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SPARSITY:
What is it Good For?

This part relies on the following two papers:
O M. Elad, Sparse and Redundant Representation Modeling — What Next?, IEEE Signal Processing
Letters, Vol. 19, No. 12, Pages 922-928, December 2012.

O A.M. Bruckstein, D.L. Donoho, and M. Elad, From Sparse Solutions of Systems of Equations to Sparse
Modeling of Signals and Images, SIAM Review, Vol. 51, No. 1, Pages 34-81, February 2009.
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Good News

Today, we have the
technology and
the know-how to
effectively process

data
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What Processing?

o000 D0DD0D 00

=

What can we do for such signals?

Denoising — removal of noise from the data

Interpolation (inpainting) — recovery of missing values

Prediction — extrapolating the data beyond the given domain
Compression — reduction of storage and transmission volumes

Inference (inverse problems) — recovery from corrupted measurements
Separation — breaking down a data to its morphological “ingredients”
Anomaly detection — discovering outliers in the data

Clustering — gathering subsets of closely related instances within the data
Summarizing — creating a brief version of the essence of the data
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So, Here is a Simple Question

Why all This is Possible?

O Is it obvious that all these processing options should be possible?

O Consider the following data source:

IID Random Number

Generator N(0,1) - E — {xl' x2’x3' lxN}

Many of the processing tasks mentioned above are impossible for this data

O Is there something common to all the above-mentioned signals, that makes
them “processable”?
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Why? We Know The Answer(s)

Low Entropy
Low Dimensionality

High Redundancy

Inner Structure
Self Dependencies
Self Similarity

Manifold Structure

v e R"
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Data Models ‘

A “wisely”
chosen The low-
The data we function dimensional
operate on representation or

“innovation”

X ‘f@ (Z)

Parameters that
govern the model
(to be learned)

Note: This is not
the only way to
impose structure
on data — this
approach is
known as the
“synthesis mode

v
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Processing Data Using Models

o} Why-ls Possible?

Processing signals

(denoise, interpolate, predict, compress, infer,
separate, detect, cluster, summarize, ...)

A: Because of the structure!

Processing signals [ GIVIE & of their structure —
we need the model x = fg (g), along with its
learned parameters
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Processing Data Using Models

Example 1 - Compression Example 3 - Separation
Given a signal x, its compression is done by Given a noisy mixture of two
computing its representation v: signals, y = x;1 + X, + z, each
X = fo (g) emerging from a different model,

separation is done by
Example 2 - Inference

2
. . . . Xy, X = min ||y — X —sz
Given a deteriorated version of a signal, V1,V2,X1,%2 1= 2
= Mx + z, recovering x from y is done by A
ol ti to th Xd | st 2 = fo(v)
rojecting y onto the model: _ fB
ahe 54 2 X, = f&(v2)
X = min Hy—MgH S.t.ng@(v) e
vx N= 2 - The goodness of the separation is
This covers tasks such as denoising, dictated by the overlap between
interpolating, inferring, predicting, ... the two models

Sparse Modeling of Graph-Structured Data ... and Images 10
By: Michael Elad



An Example: PCA-KLT-Hotelling
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x = fo(v)?

Qu; = x;

fori=1,2,...,m

Learning ©:
finding the best Q
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Improving the Model — Local Linearity

——————— We may assume
that around
every point x;,
its nearest
neighbors

(in RY) form a
very low-
dimensional
subspace

This behavior can be used in various ways ...

A~
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Union of (Affine) Subspaces

atat s bl

Viodel assumption: All these data vectors
reside in a union of L affine subspaces, U¥_, S},
(UoS) of low dimensions k; < N

R x = fo(v)?

