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SPARSITY:                     
What is it Good For?       
Absolutely Nothing? 
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This part relies on the following two papers:  

 M. Elad, Sparse and Redundant Representation Modeling — What Next?, IEEE Signal Processing 

Letters, Vol. 19, No. 12, Pages 922-928, December 2012. 

 A.M. Bruckstein, D.L. Donoho, and M. Elad, From Sparse Solutions of Systems of Equations to Sparse 

Modeling of Signals and Images, SIAM Review, Vol. 51, No. 1, Pages 34-81, February 2009. 
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  Good News 

Today, we have the   
technology and                                   

the know-how to                 
effectively process          

data  
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Seismic Data 

3D Objects 4 

  Which Data?  

Voice Signals 

Stock Market 

Still Images 

Biological Signals 

Videos 

Text Documents 

Email Traffic Radar Imaging 

Matrix Data 

Social Networks 

Traffic info 

Medical Imaging 

http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695
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  What Processing?  

What can we do for such signals? 
 

 Denoising – removal of noise from the data 

 Interpolation (inpainting) – recovery of missing values 

 Prediction – extrapolating the data beyond the given domain 

 Compression – reduction of storage and transmission volumes 

 Inference (inverse problems) – recovery from corrupted measurements 

 Separation – breaking down a data to its morphological “ingredients” 

 Anomaly detection – discovering outliers in the data  

 Clustering – gathering subsets of closely related instances within the data 

 Summarizing – creating a brief version of the essence of the data 

Segmentation, Style-changing, Conversion, Matching, Recognition, Indexing, Semi-supervised learning, Identification, Classification, Synthesis, Detection, … 
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  So, Here is a Simple Question 

 Is it obvious that all these processing options should be possible?  
 

 Consider the following data source:  

 

 

 

      Many of the processing tasks mentioned above are impossible for this data 
 

 Is there something common to all the above-mentioned signals, that makes 
them “processable”?  

 

Why all This is Possible? 

IID Random Number 
Generator ℕ 0,1  𝑥 = 𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑁  
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  Why? We Know The Answer(s) 

Low Entropy 
 

Low Dimensionality 
 

High Redundancy 
 

Inner Structure 
 

Self Dependencies 
 

Self Similarity  
 

Manifold Structure  
 

….  

Our Data is Structured                                                       
A signal composed of N scalar numbers 

has 𝑘 ≪ 𝑁 true degrees of freedom 
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𝑥 ∈ ℝ𝑁 

𝑣 ∈ ℝ𝑘 

𝑓Θ 𝑣  
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  Data Models 

𝑥 = 𝑓Θ 𝑣  

The data we 
operate on 

Models are arbitrary 
beliefs and are 
ALWAYS wrong 

Parameters that 
govern the model 

(to be learned) 

The low-
dimensional 

representation or 
“innovation” 

A “wisely” 
chosen 

function 

Note: This is not    
the only way to 
impose structure   
on data – this 
approach is        
known as the 
“synthesis model” 
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Processing signals                                                                                        
(denoise, interpolate, predict, compress, infer, 

separate, detect, cluster, summarize, …) 
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  Processing Data Using Models 

Processing signals requires knowledge of their structure – 

we need the model 𝑥 = 𝑓Θ 𝑣 , along with its                       

learned parameters 

Q: Why all This is Possible? 

 

A: Because of the structure! 
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  Processing Data Using Models 

𝑥 = min
𝑣,𝑥

 𝑦 − 𝑴𝑥
2

2
   𝑠. 𝑡.  𝑥 = 𝑓Θ 𝑣  

Example 2 - Inference 
 

Given a deteriorated version of a signal, 
𝑦 = 𝑴𝑥 + 𝑧, recovering 𝑥 from 𝑦 is done by                          

projecting 𝑦 onto the model: 

 
 

This covers tasks such as denoising, 
interpolating, inferring, predicting, … 

 𝑥 = 𝑓Θ 𝑣  

Example 1 - Compression 
 

Given a signal 𝑥, its compression is done by                          

computing its representation 𝑣:   

