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In ultrasound imaging, clutter artifacts degrade images andmay cause inaccurate diagnosis. In this paper, we apply a method called
Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The
MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms
(amatrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning
the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-)
based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic
lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter
and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower
impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter
mitigation with an average CNR improvement of 1.33 dB.

1. Introduction

In medical ultrasound imaging, a source of artifact called
“clutter” is commonly caused by multipath reverberations or
off-axis scatterers, and it materializes as a static cloud of echo
signals occluding the tissue regions of interest [1, 2]. Clutter
artifacts affect the contrast and the readability of images
and can induce misleading functional measurements like
myocardium strain in cardiac ultrasound and displacement
estimation in blood flow imaging. Often, clutter artifacts
degrade ultrasound images entailing the use of imaging
modalities such as CT or MRI that are more expensive and
involve a radiation risk to the patient.

Clutter artifacts from reverberations appear when the
acoustic wave bounces back and forth between a reflective
structure and the transducer surface. In echocardiography,
this is a common phenomenon because the rib cage and
the sternum are highly reflective structures in proximity
of the path of the acoustic waves to the heart [3]. The
energy of the acoustic waves decays with the distance covered
and with the number of bounces, such that the effect

becomes more significant in the near-field region of the
image and less visible in far-field areas. As a consequence,
the myocardium is partially occluded by the artifacts, which
may lead to wrong cardiac functioning diagnosis through
visual inspection or tracking techniques [4, 5]. Methods that
overcome the challenges imposed by reverberation echoes
include interpolating data from regions of the heart where
artifacts are not present [6] or inferring heart motion using
probabilisticmodels for the challenging regions [7].However,
these techniques tend to fail in data from diseased hearts,
because abnormal myocardial motion cannot be inferred
using statistical assumptions or models. Therefore, a more
appropriate methodology may be to separate the clutter
from the signal of interest using filtering strategies, allowing
motion tracking to be computed in the entire image.

Suggested filtering methods usually involve separation of
the tissue and clutter echo signals by linear decomposition.
Echo data is transformed to a new coordinate system inwhich
the clutter artifacts and the signal of interest can be separated
along different bases or dictionaries. Then, clutter artifacts
are suppressed by reducing their respective coefficients while
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leaving those of the basis of the tissue signal fixed. Existing
methods either use a priori orthogonal bases or learn them
adaptively from the data. A priori methods use predefined
bases that are orthonormal and independent of the data.
Commonly used bases are the Discrete Fourier Transform
(DFT), which has been used to define FIR or IIR filters
for clutter mitigation in blood flow imaging [8, 9], and the
wavelet transform for clutter artifact reduction [10, 11]. Also,
the short-time Fourier Transform has been used to filter
clutter artifacts during beamforming [12].

Although a priori bases are fast to compute, theymay pro-
duce poor results when clutter and tissue characteristics over-
lap. Furthermore, physiological differences among patients
entail space and time variability for signals characteristics.
Adaptive methods have been suggested to overcome these
limitations and learn a basis based on the actual data. The
predominantmethod for determining a basis adaptively is the
Principal ComponentAnalysis (PCA) that is used to compute
a basis based on the covariance characteristics of the data.
Usually, adaptive techniques outperform methods that rely
on choosing of bases a priori [13–16]. Some methods learn
the basis from local areas of the signal [13] without exploiting
the whole image information.

In the present paper, a Morphological Component Anal-
ysis (MCA) based separation algorithm [17] is introduced
to mitigate clutter in ultrasound images while preserving
the tissue signal. As described below, the current method
learns a nonorthonormal redundant matrix (also called
dictionary) from the entire data and decomposes the signal
into a linear combination of a few columns (atoms) from
the dictionary. Consequently, by separating the dictionary’s
atoms into clutter and tissue representatives, clutter filtering
is achieved by selectively removing clutter atoms. The fea-
sibility of the method is demonstrated with simulated and
experimental ultrasound data. Simulation is used to quantify
the performance of the method across algorithm parameters
and signal motion characteristics. The suggested algorithm
is also experimentally demonstrated with echocardiography
images, where clutter artifacts are a significant cause of image
degradation. Its performance is compared against a high-pass
FIR filter and state-of-the-art Singular Value Filtering (SVF)
[13].

2. Methods

2.1. Sparse Representation of a Signal. The sparse represen-
tation model [18] assumes that a signal of interest can be
decomposed into a linear combination of a few vectors
or “atoms” from a given matrix, also called “dictionary.”
The atoms that take part in the linear combination are a
small subset of the dictionary, and their respective coef-
ficients are called the sparse representation of the signal.
This model is used as prior information for signals, where
signal reconstruction is performed by first computing the
sparse representation of the signal of interest and then by
reconstructing the signal from its sparse representation and
the dictionary. Selecting the dictionary is an important step
in this process and it is usually dependent on the application.
The objective is to find an adaptive dictionary that will enable

sparse representations of relevant signals as accurately as
possible.

The sparse representation principle can be illustrated by
considering a signal t ∈ Cn, which can be decomposed into a
linear combination of atoms:

t = Dx =
𝑚

∑

𝑖=1
𝑥
𝑖
d
𝑖
, (1)

where vector x is the sparse representation of the signal
t, implying that most entries 𝑥

𝑖
are zeros, and d

𝑖
are the

atoms (columns) of the dictionary D ∈ Cn×m. The sparse
vector x has ‖x‖0 = 𝑘 nonzero elements with 𝑘 < 𝑛.
The notation ‖ ⋅ ‖0 represents the ℓ0-norm (usually, the ℓ0-
norm is wrongly known as a quasi- or pseudonorm. The
ℓ0-norm satisfies only two axioms of the norms and thus
it should not be considered a norm), that is, the number
of nonzero elements in the vector. The set of indices of the
nonzero coefficients in x is defined as the support S and
the signal can be decomposed alternatively into t = DSxS,
with DS being the subset S of columns from D and xS the
reduced vector with only the nonzero elements. When the
support of a representation vector is known, the respective
coefficients in xS are computed using the pseudoinverse D†S
of the dictionary restricted to the support,DS:

t = DSxS ⇒ xS = (D
∗

SDS)
−1 D∗St = D†St. (2)

The support S is unknown in practice and is estimated
together with the nonzero coefficient values.

