of shifted patches

RV




Image Denoising (Gray) (ead & aharon (06)]
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€.
.
s

AT TR
G B b M B | A
o 2% T PO 0 5 L R ol 0 A

g j i | M N AL | ] WH '.-ﬂ. .l:lll:".a:
EI The results of this algorlthm compete favorably with 1 ='S#E

the state-of-the-art. R
Bk W LTI D
O In a recent work that extended the algorithm to use iy xii

multi-scale patches, we get the best published =N WS (I

r
den0|smg performance [Mairal, Sapiro & Elad (08)). !ﬁgﬁ: Lg
U H e SV
O |5 T S
AL Result 30.829dB R A T NV
N Lt TR\ N DALTA NS
TIRWS RS hn -

Noisy image The obtained dictionary after
A c =20 10 iterations

& | Image Denoising & Beyond Via Learned
¥ Dictionaries and Sparse representations
By: Michael Elad




Denoising (Color) [mvairal, Elad & sapiro (06)3

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [mcauley et. al. (06)]

Which IERIGRAA G Al e&_t%eﬁa'\rﬁ'& D6 G, OFhEXperts)

grklng Witheh

L e 1
|L11“"'ﬂ :

o pursuit towar
i

Original Noisy (12.77dB)  Result (29.87dB)




Inpainting (vairal, Elad & sapiro (06)]

Our experiments lead to state-of-the-art inpainting results.
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Video Denoising

denoising results, giving ~O.5dB better results on 62)

average compared to
N‘" omparable to

-O--rigihaul | comp’e Saﬁ'?sn {:carlsfimd Sh%'lelrgm?e% (PSNR 29.98)
avoided




Image Compression (st and Elad (06)]

The problem: Compressing photo-ID images.

General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

For these techniques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & Elad ('05)].
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD




Interesting & Recent
Advancement
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What If ...

Consider the denoising problem

: 0 2 p)
min oy st Do - XHz <g

and suppose that we can find a
group of J candidate solutions

o,

such that

N

( 0]
HOLJH << N
—J10

Do -y, <52
o; — S €
§ _J Xz J

Basic Questions:

d

What could we do with such a
set of competing solutions in
order to better denoise y?

Why should this work?

How shall we practically find
such a set of solutions?

These questions were studied
and answered recently




Motivation

Why bother with such a set?

[ Because of the intriguing relation
to example-based techniques,
where several nearest-neighbors
for the signal are used jointly.

Because each representation conveys
a different story about the desired
signal.

Because pursuit algorithms are

often wrong in finding the sparsest
representation, and then relying

on their solution becomes too sensitive.

A ... Maybe there are “deeper” reasons?




Generating Many Representations

Our Answer: Randomizing the OMP

1. Compute E(i) = min{z - d —[”_1‘ for1<i<K
2.Choose iy with p:obability o exp{- c-E()}
3. Update S": S" = S U {ig)

4,1S: o = mozn“Dg -~ xH s.t. suppla}=S"

5. Update Residual: r" =y —Da"




Lets Try

Proposed Experiment :

d

4
4
d

Form a random D.
Multiply by a sparse vector a, (Hgng =10).
Add Gaussian iid noise (c=1) and obtain y.

Solve the problem
. 0 2
. |Da -y, <100
min . st. [pa-y[; <

using OMP, and obtain a°'",
1000
Use RandOMP and obtain {gg{a”do'\’”’}jzl.

Lets look at the obtained representations ...




Histogram

Histogram

Il Random-OMP cardinalities ||
——OMP cardinality

“RmﬂOMP
(&5

[

0

10 20 30
Candinality

: — :
Il Random-OMP denoising
——OMP denoising

0.1 0.2 0.3
Noise Attenuation

Histogram

Noise Attenuation

Some Observations

| =———OMP error

Bl Random-OMP error

2
‘Pg_ﬂE

90 95 100
Representation Error

o Random-OMP denoising
OMP denoising

10
Cardinality

We see that

e The OMP gives
the sparsest
solution

e Nevertheless, it
is not the most
effective for
denoising.

e The cardinality of
a representation
does not reveal
its efficiency.
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The Surprise ...

Lets propose the average | | Averaged Rep.

1000 RandOMP I Original Rep.
OMP Rep.

This representation IS
NOT SPARSE AT ALL but
its noise attenuation is:
0.06 (OMP gives 0.16) 200
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Is It Consistent? Yes!

Here are _the I‘?SUVCS Of . o OM‘P Versus F‘QandOMP‘ results
1000 trials with the B Mean Point

same parameters ...