𝑥 1, 𝑥 2 = min
𝑣1,𝑣2,𝑥1,𝑥2

 𝑦 − 𝑥1 − 𝑥2
2

2
 

                 

                       𝑠. 𝑡.   𝑥1 = 𝑓Θ
𝐴 𝑣1      

                        𝑥2 = 𝑓Φ
𝐵 𝑣2  

Example 3 - Separation 
 

Given a noisy mixture of two 
signals, 𝑦 = 𝑥1 + 𝑥2 + 𝑧, each 

emerging from a different model, 
separation is done by 

 
 
 
 
 
 

The goodness of the separation is 
dictated by the overlap between 

the two models 

Maybe another slide on: 
 
• Anomaly detection: for a given signal y, 

which can be either from the model 
(with noise) or an anomaly, we can 
decide on its nature by the projection 
distance of y to the model. 

 
 
 
 
 
 
• Summary: for a given signal y, we may 

ask what is the x that comes from the 
model and which will be J-sparse. This 
way, the surviving J features are a 
summary. Another option is to work 
with a dictionary of topics, and force J-
sparsity over the dictionary 
representation.  

𝑥 = min
𝑣,𝑥

 𝑦 − 𝑥
2

2
+ 𝜇 𝑥 − 𝑓Θ 𝑣

2

2
+ 𝜆 𝑥

0
 

𝑥 = min
𝑣,𝑥

 𝑦 − 𝑥
2

2
  𝑠. 𝑡.  𝑥 = 𝑓Θ 𝑣  

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑒𝑔𝑢𝑙𝑎𝑟  𝑦 − 𝑥

2

2
≤ 𝑇

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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  An Example  

N samples 

𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑁 

Model assumption: All these data vectors  reside 
in a single subspace S  of dimension 𝑘 ≪ 𝑁 

𝐐𝑣𝑖 = 𝑥𝑖 
for 𝑖 = 1,2, … ,𝑚 

= 
𝑁 

𝑘 

Learning Θ:                   
finding the best Q 

:  PCA-KLT-Hotelling 

ℝ𝑁 𝑥 = 𝑓Θ 𝑣  ? 

𝐐 
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  Improving the Model – Local Linearity  

ℝ𝑁 

We may assume 
that around 

every point 𝑥𝑖,  
its nearest 
neighbors           

(in ℝ𝑁) form a 
very low-

dimensional 
subspace 

This behavior can be used in various ways … 

𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑁 
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  Union of (Affine) Subspaces  

Model assumption: All these data vectors                          

reside in a union of L affine subspaces,  𝑆𝑙
𝐿
𝑙=1 ,          

(UoS) of low dimensions 𝑘𝑙 ≪ 𝑁 

Fitting the model: finding 𝐐𝒍, 𝑐𝒍 𝒍=𝟏

𝑳
 

ℝ𝑁 𝑥 = 𝑓Θ 𝑣  ? 

𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑁 

Identify the subspace 𝑥𝑖  belongs to,  

𝑥𝑖 ∈ 𝑆𝑙 (Mahalanobis Distance) and 

 𝑥𝑖 = 𝐐𝑙𝑣𝑖 + 𝑐𝑙 
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  Example: PCA Denoising (𝑦 = 𝑥 + 𝑧) 

The case of PCA/KLT: 

𝑥 = min
𝑣,𝑥

 𝑦 − 𝑥
2

2
 

          𝑠. 𝑡.  𝑥 = 𝐐𝑣 
 

 
𝑥 = 𝐐 𝐐𝑇𝐐 −1𝐐𝑇𝑦 

              = 𝐐𝐐†𝑦 

 The data vector 𝑦 is projected onto the                    

𝑘-dimensional space spanned by 𝐐 

 As the noise is 
spread evenly in 
the 𝑁-dim. 
space, only 𝑘 𝑁  
of it remains             
 effective 
denoising     