The sparse representation x is computed by finding the
sparsest vector that yields t when multiplied by the given
dictionary D. This problem can be written as the following
optimization task:

minx ‖x‖0

subject to t = Dx.
(3)

In practice, a noisy observation s of the signal of interest
t is obtained. It is often assumed that the noisy signal s is
contaminatedwith additive i.i.d. whiteGaussian noisen ∈ Cn

with noise level 𝜎; that is, s = t + n. Problem (3) is then
reformulated to yield a solution that is close to the observed
signal in the ℓ2-norm sense:

minx ‖x‖0

subject to ‖s−Dx‖22 ≤ 𝜀
2
,

(4)

where 𝜀 is the desired bound on the distance from the
observed signal s and is usually proportional to the noise
standard deviation 𝜎. The notation ‖k‖2 = √∑

𝑛

𝑖=1 |k𝑖|2

represents the ℓ2-normof a vector k. An alternative to (4)may
be formulated where the fidelity data term is minimized and
the number of nonzero elements is constrained:

minx ‖s−Dx‖22

subject to ‖x‖0 ≤ 𝑘0,
(5)
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Task. Approximate the solution to problem (4) or (5).
Input Parameters. Input parameters are dictionaryD, the signal s, and the error threshold 𝜀 or
the maximum sparsity of the solution 𝑘0.
Initialization. Initialization is as follows:
(i) Initialize 𝑘 = 0.
(ii) The initial solution x(0) = 0.
(iii) The initial residual r(0) = s −Dx(0) = s.
(iv) The initial support S(0) = 0.

Main Iteration. Increment 𝑘 by 1 and perform the following steps:
(i) Sweep: compute the projection values p =D∗r(𝑘−1), whereD∗ is the conjugate transpose of matrixD.
(ii) Update support: find element 𝑗, the maximizer of |p|, and update the support, S(𝑘) = S(𝑘−1) ∪ {𝑗}.
(iii) Update solution: compute x(𝑘), the minimizer of ‖s −Dx‖22 subject to support S

(𝑘).
(iv) Update residual: compute r(𝑘) = s −Dx(𝑘).
(v) Stopping criterion: if ‖r(𝑘)‖2 < 𝜀 (for problem (4)) or 𝑘 = 𝑘0 (for problem (5)), stop. Otherwise,

continue with the next iteration.
Output. The approximated solution is x̂ = x(𝑘) obtained after 𝑘 iterations.

Algorithm 1: Orthogonal Matching Pursuit.

where 𝑘0 is the maximum sparsity allowed in each repre-
sentation. Solving problem (4) or (5) yields an approximate
sparse representation x̂ and it is used to reconstruct the clean
signal by multiplying withD; that is, t̂ = Dx̂. The Orthogonal
Matching Pursuit (OMP) [19] is a commonly used algorithm
designed to approximate solutions to problem (4) or (5), and
it is presented in Algorithm 1. The OMP is a greedy pursuit
algorithm that increments the support size by one nonzero
element at a time. In each iteration, an atom is chosen such
that it reduces the residual distance to the observed signal
the most. The stopping criterion is given by the constraint
of the problem to be solved: the ℓ2 term error bound for (4)
or the number of nonzeros for (5). There are other methods
for approximating the solution of (4) or (5); such is the
Basis Pursuit method [20] that relaxes the ℓ0 quasinorm in
problem (4) with an ℓ1-norm (the ℓ1-norm of a vector k is
defined as ‖k‖

1
= ∑
𝑛

𝑖=1 |k𝑖| and it is well known [18, 20]
to give preference to sparse solutions) and solves a convex
optimization problem.

In ultrasound imaging, sparse representations have been
used widely with interesting results. Zhang et al. [21] used
Gabor atoms to denoise Doppler ultrasound blood flow
signals. Also, Nieblas et al. [22] used the same dictionary
to detect heart pathologies in heart sound signals with
high accuracy. Furthermore, Michailovich and Adam [23]
separated harmonic components using Gabor frames. Deka
and Bora [24] used an adaptive dictionary for despeckling of
ultrasound images. Liebgott et al. [25] applied the compressed
sensing technique to reconstruct RF ultrasound signals using
a dictionary of wave atoms. Also, Shi et al. [26] demon-
strated compressed sensing for separating transmitted echoes
and improving the resolution in ultrasound flaw detection.
Wagner et al. [27] and also Chernyakova and Eldar [28]
demonstrated techniques to apply compressed sensing to
beamforming achieving a reduction in the sampling rate.
Similarly, Zhang et al. [29] proposed an adaptive beamform-
ing approach based on compressed sensing. Zhou et al. [30]
developed an asynchronous compressed beamformer that

requires low runtime complexity for computing the sparse
representations, allowing the authors to use it in portable
ultrasound devices. Schiffner et al. [31] used sparse repre-
sentations with a curvelet dictionary for solving the inverse
scattering problem in diagnostic ultrasound images. Richy
et al. [32] demonstrated a method for reconstructing the
Doppler signal segment by segment in blood flow estimation
that is based on compressive sensing using Fourier or wave
atom dictionaries. Demirli and Saniie [33, 34] showed how
to sparsely decompose ultrasound echo data using envelope
and instantaneous phase for identification of signal features
and data partitioning. A particular example is the work of
Cloutier et al. [35]. In that work, the authors proposed to
use the Matching Pursuit approximation algorithm (closely
related toOMP)withGabor atoms as an a priori dictionary to
reduce clutter in Doppler blood flow signals. All these works
showed performance improvements by assuming sparsity as
a signal prior.

The sparse representation clearly changes with selection
of the dictionary D. There are, as noted above, two ways to
select a dictionary, either defined a priori or learned adap-
tively from the data. Dictionaries such as the Discrete Fourier
Transform (DFT) [36] and various types of wavelets such as
curvelets [37], countourlets [38], and Gabor wavelets [39],
among others, have been suggested as a priori dictionaries
for image processing. Many of these options have a fast
transformation that allows for a fast computation of amatrix-
vector multiplication. However, in terms of quality, these
dictionaries may limit the performance of the application
[40]. For example, in an application such as ultrasound
clutter filtering, using the DFT for source separation may
be of limited value because tissue and clutter overlap in
the frequency domain. Finding an a priori dictionary for a
specific application may not be a trivial task. Alternatively,
an adaptive dictionary can be learned from the data and may
yield improved results.

A commonly used method to learn a dictionary from
data is the K-SVD [41] technique. K-SVD is an iterative
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method that learns the atoms in a dictionary by fitting
the data with the sparsest possible representations. As a
consequence, computing an adaptive dictionary with K-SVD
requires multiple data samples.