Fitting the model: finding {Ql,g}le
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Example: PCA Denoising (y = x + z) ‘

The case of PCA/KLT: = U The data vector y is projected onto the
k-dimensional space spanned by Q

y)
-7 bl
v,x — ..
S =ay  As the noise s, A [RN
= spread evenly in y,
the N-dim. =
space, only k/N
£=QQ'Q1qQ%y of it remains
— QQTy > effe.ctlve
= denoising  — >
The Case of UoS: P \’ span{Q}
project to all the L subspaces, and choose the / -
outcome that is closest to y (complexity is xL) ‘
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Lets Talk About Sparsity

Sparsity: A different way to describe a signal’s structure

D: Dictionary
Its columns: Atoms

Da; = x;

1<i<m N
where g; is sparse

r N\
SEEEEEEEEEEs

..III!IIIIII

{x1, %2, ..., X} € RV

IDEBEE

|

: All data vectors are linear
combination of FEW (k <« N) columns from D

=
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Sparsity — A Closer Look
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H SEEEEE & OEEEEE EEEeEEs
 SEEEEE & SEEEEE EaEseaas
H SEEEEE & SEEEEE EaEeaas
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5 SEEEEE & SEEEEE EEEEEEs
5 SEEEEE & SEEEEE EEEEEEs
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3 BEEEEE & SEEEEE EEeEaas
S BEEEEE B S EEEEE EEeEaas

where a; is sparse

Dimensionality Reduction

If ||gi||0 = k < N, this means that the

information carried by a; is 2k < N,
thus giving effective compression

(4 A)
e ———

Geometric Form

Example: N = 200,P = 400,k = 10
o Dim. reduction factor: % =10

o # of subspaces: (41000) ~ 2.6e + 19

This model leads to a much richer UoS structure, with (exponentially)

many more subspaces and yet all are defined through the concise matrix D

N

By: Michael Elad
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Sparsity in Practice: Back to Denoising

Sparsity-Based Model:

|

2
-~ min [y ol
— 2

lall,=x

_)

| Z

Find the support (the
subspace the signal
belongs to) and project

=)

Rad)
|

This is known as
the Pursuit problem
known to be NP-Hard

¥
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What if y = x?
Q should “sparsify”

the signals of
interest

17



To Summarize So Far

Processing data is enabled
by an appropriate
modeling that exposes its
inner structure

Broadly speaking, an
effective way to
model data is via

sparse representations

This leads to a rich

Note: Our . _

motivation is anj hlgh'\ll efLecFlve

” and popular Union-
Image We shall now turn POp

of-Subspaces model

processing” to adopt this

concept for non-
conventional data
structure - graph
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Why Graphs? Why In This Event?

O Fascinating and of Broad Interest: Modeling graph-structured
data is fascinating and attracts a lot of attention recently

O Collaboration: This project is a joint work with Idan Ram
(PhD student) and Israel Cohen (Prof.) from the Electrical

Engineering department in the Technion

NelE
Cohen

Id an '."..:'.' F
Ram
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Processing

GRAPH
Structured Data

This part relies on the following two papers:

Q1. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. Signal
Processing, vol. 59, no. 9, pp. 4199-4209, 2011.

Q1. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional Data
Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291-294 , May 2012.
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Problem Formulation

 We are given a graph:
o Thei — th node is characterized
by a N-dimen. feature vector x;
o The i — th node has a value g;
o The edge between the i — th and
J — th nodes carries the distance

w(&-,gj) for an arbitrary distance
measure w(-,")

d Assumption: a “short edge”
implies close-by values, i.e.

W(gi,gj) small —» |gi = gj| small

for almost every pair (i, j)

=

By: Michael Elad
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Different Ways to Look at This Data

[ We start with a set of N-dimensional vectors X = {51,52, ...,gm} e RY
These could be
= Feature points for a graph’s nodes,
= Set of coordinates for a point-cloud

d A scalar function is defined on
these coordinates, g: X - IR,

giving g = (91,92, -, gm]

 We may regard this dataset as NSNS ENSENEENEEeE OO0
a set of m samples taken from a high
dimensional function g: R¥ - R

U The assumption that small w(gi,gj) implies small |gl- — gj| for almost every
pair (i, j) implies that the function behind the scene, g, is “regular”
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Our Goal

X ﬁ
{&»Ez» ---»Em}
Sparse

o IEE— ) (compact)

Representation
191,925 -+ Im]

Why Wavelet?