ℝ𝑁 
𝑦 

𝑠𝑝𝑎𝑛 𝐐  
𝑥  The Case of UoS:  

project to all the L subspaces, and choose the              
outcome that is closest to 𝑦 (complexity is L) 
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  Lets Talk About Sparsity 

Sparsity: A different way to describe a signal’s structure 

𝐃𝑎𝑖 = 𝑥𝑖     
1 ≤ 𝑖 ≤ 𝑚 
where 𝑎𝑖 is sparse 

= 

𝑃(> 𝑁) 

𝑁 

Model assumption: All data vectors  are linear 
combination of FEW (𝑘 ≪ 𝑁) columns from 𝐃 

𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑁 

PCA  Model 

𝐐𝑣𝑖 = 𝑥𝑖 
 

1 ≤ 𝑖 ≤ 𝑚 

= 

𝑘 

𝑁 

𝐃: 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 
Its columns: 𝐴𝑡𝑜𝑚𝑠 
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  Sparsity – A Closer Look  

𝐃𝑎𝑖 = 𝑥𝑖    1 ≤ 𝑖 ≤ 𝑚 

where 𝑎𝑖 is sparse 

= 

𝑃 

𝑁 

Dimensionality Reduction 
 

If 𝑎𝑖 0
= 𝑘 ≪ 𝑁, this means that the 

information carried by 𝑎𝑖 is 2𝑘 ≪ 𝑁,  
thus giving effective compression 

This model leads to a much richer UoS structure, with (exponentially) 
many more subspaces and yet all are defined through the concise matrix 𝐃 

Geometric Form 
 

There are 𝑃
𝑘

 possible supports 

 
Each forms a different subspace 

Example: 𝑁 = 200, 𝑃 = 400, 𝑘 = 10 

o Dim. reduction factor: 
𝑁

2𝑘
= 10 

o # of subspaces: 
400
10

≈ 2.6𝑒 + 19 
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  Sparsity in Practice: Back to Denoising 

Sparsity-Based Model: 

   𝑎 = min

𝑎
0
=𝑘

 𝑦 − 𝐃𝑎
2

2
  

                𝑥 = 𝐃𝑎  
 
 
 
 

Find the support (the 
subspace the signal 

belongs to) and project 
 

This is known as                     
the Pursuit problem  

known to be NP-Hard 

Approximation by the THR algorithm: 

𝑎 = 𝑆𝜆 𝛀𝑦 = 𝑆𝜆 𝐃†𝑦  

= 𝛀 
𝑦 

What if 𝑦 = 𝑥?             

𝛀 should “sparsify” 
the signals of 

interest 

𝑥 = min
𝑣,𝑥

 𝑦 − 𝑥
2

2
    

𝑠. 𝑡.  𝑥 = 𝑓Θ 𝑣  

𝑦 = 𝑥 + 𝑧 
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  To Summarize So Far 

This leads to a rich 
and highly effective 
and popular Union-
of-Subspaces model 

We shall now turn 
to adopt this 

concept for non-
conventional data 
structure - graph 

Broadly speaking, an 
effective way  to  
model data is via 

sparse representations 

Processing data is enabled 
by an appropriate 

modeling  that exposes its 
inner structure  

Note: Our 
motivation is 

“image 
processing” 
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  Why Graphs? Why In This Event?  

 

 Fascinating and of Broad Interest: Modeling  graph-structured 
data is fascinating and attracts a lot of attention recently 

 
 

 Collaboration: This project is a joint work with Idan Ram     
(PhD student) and Israel Cohen (Prof.) from the Electrical 

Engineering department in the Technion  

Israel 
Cohen 

Idan      
Ram 
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GRAPH                  
Structured Data 
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This part relies on the following two papers:  