Consider the following example to illustrate how a dic-
tionary is determined with K-SVD. Let S ∈ Cn×P be a matrix
with 𝑃 data samples ordered so that each sample appears as a
column.Thenumber of data samples𝑃 is usuallymuch bigger
than the data dimension 𝑛, enabling training a dictionary
where each atom is used in several representations of samples.
The K-SVD method aims to find the best dictionary D and
the sparse representations X ∈ Cm×P (x

𝑖
for each sample s

𝑖
)

by solving the optimization problem

min
D,X

‖S−DX‖2
𝐹

subject to 



x
𝑖




0 ≤ 𝑘0, 1 ≤ 𝑖 ≤ 𝑃






d
𝑗







2
2 = 1, 1 ≤ 𝑗 ≤ 𝑚,

(6)

where 𝑘0 is themaximum sparsity prescribed for each sample
representation. To compute a solution to the optimization
task in (6), the K-SVD method iterates between two main
computational steps: sparse coding and dictionary update.
The sparse coding step assumes that the dictionaryD is fixed
and the sparse representationsX are computed. For instance,
this can be done using the OMP algorithm. The dictionary
update step modifies each atom one at a time. Hence, the
update is computed by isolating the 𝑖th atom d

𝑖
from the

others and rewriting the Frobenius norm:

‖S−DX‖2
𝐹
=














[

[

S−∑
𝑗 ̸=𝑖

d
𝑗
(x𝑇)
𝑗

]

]

− d
𝑖
(x𝑇)
𝑖














2

𝐹

=






E
𝑖
− d
𝑖
(x𝑇)
𝑖







2

𝐹

,

(7)

where (x𝑇)
𝑖
stands for the 𝑖th rowofX.The terms in parenthe-

ses can be considered an error matrix E
𝑖
= S − ∑

𝑗 ̸=𝑖
d
𝑗
(x𝑇)
𝑗
,

where all the elements are fixed and are independent of atom
𝑖. The optimal solution for d

𝑖
and (x𝑇)

𝑖
that minimizes the

functional in (7) is computed by solving a rank-1 approxi-
mation of E

𝑖
using the Singular Value Decomposition (SVD).

In general, the SVD computation yields a dense vector (x𝑇)
𝑖

which would increase the number of nonzero elements in
(x𝑇)
𝑖
andmake use of the updated atom d

𝑖
for all the samples.

Therefore, the error matrix E
𝑖
is restricted to those columns

E𝑅
𝑖
where the atom is active, that is, for the nonzeros in (x𝑇)

𝑖
.

In this manner, the rank-1 problem is solved by updating only
the nonzero elements in (x𝑇)

𝑖
with the respective columns

E𝑅
𝑖
. Once all the atoms are updated, the process repeats until

some stopping criterion is satisfied. The K-SVD algorithm is
presented in Algorithm 2.

2.2. Sparse Signal Separation for ClutterMitigation. A general
approach to separate signals using sparse representations
is called Morphological Component Analysis (MCA) [17].
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Vectorized patch si

Figure 1: Illustration of how a patch s
𝑖
is extracted from a sequence

of several frames of complex echo data. The small rectangles in the
ultrasound image frames represent𝑀-axial elements in each frame
which are concatenated to form the patch s

𝑖
.

In MCA, the mixed signal is decomposed into different mor-
phological components (subdictionaries) and each source
is sparse under these subdictionaries. The morphological
components can be selected a priori for specific tasks and
type of data [42] or can be adaptively learned [17] using
some dictionary learning method such as [43, Ch. 15], [44].
Filtering a component is then applied by assigning a weight
to each atom that corresponds to that component.

While MCA is a general scheme for signal separation,
from now on, the discussion will concentrate on clutter
artifact mitigation in the context of echocardiography ultra-
sound imaging. In this application, the observed signals S are
columned versions of axial-temporal dimensional patches of
real-valued raw RF or complex-valued IQ demodulated RF
echo data. A signal s

𝑖
represents a two-dimensional patch

obtained from echo data with 𝑁 consecutive frames as its
columns and 𝑀 elements in the axial direction forming its
rows (see Figure 1). (The echo data can be taken also as lateral-
temporal patches. Clutter quasistatic behavior appears in the
temporal dimension, while moving tissue (in any direction)
appears as varying elements across the same dimension.This
information is captured by such patches as well. Also, data
can be taken as a three-dimensional element, by adding con-
secutive axial lines into every signal s

𝑖
and hence including

adjacent A-lines in the lateral direction. This also requires
us to modify the method for partitioning the atoms in
the dictionary into tissue and clutter. In our experiments
we found the axial-temporal patches to be slightly more
effective.) In this way, every signal s

𝑖
contains information of

the local motion characteristics in the echo data. However,
the number of columns in the patch, 𝑁, dictates how much
of this motion is captured. As clutter behaves quasistatically
across frames, a patch with a large number of columns 𝑁
may contain big motion variability making it difficult to
remove clutter, whereas a small 𝑁 may not contain enough
tissue variability to differentiate it from the clutter artifacts.
It should be noted that the amount of motion in the patch
depends also on the frame rate of the acquisition. Once
the data is separated, the clutter artifacts are removed, the
processed signals are converted back from column vectors
into two-dimensional patches, and these patches are merged
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Task. Train a dictionaryD to sparsely represent the data {s
𝑖
}
𝑃

𝑖=1 by approximating the solution
to problem (6).
Input Parameters. Input parameters include a matrix S containing the signals {s

𝑖
}
𝑃

𝑖=1 and the
maximum sparsity of the solution 𝑘0.
Initialization. Initialization is as follows:

(i) Initialize 𝑘 = 0.
(ii) Initialize D(0) by either using𝑚 randomly chosen examples from S or using random entries.
(iii) Normalize the columns of D(0).

Main Iteration. Increment 𝑘 by 1 and apply the following:
(i) Sparse coding: obtain the sparse representations {x̂

𝑖
}
𝑃

𝑖=1 of each signal s
𝑖
. Use OMP to

approximate the solution of
x̂
𝑖
= argminx






s
𝑖
−D(𝑘−1)x



2

2
subject to ‖x‖0 ≤ 𝑘0.

These form the matrix X(𝑘).
(ii) Dictionary update: use the following steps to update the columns of the dictionary and obtain D(𝑘):

repeat for 𝑖 = 1, 2, 3, . . . , 𝑚.
(a) Define the group of samples that use the atom d

𝑖
:

G
𝑖
= {𝑗 | 1 ≤ 𝑗 ≤ 𝑃, (X(𝑘))

𝑖,𝑗

̸= 0}.

(b) Compute the residual matrix E
𝑖
= S − ∑

𝑗 ̸=𝑖
d
𝑗
(x𝑇)
𝑗
, where (x𝑇)

𝑗
stands for the 𝑗th row of X(𝑘).

(c) Restrict E
𝑖
by choosing only the columns corresponding toG

𝑖
, and obtain E𝑅

𝑖
.

(d) Apply SVD decomposition E𝑅
𝑖
= UΣV∗. Update the dictionary atom d

𝑖
= u1 and the representations (x𝑇)𝑅

𝑖
= 𝜎
1
v1∗.

(iii) Stopping rule: if the change in ‖S −D(𝑘)X(𝑘)‖2
𝐹
is small enough, stop.

Output. The desired result is the dictionaryD(𝑘) and the sparse representations X(𝑘) of the signals in S.