O Wavelet for regular piece-wise smooth signals is a highly effective
“sparsifying transform”

J We would like to imitate this for our data structure
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Wavelet for Graphs — A Wonderful Idea ‘

| wish we would have thought of it first ...

/L “Diffusion Wavelets”
R. R. Coifman, and M. Maggioni, 2006.

“Multiscale Methods for Data on Graphs and Irregular Multidimensional Situations”
M. Jansen, G. P. Nason, and B. W. Silverman, 2008.

D. K. Hammond, and P. Vandergheynst, and R. Gribonval, 2010.

“Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and
Applications to Semi Supervised Learning”
M . Gavish, and B. Nadler, and R. R. Coifman, 2010.

/L: “Wavelets on Graph via Spectal Graph Theory”

/L “Wavelet Shrinkage on Paths for Denoising of Scattered Data”
D. Heinen and G. Plonka, 2012
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http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf

The Main Idea — Permutation ‘

g1 92 93 9Ga Ys YGe Y97 YIs

5 : ’
R I A
S S R B S R N > Permutation using
g2 97 9+ 91 93 9s e s X={x1, X2, e, Xpm}
¢ o
L e
® I : : : : : :
I I : | 1 | )

Permutation 1D Wavelet

.l‘ P ‘ll‘ T L Processing ‘l‘ T -ll‘ P-1 —.g
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Permutation Within the Pyramid

O In fact, we propose to perform a different permutation in each resolution
level of the multi-scale pyramid:

bl E —] 2 »bl+1 Pl_|_1 FL —l 2 »bH_z

g _iz_)dH_l g_ _l29d1+2

 Naturally, these permutations will be applied reversely in the inverse
transform

L Thus, the difference between this and the plain 1D wavelet transform
applied on g are the additional permutations, thus preserving the

transform’s linearity and unitarity, while also adapting to the input signal
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Permute to Obtain Maximal Regularity

 Lets start with P,— the permutation applied on the incoming data

A Recall: for wavelet to be effective, P,g should be most “regular”
d However: we may be dealing with corrupted signals g (noisy, ...)

O To our help comes the feature vectors in X, which reflect on the order of the
signal values, g,. Recall:

Small W(xi,xj) implies small |g(xl-) — g(xj)| for almost every pair (i, j)

O “Simplifying” g can be done finding the shortest path that visits in each point
in X once: the Traveling-Salesman-Problem (TSP):

m m
min ) 1g7(®) - g7(i — V)| » min )" w(xf,x,
i=2 (=2
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Traveling Salesman Problem (TSP)

RV o) ©) g 91 92 93 94 Ys 9o Y97 s
@ @ — iy M
I : ® . ¢
e N N N U 0
1 1 ! I I : 1 >
@ @ g 92 97 Y94 Y91 Y93 Y9s Ye U8
p )
We handle the TSP task by a — . ! T
(and crude) approximation: « T E l i H
o Initialize with a randomly chosen index J; | >
o Initialize the set of already chosen indices to Q(1)={j};
o Repeat k=1:1:m-1 times:
* Find X;—the nearest neighbor to Xq such that ig€;
* Set Q(k+1)={i};
o Result: the set Q2 holds the proposed ordering.
Sparse Modeling of Graph-Structured Data ... and Images 28

=

By: Michael Elad



What About the Rest of the Permutations? ‘

4 So far we concentrated on P, at the finest level of the multi-scale pyramid.

4 In order to construct P, P,, ..., P, _;, the permutations at the other pyramid’s
levels, we use the same method, applied on propagated (reordered, filtered
and sub-sampled) feature-vectors through the same wavelet pyramid:

LP-Filtering (h)

— l & Sub-sampling '

00 LP-Filtering (h) LP-Filtering (h)

l & Sub-sampling . l & Sub-sampling .

Sparse Modeling of Graph-Structured Data ... and Images
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Generalized Tree-Based Wavelet Transform

“Generalized” tree Tree (Haar wavelet)

O Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT).

[ We also developed a redundant version of this transform based on the
stationary wavelet transform — also related to the
“A-Trous Wavelet” (will not be presented here).