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. Signal 

Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional Data 

Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥8 

𝑥7 

𝑥9 

𝑥12 

𝑥11 

𝑥10 

𝑥13 

𝑔1 

𝑔2 

𝑔3 

𝑔4 

𝑔5 
𝑔6 

𝑔8 

𝑔7 

𝑔9 

𝑔12 
𝑔11 

𝑔10 

𝑔13 

 We are given a graph: 
o The 𝑖 − 𝑡ℎ node is characterized        

by a  𝑁-dimen. feature vector 𝑥𝑖 
o The 𝑖 − 𝑡ℎ node has a value 𝑔𝑖 
o The edge between the 𝑖 − 𝑡ℎ and 

𝑗 − 𝑡ℎ nodes carries the distance 

𝑤 𝑥𝑖 , 𝑥𝑗  for an arbitrary distance 

measure 𝑤 ⋅,⋅  
 

 Assumption: a “short edge” 
implies close-by values, i.e.    

 

      𝑤 𝑥𝑖 , 𝑥𝑗  small  𝑔𝑖 − 𝑔𝑗  small 
           

            for almost every pair 𝑖, 𝑗  
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 We start with a set of 𝑁-dimensional vectors 𝐗 = 𝑥1, 𝑥2, … , 𝑥𝑚 ∈ IR𝑁  

These could be 
 Feature points for a graph’s nodes,     
 Set of coordinates for a point-cloud 

 

 

 A scalar function is defined on                                                                                          
these coordinates, 𝑔: X → IR ,                                                    
giving  g = 𝑔1, 𝑔2, … , 𝑔𝑚  
 

 

 We may regard this dataset as                                            
a set of 𝑚 samples taken from a high       
dimensional function 𝑔: IR𝑁 → IR  
 

 

 The assumption that small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑔𝑖 − 𝑔𝑗   for almost every 

pair 𝑖, 𝑗  implies that the function behind the scene, 𝑔, is “regular” 

  Different Ways to Look at This Data 

22 

… 

X= 𝑥1, 𝑥2, … , 𝑥𝑚  

g = 𝑔1, 𝑔2, … , 𝑔𝑚  
… 
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  Our Goal 

Wavelet 
Transform 

    Sparse     
       (compact)    
Representation 

Why Wavelet?  
 

 Wavelet for regular piece-wise smooth signals is a highly effective 
“sparsifying transform” 

 

 We would like to imitate this for our data structure 

X      
     𝑥1, 𝑥2, … , 𝑥𝑚  

g 

    𝑔1, 𝑔2, … , 𝑔𝑚  
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“Diffusion Wavelets” 

 R. R. Coifman, and M. Maggioni, 2006. 
 

“Multiscale Methods for Data on Graphs and Irregular Multidimensional Situations” 
 M. Jansen, G. P. Nason, and B. W. Silverman, 2008. 
 

“Wavelets on Graph via Spectal Graph Theory” 
 D. K. Hammond, and P. Vandergheynst, and R. Gribonval, 2010. 
 

“Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and 
Applications to Semi Supervised Learning” 
 M . Gavish, and B. Nadler, and R. R. Coifman, 2010. 
 

“Wavelet Shrinkage on Paths for Denoising of Scattered Data” 
 D. Heinen and G. Plonka, 2012 

  Wavelet for Graphs – A Wonderful Idea 
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I wish we would have thought of it first …  

http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf
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  The Main Idea – Permutation 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 

Permutation using 

P T T-1 P-1 Processing 

Permutation 1D Wavelet 

X= 𝑥1, 𝑥2, … , 𝑥𝑚  

g 

g 𝑝 

g 
g 𝑝 g  𝑝 

g  



Sparse Modeling of Graph-Structured Data … and Images 
By: Michael Elad 

    

26 

𝑏𝑙 𝑏𝑙+1 

𝑑𝑙+1 

ℎ  

𝑔  

↓ 2 

↓ 2 

𝑏𝑙+2 

𝑑𝑙+2 

↓ 2 

↓ 2 

ℎ  

𝑔  

P𝑙 P𝑙+1 

  Permutation Within the Pyramid 

 In fact, we propose to perform a different permutation in each resolution 
level of the multi-scale pyramid: 
 