Algorithm 2: K-SVD.

to form the cleaned signal. Then, the process is repeated for
the next frame.

Filtering anultrasound sequencewithMCArequires us to
define the signalmodel and assumptions in order to construct
the components in the dictionaryD. The signal model for an
observed sequence of echo data s is assumed to be a linear
superposition of the tissue t and clutter c subsignals and an
additive white noise n; that is,

s = t+ c+n. (8)

This assumption holds when the signal s is an RF or an
IQ signal. On the other hand, an envelope-detected signal
does not satisfy this model as the absolute value operation
for computing the envelope of the signal ruins the linearity
assumption.

Additionally, it is assumed that, for any patch, the corre-
sponding t

𝑖
and c
𝑖
subsignals are sparsely generated by sparse

coefficient vectors x
𝑡𝑖
and x
𝑐𝑖
multiplied by the subdictionaries

D
𝑡
and D

𝑐
, respectively. In other words, this assumption

means that every patch can be written in the form

s
𝑖
= t
𝑖
+ c
𝑖
+n
𝑖
= D
𝑡
x
𝑡𝑖
+D
𝑐
x
𝑐𝑖
+n
𝑖
, (9)

suggesting that clutter is separable from tissue using MCA.
The second assumption is that echoes from clutter artifacts
are quasistatic, meaning that the subsignal c

𝑖
has a quasicon-

stant pattern in the temporal axis, while the tissue subsignals
reflect motion or variability [1].

Clutter reduction in a patch s
𝑖
is achieved by removing

the clutter componentD
𝑐
x
𝑐𝑖
from it; that is,

ŝ
𝑖
= s
𝑖
−D
𝑐
x
𝑐𝑖
, (10)

where ŝ
𝑖
is the resulting patch with reduced clutter. This

requires computing the sparse representations x
𝑡𝑖
and x

𝑐𝑖
in

(9). Note that (9) can be rewritten as follows:

s
𝑖
= [D
𝑡
| D
𝑐
] [

x
𝑡𝑖

x
𝑐𝑖

]+n
𝑖
= Dx
𝑖
+n
𝑖
, (11)

where D is the concatenated dictionary with the tissue and
clutter subdictionaries and x

𝑖
is the concatenation of the

sparse representations of the tissue and clutter signals of the
patch. Consequently, solving (4) or (5) with the concatenated
dictionaryD yields the concatenated sparse representation x

𝑖
.

The representations x
𝑡𝑖
and x
𝑐𝑖
are obtained from x

𝑖
relatively

to the tissue or clutter atom positions in the concatenated
dictionary. In this work, the Orthogonal Matching Pursuit
(OMP) [19] algorithm is used to find an approximation to the
sparse vector x

𝑖
.The complete clutter reduction procedure for

a patch s
𝑖
is illustrated in Figure 2. Additionally, for solving

the problem in (4) or (5), the dictionary D must be known.
An adaptive dictionary D allows the method to learn the
patient’s own physiological characteristics and improve the
results. Hence, such a dictionaryD is learned adaptively from
the signal patches {s

𝑖
}
𝑃

𝑖=1 using the K-SVD algorithm [41].
In order to separate the sparse signals in x

𝑖
into the

tissue x
𝑡𝑖
and the clutter x

𝑐𝑖
parts, the division of D into the

two subdictionaries, D
𝑡
and D

𝑐
, needs to be known. The



6 International Journal of Biomedical Imaging

Dictionary

D = Dt Dc

Signal model

Extract patch si

Compute sparse
representations si

(with OMP)
si = Dx i + ni

Separated clutter and
tissue components

Remove clutter
component

ŝi = si − Dcxci

x i = [x t𝑖
xc𝑖
]

Figure 2: Block diagram ofMorphological Component Analysis for
clutter reduction for a signal patch s

𝑖
.

quality of the separation depends on dividing the dictionary
obtained from the K-SVD algorithm into these two disjoint
groups. For this purpose, the assumption that clutter artifact
echoes are nearly static in time in comparison to the tissue
echoes that move is used to differentiate between the atoms
in the dictionary (a followup of the current work was recently
published in [45], which presents an alternative method to
train the dictionariesD

𝑐
andD

𝑡
separately). As the dictionary

D is learned from columned versions of 2D (axial-temporal)
patches from continuous frames of the measured signal, the
learned atoms emulate the behavior of the patches in these
dimensions.Therefore, an atom fromD can be reshaped from
a column vector into a 2D (axial-temporal) matrix with the
same size of the signal patches. The quasistatic behavior of
the clutter artifacts appears in a reshaped atom as a nearly
constant pattern across the temporal dimension. In contrast,
the atoms containing moving tissue vary in the temporal
dimension. (If the tissue moves in the axial direction, the
movement is captured in the axial dimension of the atom,
hence varying across frames in the temporal dimension. On
the other hand, a lateral movement of the tissue is translated
into intermittent changes in the temporal dimension of the
atom. In both cases, an atom varies across frames and has a
nonconstant pattern in the temporal dimension.) An atom
can be associated with one of the groups by looking at the
rank behavior of its 2D matrix. A low-rank matrix means a
nearly constant pattern, while amedium-to-high rankmatrix
suggests amoving tissue atom. Such a low-rankmatrix can be
revealed by a high ratio between the first singular value and
the sum of all the singular values. Using a predefined cut-
off value 𝛽 ∈ (0, 1), the atoms with the values of the above
ratio greater than or equal to 𝛽 are ascribed to the clutter
subdictionaryD

𝑐
. Note that when 𝛽 is close to 1, all the atoms

are assigned to the tissue subdictionaryD
𝑡
and no filtering is

expected to happen. Contrarily, when 𝛽 tends to 0, the atoms

are assigned to the clutter subdictionaryD
𝑐
and also tissue is

filtered out.

3. Results

3.1. Experiments with Field II Simulator. AField II simulation
experiment [46] in MATLAB (MathWorks Inc., Natick,
MA) of a hypoechoic lesion was performed to evaluate
the performance of the MCA method for reducing clutter.
The simulated lesion had a diameter of 5mm and a mean
scatterer amplitude ratio of−30 dB between the lesion and the
background. Reconstruction of ultrasound images took place
within a section of 20mm × 10mm where the echo data was
collected.

Clutter artifact echoes were simulated from a 0.3mm
× 3.5mm region of scatterers with reflection amplitudes
20 dB above the lesion. Scatterers for clutter artifacts were
simulated separately over the same section and located in
the center of the hypoechoic lesion. Scatterers outside the
hypoechoic lesion were simulated several times to obtain
distinct frames. These scatterers had decorrelation and axial
motion across frames. Echo decorrelation between frames
was achieved using the Cholesky factorization method in
[47]. Clutter scatterers were assigned a small axial motion
different from that of the lesion. Axial motion was achieved
by oversampling echoes at 400MHz and then downsampling
at 40MHz starting with the sample that achieves the desired
subsample shift. Eventually, the hypoechoic lesion echoes
were summed with the clutter artifacts echo data and with
electronic noise with noise level𝜎 (chosen for SNR of−30 dB)
to obtain 19 final frames as supported by themodel in (8).The
default parameters used for the simulation are presented in
Table 1.