S
=
3)
@©
LL
o)
=
L
o)
c
)
O
o
=
©)
o)
c
@©
@

0.1 0.2 0.3 0.4
OMP Denoising Factor
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The Explanation — Our Signal Model

Signal Model Assumed

O D is fixed and known

X .
- Q « is built by:

: » Choosing the support S w.p. P(S)
* Afixed Dictionary | : . of all the 2X possibilities Q,

D = Choosing the coefficients using iid

Gaussian entries* N(0,c,): P(a|S).
d The ideal signal is x=Da.

The p.d.f. of the signal P(x) is: P(x)= ¥ P(xS)P(S)
Se




The Explanation — Adding Noise

.)—(. ~ Noise Assumed:

- - » The noise v is additive
g white Gaussian vector

| il: H ' | with probability P.(v)
A fixed Dictionary E y

] y X_Z
D Ea |V P(y[x)=C- exp{ Z:Zl}

The p.d.f. of the noisy signal P(y), and the
conditionals P(y|S) and P(S|y) are clear and
well-defined




Some Algebra Leads To

Projection of the signal y
onto the support S

Yo =D- {ArgMin Hx — Dg” s.t. suppla} = S}
(04

Implications:
The best estimator (in terms of L, error) is a weighted
average of many sparse representations!!!




As It Turns Out ...

d The MMSE estimation we got requires a sweep through all 2K
supports (i.e. combinatorial search) — impractical.

A Similarly, an explicit expression for P(x/y) can be derived and
maximized — this is the MAP estimation, and it also requires a
sweep through all possible supports — impractical too.

d The OMP is a (good) approximation for the MAP estimate.

d The RandOMP is a (good) approximation of the Minimum-Mean-
Squared-Error (MMSE) estimate. It is close to the Gibbs sampler of
the probability P(S|y)P(S) from which we should draw the weights.

Back to the beginning: Why Use Several Representations?
Because their average leads to provable better noise suppression.
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Example

The following results . 1 Emp. Oracle
correspond to a small _ 2. Theor. Oracle
dictionary (20x30), e 3.Emp. MMSE
where the combinatorial 4. Theor. MMSE ||
formulas can be 5. Emp. MAP
evaluated as well. 6. Theor. MAP

7.OMP

Parameters: O 8.RandOMP

e N=20, K=30
e True support=3

* 0,=1
e J=10

A d 1000 Known
» Averaged over
experiments _ support

b
O
=
o
o)
D
S
@
S
o
o
c
@
D
=
2
®
Q
o
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Summary and
Conclusion
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Today We Have Seen that ...

, , In our work on we
and the use of cover theoretical,
are important ideas that numerical, and
can be used in designing applicative issues

better tools in related to this model
signal/image processing and its use in practice.

d Improving the model
O Improving the dictionaries

O Demonstrating on other
applications (graphics?)

a ..

More on these (including the slides, the papers, and a Matlab toolbox) in
http://www.cs.technion.ac.il/~elad
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Sparseland Signals Are Special

Multiply
by D

[ 4 -
INEEENEN EEEEN EEEEEEEEEETE
| . v

X =Da

Interesting Model:

d

b -

d

Every generated
signal is built as a linear
combination of few atoms
from our dictionary D

A general model: the
obtained signals are a union
of low-dimensional Gaussians
(or Laplacians).

We have been
using this model in other
context for a while now
(wavelet, JPEG, ...).




K—Means For Clustering

Clustering: An extreme sparse representation

Initialize
D

]

Sparse Coding

Nearest Neighbor

]

Dictionary
Update

Column-by-Column by




Demosalcing [mairal, Elad & Sapiro (06)]

QQudeyecinentslead sorslinig-@ityhenart dgmasaici
calesutts; gixingleslindBinetiest nesblss on_m s s s u u n
interpolated compared to [chang & Chan (06)]

d Generallzﬁg the

0 1In order to av0|_,_ over ﬁttmfg" we have handled the
demosalcmg problem while forcmg strong spar5|w

only fev rtiraponﬂl

g Sy W ATESSS
pt carﬁﬁ dep ed to inpainting.




Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD
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Image Compression

Detect main features and warp
the images to a common
reference (20 parameters)

v

Divide the image into disjoint
15-by-15 patches. For each
compute and

\4

Per each patch find the
operating parameters (hnumber
of atoms L, quantization Q)

4

Warp, remove the mean from
each patch, sparse code using L
atoms, apply Q, and dewarp

Training set (2500 images)
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