L At this stage we should (and could) show how this works on point
clouds/graphs, but we will take a different route and discuss implications to
Image processing.
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To Summarize So Far

=D
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Turning to
IMAGE PROCESSING

This part relies on the same papers mentioned before ...
Q [|. Ram, M. Elad, and |. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE
Trans. Signal Processing, vol. 59, no. 9, pp. 4199-4209, 2011.

Q I. Ram, M. Elad, and |. Cohen, “Redundant Wavelets on Graphs and High Dimensional
Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291-294 , May 2012.
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Remember the Guitar Signal? ‘

=

ki b

m {x1,%5, 0, X} ERY QU ESTION:
p—— - What about the connection
[ ] | ] [ | .
EsunE 0 or structure that may exist
Sssam ., BB between these columns?
[ | [ ] [ ]
[ | [ ] [ ]
[ | [ ] [ ]
T 0 v
[ ] [ ] [ ]
[ ] [ ] [ ]

We invested quite an effort to model the This brings us to the topic of

columns of this matrix as emerging from GRAPH-STRUCTURED

a low-dimensional structure data modeling
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Recall: The Guitar Signal

=

(T T T Tl
(T LT T TTT]]] 5
(T LI T TTf]]]

We invested quite an effort to model the
columns of this matrix as emerging from
a low-dimensional structure

Sparse Modeling of Graph-Structured Data ... and Images
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In order to model
the inter-block
(rows) redundancy,
we can consider
this matrix as

containing the
feature vectors of
graph nodes, and
apply the designed
sparsifying wavelet
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An Image as a Graph

O Extract all possible patches of size VN X VN with complete overlaps —
these will serve as the set of features (or coordinates) matrix X. i
9(x;) = g,

d The values g(x;) = g; will be the
EREN —_— :,/
!

center pixel in these patches. y {
m ‘

SEEEEESSESESSEEESEEEEEEEE ¢ guaasnnn | |V

1 Once constructed this way, we forget all about
spatial proximities in image, and start thinking in g(x-) =g,
terms of (Euclidean) proximities between patches. —t '
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Our Transform

¥

)e

Lexicographic ordering of
the m pixels
d All these operations could
be described as one linear
operation: multiplication of
g by a huge matrix €0

O This transform is adaptive
to the specific image

Sparse Modeling of Graph-Structured Data ...
By: Michael Elad
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We obtain an array of
mN/ transform
coefficients

»

m
D —

(ssesissasasiase ) A

EEEEEP” _ “UEEER
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Lets Test It: M-Term Approximation

Original Image Multiply by Q:
Forward GTBWT S/1 {

4

2
:

St}

Multiply by D:
Inverse GTBWT

.
$

|0Q

non-
Show Zeros
2 2
e ~&l" = [ls - psi {agf]" §* :
,‘Mi : | = A
as a function of M Output image : g
E —
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Lets Test It: M-Term Approximation

For a 128x128 center portion of
the image Lenna, we compare the GTBWT — permutation
image representation efficiency of at the finest level
the

50
Q GTBWT 45

J A common 1D wavelet transform 40
d 2D wavelet transform x 35

2
Q. 30 -
25 ¥

20 M4
~ common 1D

55

15

10
0 2000 4000 6000 t<10[0]0) 10000

# Coefficients
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Lets Test It: M-Term Approximation

For a 128x128 center portion of
the image Lenna, we compare the GTBWT — permutations
image representation efficiency of at all (10) levels
the

50
Q GTBWT 45

J A common 1D wavelet transform 40
d 2D wavelet transform x 35

2
Q. 30 o
25 |

20 ¥
~ common 1D

55

15

10
0 2000 4000 6000 t<10[0]0) 10000

# Coefficients

Sparse Modeling of Graph-Structured Data ... and Images 39
By: Michael Elad

M



Lets Test It: Denoising Via Sparsity (y = §+g)‘

Approximation by the

Denoising A THR algorithm:
> »» = 2=DsS fay}
A A

Noisy image €): Forward D: Inverse Output image
D GTBWT A / GTBWT |
\ . 4 SA{.} ” ’\’:
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Wait!