The MCAmethod was compared against two other tech-
niques. The first approach is a Finite Impulse Response (FIR)
filter that subtracts the previous frame from the current one
[48].This is a high-pass filter applied to the echo data through
time axis. The second is the Singular Value Filtering (SVF)
method [13] that applies Principal Component Analysis
(PCA) to every axial-temporal dimensional patch and filters
clutter by soft-thresholding its normalized singular values. It
uses a sigmoidal-like function with a cut-off parameter 𝜏 and
a roll-off parameter 𝛼 that controls the shrinkage operator.
AlthoughMCA and SVFmethods work with local patches of
echo data, the SVF method learns the PCA basis functions
from each data patch independently.

The resulting performances of the algorithms were mea-
sured using contrast-to-noise ratio (CNR). The CNR is
defined as

CNR = 20 log
10
(





𝜇
𝑖
− 𝜇
𝑜






𝜎
𝑜

) , (12)

where 𝜇
𝑖
and 𝜇

𝑜
are the mean envelope-detected quanti-

ties in regions with clutter artifact and without artifacts,
respectively, and 𝜎

𝑜
is the standard deviation in the clutter-

empty region. Figure 3 shows the regions of interest for
computing CNR, the middle box indicating the region with
clutter artifacts inside the hypoechoic lesion and the outer
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Table 1: Default Field II simulation parameters.

Simulation parameter Default value
Center frequency 5MHz
Sampling frequency 40MHz
Fractional bandwidth 50%
Tissue echo correlation 0.98
Clutter echo correlation 1.0
Tissue displacement 1 period per frame (8 pixels)
Clutter displacement 1/8 periods per frame (1 pixel)
MCA time length (𝑁) 9 frames
MCA axial length (𝑀) 4 periods (32 pixels)
MCA error threshold 2.3𝜎√2𝑁𝑀
MCA dictionary redundancy 2 : 1
MCA patch samples 84640 patches
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Figure 3: Region of interest used to compute CNR as in (12) for the
simulated hypoechoic lesion.The white box corresponds to the ROI
inside the lesion with clutter artifacts and the black boxes indicate
the ROI outside the lesion.

boxes indicating the regions outside the lesion. The CNR
performance measure may be misleading in some cases.
For example, if high values of tissue speckles in the region
without artifacts are being reduced, the standard deviation 𝜎

𝑜

may decrease faster than the mean 𝜇
𝑜
and the ratio |𝜇

𝑜
|/𝜎
𝑜

may increase, making the CNR higher. Subsequently, the
CNR may exhibit better values than perfect filtered images.
Therefore, performancewasmeasured also using peak signal-
to-noise ratio (PSNR) in a few particular cases in order
to show further differences that exist between the tested
methods. PSNR is computed using the following expression:

PSNR = 20 log
10
(

MAX

√(1/𝑛) ‖s − ŝ‖22
), (13)
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Figure 4: CNR measurements for MCA on complex simulated
echo data for several values of the cut-off 𝛽 parameter. Markers
represent mean CNR and error bars the standard deviation over 100
simulations.

where MAX is the maximum pixel value in the clean
envelope-detected image, s ∈ Rn is the clutter-free envelope-
detected signal, and ŝ is the reconstructed envelope-detected
signal. PSNR measures the distance to the perfect image,
penalizing for any difference from it. Thus, it is capable
of measuring the remaining clutter as well as the amount
of tissue removed. In contrast to CNR, PSNR requires the
perfect filtered signal.

The influence of the cut-off 𝛽 parameter on separation
of tissue from clutter atoms in the dictionary is shown in
Figure 4. Mean CNR over 100 trials was computed on com-
plex echo data as a function of the value of the 𝛽 parameter.
Figure 5 presents reconstructed images after MCA for 𝛽 of
0.5, 0.75, and 1. As described in Section 2.2, when 𝛽 is close to
one, the data remains unfiltered. In contrast, when 𝛽 tends to
zero, most of the data is rejected as clutter and only the noise
component remains. Examples of the best reconstructions
obtained from the MCA (𝛽 = 0.75) and the SVF (𝜏 =

0.7, 𝛼 = 30) methods are visually compared in Figures 6(a)
and 6(c), respectively.The parameters for thesemethods were
selected for the best CNR performance. Additionally, Figures
6(b) and 6(d) present the difference image between the
reconstructions obtained by the algorithms and the original
image. All simulation images in Figures 3, 5, and 6 are shown
on a log compressed linear gray scale mapping to 0 to 30 dB.
Figure 7 shows examples of (a) tissue and (b) clutter atoms
in the subdictionaries obtained on one of the simulations
with cut-off value 𝛽 of 0.75. The atoms are shown in two-
dimensional form with the same size of the patches and
after envelope detection, that is, their magnitude. The axial
dimension is shown in the vertical direction and the temporal
dimension is in the horizontal direction.
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Figure 5: Clutter reduction using MCA on IQ data of simulation images when the cut-off 𝛽 was set to (a) 0.5, (b) 0.75, and (c) 1.
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Figure 6: Visual comparison of clutter reduction on IQ data of simulation images obtained by (a) MCA and (c) SVF.The absolute difference
between (b) the perfect filtered signal and the MCA reconstruction and (d) the perfect filtered signal and the SVF reconstruction.

(a) Tissue atoms (b) Clutter atoms

Figure 7: Example of (a) tissue atoms and (b) clutter atoms in the obtained subdictionaries from applying MCA with a cut-off value of
𝛽 = 0.75. The dictionary is learned using the simulated sequence echo data. The magnitude of the atoms is presented. The atoms are shown
after being transformed from vectors into 2D patches and being envelope-detected.The horizontal direction refers to the temporal dimension
and the vertical direction to the axial dimension.
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Figure 8: Mean CNR and mean PSNRmeasurements for MCA, SVF, and FIR methods for varied ((a) and (b)) echo correlation and ((c) and
(d)) axial shift of the tissue scatterers. Markers represent the mean CNR and mean PSNR, respectively, and error bars the standard deviation
over 100 simulations. The dashed line, labeled “perfect filtering,” represents the mean CNR when the clutter artifacts are not present in the
simulated echo data. Likewise, “unfiltered” represents the CNR or PSNR of the measured data with clutter artifacts and when no filtering
technique is applied.