 
 
 
 
 
 

 Naturally, these permutations will be applied reversely in the inverse 
transform  

 Thus, the difference between this and the plain 1D wavelet transform 
applied on g are the additional permutations, thus preserving the 

transform’s linearity and unitarity, while also adapting to the input signal  
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 Lets start with P0 – the permutation applied on the incoming data 
 

 Recall: for wavelet to be effective, P0g  should be most “regular” 
 

 However: we may be dealing with corrupted signals g (noisy, …)  
 

 To our help comes the feature vectors in 𝐗, which reflect on the order of the 
signal values, gk. Recall:  
 

 
 
 “Simplifying” g can be done finding the shortest path that visits in each point 

in X once: the Traveling-Salesman-Problem (TSP): 
 
 

  Permute to Obtain Maximal Regularity  

min
P

 𝑔𝑝 𝑖 − 𝑔𝑝 𝑖 − 1

𝑚

𝑖=2

 min
P

 𝑤 𝑥𝑖
𝑝
, 𝑥𝑖−1

𝑝

𝑚

𝑖=2

 

Small 𝑤 𝑥𝑖 , 𝑥𝑗  implies small 𝑔 𝑥𝑖 − 𝑔 𝑥𝑗   for almost every pair 𝑖, 𝑗  
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𝑥8 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 
g 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 
g𝑝 

  Traveling Salesman Problem (TSP) 

We handle the TSP task by a               
greedy (and crude) approximation:  
 

o Initialize with a randomly chosen index j;  
o Initialize the set of already chosen indices to Ω(1)={j};  
oRepeat k=1:1:m-1 times: 

• Find xi – the nearest neighbor to xΩ(k) such that iΩ;  
• Set Ω(k+1)={i};  

oResult: the set Ω holds the proposed ordering. 

IR𝑁 
𝑥2 𝑥7 

𝑥4 

𝑥1 

𝑥3 

𝑥5 

𝑥6 
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  What About the Rest of the Permutations? 

 So far we concentrated on P0 at the finest level of the multi-scale pyramid. 
 

 In order to construct P1, P2, … , PL-1, the permutations at the other pyramid’s  
levels, we use the same method, applied on propagated (reordered, filtered 
and sub-sampled) feature-vectors through the same wavelet pyramid: 
 
 

𝐗𝟎 = 𝐗 P0 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟏 
P1 

LP-Filtering (h) 
& Sub-sampling  

𝐗𝟐 

P2 
LP-Filtering (h) 

& Sub-sampling  

𝐗𝟑 

P3 
LP-Filtering (h) 

& Sub-sampling  
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  Generalized Tree-Based Wavelet Transform  

                     “Generalized” tree           Tree (Haar wavelet) 

 

 

 

 Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT). 
 

 We also developed a redundant version of this transform based on the 
stationary wavelet transform [Shensa, 1992] [Beylkin, 1992] – also related to the 
“A-Trous Wavelet” (will not be presented here). 
 

 At this stage we should (and could) show how this works on point 
clouds/graphs, but we will take a different route and discuss implications to 
image processing.  
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  To Summarize So Far 

Our method: Permutation 
followed by filtering and 

decimation in each of the 
pyramid levels 

The approach we take is 
to extend the existing 1D 
wavelet transform to the 

graph structure 

We tested this for  
graph data with 

successful results  
(NOT SHOWN HERE) 

Given a graph or a cloud 
of points, we can model 
it in order to process it 

(denoise, infer, …) 

We shall 
present the 
applicability 

of this 
transform to 

… images 



Sparse Modeling of Graph-Structured Data … and Images 
By: Michael Elad 

    

Turning to  
IMAGE PROCESSING 

32 

This part relies on the same papers mentioned before … 

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE 

Trans. Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.  

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.  
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  Remember the Guitar Signal? 