Lets Not Do the Same Mistake Twice

Given this matrix

containing all the

image patches

we agreed that we should exploit
both columns and rows’
redundancies

=

Using only the GTBWT
will operate on rows,
wasting the redundancies
within the columns

Sparse Modeling of Graph-Structured Data
By: Michael Elad

... and Images

YY) N

We apply the GTBWT on the
rows of this matrix, and take
further steps (sub-image
averaging, joint-sparsity) in
order to address the within-
columns redundancy as well

41



Image Denoising — Results

We apply the proposed scheme with the Symmlet 8 wavelet to noisy versions of
the images Lena and Barbara, and compare to K-SVD & BM3D algorithms.

o/ PSNR Image K-SVD BM3D GTBWT

Barbara 34.44 34.98 34.94

25/20.18
Barbara 29.57 30.72 30.75

i T
m’“

Original | isy Denoised

Sparse Modeling of Graph-Structured Data ... and Images )
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What Next?

A Refer to this transform
as an abstract sparsification

We have a 2lit
highly effective operator and use it in general
sparsifying image processing tasks
transform for
images. It is

B: Streep this idea to its

bones: keep the patch-
reordering, and propose a
new way to process images

“linear” and
image adaptive

This part is based on the following papers:
Q

Q

Sparse Modeling of Graph-Structured Data ... and Images
By: Michael Elad
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Recall: Our Transform

X: Array of We obtain an array of
. overlapped patches mNJ transform
0 of size Nm Applying a | coefficients
E redundant
E » wavelet of some »
E sort with
E g permutations
Lexicographic ordering of (L)
the m pixels (ssesissasasiase ) A

d All these operations could

be described as one linear
operation: multiplication of ) “,EEE

BEEE BEEEI EEB
EEER UEEE/ /EER

g by a huge matrix £ seats. ‘uiy ohn | | MmN

O This transform is adaptive
to the specific image
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A: What Can We Do With Q ?

Deblurring Anomaly
) Detection

Super-
iSi : Resolution
benoising Q (and D) is the core
of a sparsity-based
- model for THE image Inpainting

Sampling:
Compressed

-Sensing Compression

Tomographic
Reconstruction

Sparse Modeling of Graph-Structured Data ... and Images
By: Michael Elad
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A: E.g. Deblurring Results

Sparse Modeling of Graph-Structured Data ... and Images
By: Michael Elad

46



B: Alternative: Ordering the Patches

Order to
form the
shortest
possible
path

Sparse Modeling of Graph-Structured Data ... and Images 47
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Key ldea: Regularity Due to Ordering

O Considering the center (or any other) pixel in each patch,
the new path is expected to lead to very smooth (or at least,
piece-wise smooth) 1D signal

O The ordering is expected to be robust to noise and
degradations - the underlying signal should still be smooth

‘ —— Original Image

rmw Hilbert-scanned

|

(o
|l""¥r"‘~'ull rJ|j'|||I I !

‘ | ||| lw\ ” ’

Tl

Gray-Value

900

coordinate
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ing

ith Patch-Reorder

Image Inpainting w

B

issing

L L

1
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B: Inpainting Results — Examples

PSNR= 6.65 dB F\\R— 30.25 IB F\\R L) 97 (IB PSNR=30.25 gIB

i LA

PSNR=22.88 dB PSNR=27.15 (IB PSNR=27.56 dB

= R
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5.8 PSNR= 29.21 dB FS\R: 29.69 dB FS\R— 9.03 dB
Given data Bi-Cubic DCT and 1st jteration
80% missing  interpolation OMP of the
pixels recovery proposed alg.
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Time To Finis
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Conclusions

Sparsity-based models are

highly effective and lead to

state-of-the art processing
in many disciplines

Processing data is enabled
by an appropriate
modeling that can expose
its inner structure

What next?
Processing graph We have shown how
data, different sparsity becomes
patch-embedding, We have shown how applicable also for graph
learned structured data

o . ees E[e]
dictionaries, lifting
tasks can
scheme, ....

benefit from the
new construction

These slides can be found in http://www.cs.technion.ac.il/~elad
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Thank you for your time
and ...

thanks to the organizers of this great event:

Ran El-Yaniv and

Questions?
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