Performance of clutter reduction for the MCA, SVF, and
FIR methods on IQ complex echo data measured with CNR
and PSNR is presented in Figures 8(a) and 8(b) as a function
of tissue echo correlation and Figures 8(c) and 8(d) as a
function of tissue axial motion. This simulation shows the
influence of different tissue motion and correlation values
on the algorithms. The amounts of tissue motion (axial shift)
and echo decorrelation serve to simulate the frame rate of an
imaging device. The clutter echo correlation and axial shift
were held constant at the default simulation values described
in Table 1, while the tissue echo correlation and axial shift
were modified for the experiment. As a reference, the dashed
line labeled “perfect filtering” is included representing the
mean CNR for the simulated data without the added clutter

artifacts. Additionally, the solid line with label “unfiltered”
indicates the mean CNR and PSNR values when no filtering
is applied. Markers in the graphs represent the mean CNR or
PSNR values, while error bars represent standard deviation
over 100 simulations. In Figures 9(a) and 9(b) for CNR
and PSNR, respectively, the performance of the algorithms
is shown as a function of the electronic signal-to-noise
ratio in the simulation. Furthermore, filtering performance
for several patch sizes is presented in Figure 9(c) for CNR
and Figure 9(d) for PSNR as a function of the size of
the temporal dimension and in Figure 9(e) for CNR and
Figure 9(f) for PSNR in the axial dimension. Parameters for
SVF andMCAwere selected for the best performance in each
case.
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Figure 9: Mean CNR measurements for MCA, SVF, and FIR methods for varied (a) electronic SNR, (b) patch size in temporal dimension,
and (c) patch size in axial dimension. Markers represent mean CNR and error bars the standard deviation over 100 simulations. The dashed
line, labeled “perfect filtering,” represents the mean CNR when the clutter artifacts are not present in the simulated echo data. Likewise,
“unfiltered” represents the CNR or PSNR of the measured data with clutter artifacts and when no filtering technique is applied.
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Figure 10: Example of ROI from an apical view of a volunteer heart
view for measuring CNR. The upper white box corresponds to the
artifact region and the lower black box corresponds to normal tissue.

3.2. Experiments with Human Heart Images. The MCA
method was validated experimentally using frames of echo
data from apical views of human hearts. The frames were
acquired using a Vivid S6 (GE Medical Systems, Israel)
ultrasound scanner operating at 3.3MHz. Clutter artifact
was present due to multipath reverberations mainly from
the thoracic cage and sternum. Data from a full heart cycle
composed of 30 to 40 frames were processed for clutter
rejection. The echo sequences were acquired in in-phase and
quadrature (IQ) format directly from the Vivid S6 and pro-
cessed offline usingMATLAB (MathWorks Inc., Natick,MA)
implementation of the above mentioned three algorithms.
Thirteen datasets were acquired from five male volunteers,
30–55 years old. Each dataset included different acquisitions
of apical views of the heart to obtain superposed clutter
artifacts that were as independent as possible between sets.
The resulting performance of the algorithm was measured
averaging the CNRover the sequence frames.Thismetric was
used to compare against FIR [48] and SVF [13] methods.The
parameter values of the SVF method were set to 𝜏 = 0.35
and 𝛼 = 25, which were optimized for the best performance.
The regions of interest (ROI) for CNR measurements of
one example dataset are illustrated in Figure 10. The regions
with artifacts used to measure CNR were selected with the
advice from an ultrasound technician, and the tissue regions
were selected in the far-field region where the tissue is pre-
dominant and clutter artifacts are not present. The electrical
noise is not known for these datasets. When solving (5), the
sparse representations in MCA were allowed a maximum
sparsity 𝑘0 of 20% of the patch size. The parameters used to
demonstrate the MCA method and compare it to FIR and
SVF techniques were a patch size of 15 axial elements and 15
frames in temporal domain with a cut-off 𝛽 at 0.45. Examples
of heart images from two datasets are shown in Figures 11
and 12, with the ellipses indicating regions of clutter artifacts.
The filtered reconstructions using MCA and SVF are also
shown in Figures 11 and 12, respectively. The arrows point to
areaswhere tissuewas incorrectly filtered. Figure 13 compares

the mean improvement CNR for the MCA, FIR, and SVF
methods over the unfiltered echo data while the error bars
represent standard deviation.

4. Discussion

The current study demonstrates the potential benefit of the
MCA method to remove clutter artifacts that originate from
multipath reverberation. The simulation and experimental
results quantify the performance of the MCA method com-
pared with a high-pass FIR method [48] and the PCA-based
state-of-the-art SVF technique [13]. To our knowledge, MCA
or signal separation with a sparsity prior has never been used
for clutter removal in B-mode ultrasound. A sparsity prior
with a priori dictionary of sinusoids was used to remove
clutter in Doppler ultrasound [35].

There are two significant outcomes presented in this
paper. The first outcome is the ability to separate the mor-
phological components into clutter and tissue in the learned
dictionary for complex echo data. The significance of the
temporal dimension in the patches enables the atoms in the
dictionary to inherit the motion characteristics of the signals.
These motion properties allow us to identify and separate
the tissue from the clutter sets of atoms by evaluating their
temporal behavior. Because atoms in the dictionary represent
the underlying data, they can be used effectively to separate
(and filter) tissue and clutter components. Figure 7 depicts
the morphology in the atoms of the obtained dictionary and
the motion differences between the clutter atoms and the
tissue ones. A separation cut-off parameter 𝛽 was used to
separate these morphological components. An example of
the effect of this parameter 𝛽 is illustrated in Figure 5. When
the value of 𝛽 is too low, the artifacts are filtered but part
of the tissue is incorrectly identified as artifact as shown in
Figure 5(a). In contrast, when𝛽 is close to 1, no visible effect is
obtained (Figure 5(c)).This effect is also reflected in Figure 4,
where CNR is optimized for 𝛽 of 0.75 and performance tends
to the CNR value of the unfiltered image as 𝛽 → 1 and to
even a lower performance when 𝛽 → 0.

The second outcome is the improved performance using
nonorthonormal and redundant bases for filtering. In most
applications, adaptive filtering is achieved using PCA-based
signal separation [2, 13–15, 49–53], which is an orthonormal
basis. In this paper, we have demonstrated that separation
performance is improved with a different transformation.
Instead of an adaptive orthonormal basis, a redundant
dictionary was shown to result in improved image quality
as reflected by high CNR values and PSNR values. This
redundant dictionary can effectively decompose a signal into
a linear combination of a few atoms, allowing the recognition
of the tissue and the clutter components in the signal. Thus,
filtering only the relevant part of the signal is possible even
when clutter is not much stronger than the tissue.