N samples 𝑚 

𝑁 

We invested quite an effort to model the 
columns of this matrix as emerging from 

a low-dimensional structure 

QUESTION: 
What about the connection 
or structure that may exist 
between these columns?  

 
 

 
This brings us to the topic of 

GRAPH-STRUCTURED                 
data modeling  

𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℝ𝑁 
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  Recall: The Guitar Signal 

In order to model 
the inter-block 

(rows) redundancy, 
we can consider 

this matrix as 
containing the 

feature vectors of 
graph nodes, and 

apply the designed 
sparsifying wavelet 

𝑚 

𝑁 

We invested quite an effort to model the 
columns of this matrix as emerging from 

a low-dimensional structure 
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𝑥𝑗 

𝑔 𝑥𝑗 = 𝑔𝑗 

𝑔 𝑥𝑖 = 𝑔𝑖 

  An Image as a Graph 

𝑥𝑖 

 Extract all possible patches of size 𝑁 × 𝑁 with complete overlaps –                                                                                     
these will serve as the set of features (or coordinates) matrix X.  

 The values 𝑔 𝑥𝑖 = 𝑔𝑖 will be the                                                                                         

center pixel in these patches. 
 
 
 
 
 
 
 

 

 Once constructed this way, we forget all about                                               
spatial proximities in image, and start thinking in                                            
terms of (Euclidean) proximities between patches.  

𝑚 

𝑁 
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g 
Lexicographic ordering of                        

the 𝑚 pixels 

𝛀 𝑚𝑁𝐽 

𝑚 

   All these operations could     
be described as one linear 
operation: multiplication of    
g by a huge matrix 𝛀 

 This transform is adaptive      
to the specific image 

𝐗: Array of 
overlapped patches 

of size 𝑁𝑚 

We obtain an array of 
mN𝐽 transform 

coefficients Applying a  𝐽 
redundant 

wavelet of some 
sort with 

permutations 
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  Lets Test It: M-Term Approximation 

Multiply by 𝐃: 

Inverse GTBWT 

Multiply by 𝛀: 
Forward GTBWT 

𝑆𝜆 ∙  

Original Image 

𝜆 

−𝜆 

g 

𝛀g 

𝑆𝜆 𝛀g  

𝑀            
non-
zeros 

g  Output image 

Show 
 

g − g 
2
= g − 𝐃𝑆𝜆 𝛀g

2
      

 

as a function of 𝑀 

Skip? 
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  Lets Test It: M-Term Approximation 

0 2000 4000 6000 8000 10000 
10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

# Coefficients 

P
S

N
R

 

GTBWT – permutation 
at the finest level 

common 1D 

2D 

db4 

For a 128×128 center portion of 
the image Lenna, we compare the 
image representation efficiency of 
the 
  

 GTBWT 
 A common 1D wavelet transform 
 2D wavelet transform 
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0 2000 4000 6000 8000 10000 
10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

# Coefficients 

P
S

N
R

 
common 1D 

2D 

db4 

GTBWT – permutations 
at all (10) levels 
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For a 128×128 center portion of 
the image Lenna, we compare the 
image representation efficiency of 
the 
  

 GTBWT 
 A common 1D wavelet transform 
 2D wavelet transform 
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Approximation by the              
THR algorithm: 

𝑥 = 𝐃𝑆𝜆 𝛀𝑦  

Denoising 
Algorithm 

𝑦 𝑥  

Noisy image Output image 𝐃: Inverse  

GTBWT 

𝛀: Forward 

GTBWT 

𝑆𝜆 ∙  
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𝑚 

𝑁 

we agreed that we should exploit 
both columns and rows’ 
redundancies 

Using only the GTBWT                     
will operate on rows,                    

wasting the redundancies                       
within the columns 

Given this  matrix 
containing all the                 
image patches 

Lets Not Do the Same Mistake Twice 

We apply the GTBWT on the 
rows of this matrix, and take 
further steps (sub-image 
averaging, joint-sparsity) in 
order to address the within-
columns redundancy as well 
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We apply the proposed scheme with the Symmlet 8 wavelet to noisy versions of 
the images Lena and Barbara, and compare to K-SVD & BM3D algorithms. 