The simulation results show that MCA performs compa-
rably in CNR terms and better in PSNR terms to the state-of-
the-art SVF method in all the simulation tests. In Figures 8
and 9, several trends can be observed from the mean CNR
and PSNR behavior of MCA as a function of the distinct
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Figure 11: Two examples of an apical view of heart images are illustrated before clutter removal (a, b) and after clutter removal with MCA (c,
d) and after applying SVF (e, f). Ellipses indicate regions of clutter artifacts due to multipath reverberations. The arrows point to regions of
tissue incorrectly filtered. Images are shown on a log compressed linear gray scale mapping to 0 to 30 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Two examples of an apical view of heart images are illustrated before filtering (a, b) and after clutter removal with MCA (c, d)
and after applying SVF (e, f). Ellipses in the unfiltered images indicate regions of clutter artifacts due to multipath reverberations.The arrows
point to regions of tissue incorrectly filtered. Images are shown on a log compressed linear gray scale mapping to 0 to 30 dB.
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Figure 13:Mean improvementCNRcomparison forMCA, SVF, and
FIR clutter reduction methods over the unfiltered echo data. Error
bars represent standard deviation over eight datasets.

simulation and algorithm parameters. First, the mean CNR
and PSNR performances decrease when the tissue motion
characteristics approach those of the clutter artifacts. This is
clearly seen in Figures 8(c) and 8(d) when the shift motion
of the tissue tends to zero and becomes close to the artifact
motion. In such a case, the atoms in the learned dictionary
representing tissue and clutter become similar, limiting the
ability to correctly identify the atoms partitioning and hence
reducing the CNR and PSNR performances. Moreover, the
MCA is insensitive to the echo correlation between frames in
the sequence,maintaining the sameCNRgapwith the perfect
filtering image (Figure 8(a)). The mean PSNR performance
of the MCA shown in Figure 8(b) increases when the echo
correlation grows. In contrast, the PSNR performance of SVF
remains steady and always below the MCA performance.
Results in Figure 9 depict a performance decrease with low
electronic SNR and with small patch sizes, both in axial and
time dimensions. Figures 9(a) and 9(b) show that MCA and
SVF have a similar reaction to low electronic SNR, withMCA
having a better mean PSNR performance for middle values.
In Figures 9(e) and 9(f), mean CNR and PSNR performances
remain stable when the patch size in the axial dimension is
at least 3 periods long (24 pixels). This occurs because local
statistics are well described when a patch is large enough
to include sufficient information. However, the mean PSNR
performance depicts better results forMCA for small patches.
When it comes to the influence of the number of frames in the
patch size in Figure 9(c), the behavior of the MCA method
departs from that of the SVF. The MCA method is more
robust to longer patches in time because the sparsity prior
assumed for the clutter signal helps separate the artifact parts
that may vary slightly in time in these longer patches. On the
other hand, MCA performance decreased when the size was
reduced, because of the tendency to misclassify atoms when
there is not enough tissue motion information. Figure 9(d)
shows this behavior better and also reveals that MCA obtains
PSNR values higher than those of SVF.

In Figures 8(a) and 8(c), the SVF method obtained
mean CNR values that were better than the perfect filtered
sequence. Such behavior can be explained by the fact that
tissue is being removed, reducing the mean tissue 𝜇

𝑜
values

and their standard deviation 𝜎
𝑜
. In particular, when “peaks”

or high values in tissue are reduced, the standard deviation
decreases faster than the mean, increasing the ratio |𝜇

𝑜
|/𝜎
𝑜

in formula (12) and thus increasing the CNR performance to
higher levels than the perfect filtering. This effect may lead
to misleading conclusions because in these circumstances
CNRmay not be a reliable indicator of contrast improvement.
Such a misleading example is shown in Figure 8(d), where
the PSNR performance of MCA and SVF for low axial
shift is quite the same as the unfiltered image, while in
Figure 8(c) SVF achieved higher CNR values thanMCA (and
the unfiltered data). Another example is presented in Figure 6
that visually compares the reconstructed images using MCA
and SVF and the difference image of their respective recon-
struction with the perfect filtered image. While the amount
of artifacts removed is similar, the amount of tissue removed
is higher.The PSNRmeasure was introduced to overcome the
limitations of the CNR formula. PSNRmeasures the distance
to the perfect filtering image, penalizing for removed tissue
and for unfiltered clutter artifacts. Therefore, similar CNR
values with different PSNR values suggest good clutter filter-
ing with tissue removed for the lower PSNR result. Figures
8(b), 8(d), 9(b), 9(d), and 9(f) illustrate the experiments using
the PSNR measure to show to what extent each method
preserved the tissue in the overall image. In these figures, it
can be seen that MCA preserved the tissue better, while both
algorithms removed clutter effectively.

Unfortunately, PSNR cannot be used in real experimental
data because the perfect filtered images are needed to com-
pute it. Indeed, the CNR measure suffers from this problem
and it is far from ideal to measure contrast improvements
for ultrasound medical images. An alternative expression to
measure contrast improvements should be developed taking
into account the removed tissue and the removed clutter.How
to define such a measure is an important question but it is
beyond the scope of this paper.

The simulations used in this paper to obtain Figures
8 and 9 have significant limitations. The simulations do
not necessarily model the physics of clutter artifacts from
multipath reverberations but are used to assess the signal
model given as the superposition of clutter, tissue, and
noise components. Furthermore, the simulations were not
intended to model the human physiology and clutter was
placed at the center of the lesion for convenience. Therefore,
the results of the simulations may not directly translate to
human cardiac imaging. The main value of the simulation
study is meant to illustrate the ability of MCA to separate
clutter from the tissue component over a wide range of
conditions and algorithm parameters.

The MCA technique was demonstrated in experimental
human heart data with superior clutter mitigation results. In
these datasets, clutter appeared mainly because of multipath
reverberations from the thoracic cage. Figure 13 shows that
the MCA obtained an average CNR gain of 1.33 dB, while
SVF obtained 1.38 dB and FIR only 0.78 dB. The average
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(a) (b)
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Figure 14: A heavily cluttered apical view of heart images illustrated before filtering (a) and after clutter removal with MCA (b) and after
applying SVF (c). Images are shown on a log compressed linear gray scale mapping to 0 to 30 dB.

performance of MCA in this measure was slightly lower but
still comparable to that of SVF. However, when it comes to
visual comparison in Figures 11 and 12, the MCA method
is seen to remove the same amounts of clutter as SVF,
but less tissue than SVF. In all datasets, both MCA and
SVF greatly reduced clutter artifacts independent of the
clutter place in the image. In particular, better mitigation
performance was obtained when the artifacts appear in the
blood pool than over tissue, due to an easier recognition
of the artifacts’ representations. In areas where the clutter
occluded the myocardium, the methods managed to reduce
the artifacts without removing most or all of the tissue (see
Figure 11 as an example). As an example, Figure 14 presents
a frame of an additional sequence containing artifacts in
the myocardium area and how the MCA (Figure 14(b)) and
SVF (Figure 14(c)) methods reveal the myocardium pretty
well. However, when the probe is slightly moved the method
reduces its filtering performance. The reason is that clutter
that moves within a few frames is confused with tissue,
and OMP tends to select atoms from the tissue dictionary

instead. The same undesired effect happens when applying
SVF because such a patch has a higher rank due to the
clutter motion. Nevertheless, this effect typically degrades
the performance for a few frames, until the probe (and
clutter) stops moving. An opposite effect may happen in
the frames respective to diastole where the myocardium
relaxes and remains quasistatic for a few frames. In this case
both MCA and SVF may remove tissue. Consequently, this
effect may be scaled down by taking bigger patches in the
temporal domain in order to maintain information on the
tissue motion before and after the relaxation period, but with
performance reduction on the clutter reduction.