/ PSNR Image K-SVD BM3D GTBWT 

10/28.14 
Lena 35.51 35.93 35.87 

Barbara 34.44 34.98 34.94 

25/20.18 
Lena 31.36 32.08 32.16 

Barbara 29.57 30.72 30.75 

  Original                       Noisy                    Denoised 
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  What Next? 

A: Refer to this transform   

as an abstract sparsification 
operator and use it in general 

image processing tasks 

B: Streep this idea to its 

bones: keep the patch-
reordering, and propose a 

new way to process images 

We have a 
highly effective 

sparsifying 
transform for 
images. It is 
“linear” and 

image adaptive 

This part is based on the following papers:  

 I. Ram, M. Elad, and I. Cohen, “The RTBWT Frame – Theory and Use for Images”, 

working draft to be submitted soon. 

 I. Ram, M. Elad, and I. Cohen, “Image Processing using Smooth Ordering of its Patches”, 

to appear in IEEE Transactions on Image Processing. 

Skip? 
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g 
Lexicographic ordering of                        

the 𝑚 pixels 

𝐗: Array of 
overlapped patches 

of size 𝑁𝑚 

We obtain an array of 
mN𝐽 transform 

coefficients 

𝛀 𝑚𝑁𝐽 

𝑚 

   All these operations could     
be described as one linear 
operation: multiplication of    
g by a huge matrix 𝛀 

 This transform is adaptive      
to the specific image 

Applying a  𝐽 
redundant 

wavelet of some 
sort with 

permutations 
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𝛀 (and 𝐃) is the core                   

of a sparsity-based                 

model for THE image 

Denoising 

Anomaly 
Detection 

Sampling: 
Compressed

-Sensing Compression 

Separation 

… 

… 

Inpainting 

Deblurring  

Tomographic 
Reconstruction 

Super-
Resolution 
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Original                     Blurred                 Restored 
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  B: Alternative: Ordering the Patches  

Order to  
      form the  
        shortest  
        possible  
        path 

Process the 
obtained 1D signal 
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  Key Idea: Regularity Due to Ordering  

 Considering the center (or any other) pixel in each patch, 
the new path is expected to lead to very smooth (or at least, 
piece-wise smooth) 1D signal 
 

 The ordering is expected to be robust to noise and 
degradations → the underlying signal should still be smooth 
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  B: Image Denoising with Patch-Reordering  

y𝑝 

Ordering based on the noisy pixels  

Simple smoothing 

Noisy with =25 (20.18dB) 

Reconstruction: 32.65dB 

y 

True samples 
Noisy samples 
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  B: Image Inpainting with Patch-Reordering 

0.8 of the pixels are missing  

Reconstruction: 27.15dB 

y𝑝 

Ordering 

Simple interpolation 

y 
Missing sample 
Existing sample 
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  B: Inpainting Results – Examples  

Given data 
80% missing 

pixels 

1st iteration     
of the 

proposed alg. 

DCT and            
OMP                 

recovery 

Bi-Cubic 
interpolation 

3rd iteration     
of the 

proposed alg. 
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  Conclusions 
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We have shown how 
sparsity becomes 

applicable also for graph 
structured data 

Sparsity-based models are 
highly effective and lead to 
state-of-the art processing 

in many disciplines 

We have shown how 
classical image 

processing tasks can 
benefit from the 
new construction 

Processing data is enabled 
by an appropriate 

modeling that can expose 
its inner structure  

What next? 
Processing graph 

data, different 
patch-embedding, 

learned 
dictionaries, lifting 

scheme, ….    

These slides can be found in http://www.cs.technion.ac.il/~elad  
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Thank you for your time 
and … 

 
thanks to the organizers of this great event: 

 

Ran El-Yaniv  and     Shie Mannor 

Questions?  