One of the limitations of the SVF method is that it needs
to compute a singular value decomposition for every element
in the echo data. On the other hand, MCA computes a
singular value decomposition for every atom in the dictionary
D one time for the entire sequence, which is much cheaper.
However, the computational cost of MCA is dominated by
sparse coding of the signals. In this case, the MCA method
cost corresponds to that of the OMP method (for learning
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and filtering) [54]. Nevertheless, the costs can be reduced
if the OMP algorithm used to solve (4) or (5) is changed
by a faster approximation approach such as solving the
Basis Pursuit [20] with fast convex optimization techniques.
Computational runtime can be further reduced using parallel
implementations, or techniques that increase speed with
a small performance reduction such as a smaller patch
overlapping.

It is worthmentioning that algorithmparameters for both
MCA and SVF were chosen differently for the experimental
data than in the simulations. Because of the differences in
the characteristics in the type of data, it should be expected
that such a difference exists between the experiments. One of
the characteristics of the B-mode ultrasound imaging is the
frame rate of the acquisition of the echo data. As the patches
are taken in the time dimension, frame rate clearly affects
the performance of MCA. When echo signals are acquired
with a high frame rate the performance of MCA is expected
to decrease because the echo correlation between frames
increases and the tissue has a lower axial motion, similar to
that of the clutter artifacts. In ultrafast plane wave imaging,
for example, such difficulties are expected and thus additional
treatment, like skipping frames, is needed for this ultrasound
imaging mode. The effects of frame rate are demonstrated
in the simulation results in Figure 8, where CNR and PSNR
performance are quantified as a function of echo correlation
and axial shift. Simulation results discussed above show that
the MCA performance was stable for a wide range of these
parameters and was significantly affected for small axial shift
differences between the tissue and the clutter artifacts. The
MCA performance deteriorated when the motion features
of tissue and clutter signals became similar because of the
difficulties of MCA to separate the atoms in the dictionary
into the respective sets. In other words, the frame rate has a
predominant influence on the optimal cut-off (𝛽) value. As
frame rate decreases, or heart rate increases, the axial motion
difference grows and it is captured better in the dictionary
atoms. Therefore, lower 𝛽 values achieve better performance
as separation becomes easier. The results in this paper show
good simulation and heart dataset performances with fixed
cut-off 𝛽 values. Although the 𝛽 value could be adaptively
selected to further improve performance in every dataset
separately, this was not needed to obtain good performance.

The current MCA algorithm can be extended to remove
clutter in Doppler ultrasound methodologies. For example,
in the blood flow application, the signal is usually assumed to
be a linear superposition of a blood signal, a clutter artifact,
and noise. Every echo element is measured in the temporal
dimension and thus the signal or one-dimensional patches
of it (as suggested in [14]) can be used to learn a dictionary.
Based on the low spectrum characteristics and the intensity
of the clutter and blood flow signals in Doppler [55], an
approach can be suggested for detecting and partitioning a
dictionary into clutter and blood flow atoms. ExtendingMCA
to this application is being left for future work.

The appropriate separation using MCA is based on the
assumption that each signal has a sparse representation and
a dictionary (or “morphological component”) that describes
its nature. This further allows for the recognition of the

clutter artifacts and tissue atoms in the dictionary based on
the differences in their motion characteristics. When clutter
artifacts result from multipath reverberations because of the
ribs and the sternum, their exhibited motion is lower than
cardiac tissue.This observation is the basis for the recognition
of each group of atoms. However, the MCA algorithm as
presented here is likely to be ineffective in some particular
cases. In pathological cases like cardiomyopathy, in which
portions of the myocardium can appear to be almost static,
there is no possibility to differentiate between the tissue
and the clutter artifacts. In such a case, some additional
assumption on either the clutter or the tissue is required
in order to detect the signal components correctly. Also,
clutter may appear as an effect from the cardiac tissue or
other structures in similar ultrasound applications, where
the motion characteristics are very similar to those of the
desirable structures. For example, the rapid movement of
the heart valve leaflets may cause transient clutter to appear
in Color Doppler with similar properties to those of the
blood flow. Such an effect appears as a short temporal band
occupying the full velocity range in theDoppler spectrogram.
Applying MCA for removing transient clutter can be done
by detecting this effect by analyzing the sparse representation
coefficients in x, or even by assuming a new signal component
that represents this undesirable effect.

5. Conclusions

TheMorphological Component Analysis (MCA) method for
signal separation has been presented for clutter mitigation in
medical ultrasound. The MCA technique assumes a sparsity
prior on the superposed signals. This assumption, together
with a powerful dictionary learning method, such as K-
SVD, allows us to translate the motion characteristics of
the IQ complex echo data into the dictionary atoms. This
adaptive dictionary represents an overcomplete set of direc-
tions, rather than a unique orthonormal basis as in previous
works. Furthermore, it allows for a good representation of the
data with its underlying statistics and for high performance
filtering of the clutter artifacts.The low-rank test with the cut-
off value was demonstrated to be a good separation measure
for deciding whether the atoms should belong to the tissue
set or to the clutter set. The MCA technique was shown to
mitigate clutter artifacts in simulations of a hypoechoic lesion
with mean CNR values close to the perfect filtering in a wide
range of image parameters. Also, it was shown to outperform
a high-pass FIR filter and to obtain results comparable to
these of the state-of-the-art SVF method both on simulated
and experimental data. The CNR measure was shown to be
misleading in some cases, and PSNR was included to show
that MCA removes less tissue than SVF. In human heart
data, it was shown that a 1.33 dB gain can be obtained using
MCA, comparable to that of SVF, but with improved visual
results in tissue areas. In conclusion, the MCA technique is
a signal separation method that allows for clutter filtering
using a sparsity prior with a general and redundant basis and
atoms that can be adaptively learnt from the echo data. It
may be used in othermedical imaging applications, given that
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we have shown this method to yield improved mitigation of
clutter artifacts in ultrasound imaging.
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