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Abstract—In this paper, we consider denoising of image se-
quences that are corrupted by zero-mean additive white Gaussian
noise. Relative to single image denoising techniques, denoising of
sequences aims to also utilize the temporal dimension. This assists
in getting both faster algorithms and better output quality. This
paper focuses on utilizing sparse and redundant representations
for image sequence denoising, extending the work reported in
[1], [2]. In the single image setting, the K-SVD algorithm is used
to train a sparsifying dictionary for the corrupted image. This
paper generalizes the above algorithm by offering several exten-
sions: i) the atoms used are 3-D; ii) the dictionary is propagated
from one frame to the next, reducing the number of required
iterations; and iii) averaging is done on patches in both spatial
and temporal neighboring locations. These modifications lead to
substantial benefits in complexity and denoising performance,
compared to simply running the single image algorithm sequen-
tially. The algorithm’s performance is experimentally compared
to several state-of-the-art algorithms, demonstrating comparable
or favorable results.

Index Terms—Denoising, K-SVD, OMP, sparse representations,
video.

I. INTRODUCTION

D ENOISING of images is one of the most basic tasks of
image processing, and as such, it has been extensively

studied in the past several decades. This problem is the sim-
plest among the family of problems known as Inverse Problems,
aiming to recover a high quality signal from a degraded version
of it. There is a wealth of single image denoising algorithms; a
comprehensive review of these techniques can be found in [3]
and in [4].

Denoising image sequences extends the above task to handle
the temporal dimension as well. Such sequences can be TV
broadcast, camcorder files, and more. In many cases, one can
assume the noise to be an additive zero-mean white Gaussian
noise, as common also in the still image denoising literature.
Algorithms for the denoising of image sequences aim to re-
move the additive noise while utilizing both the spatial and the
temporal domains. Such an approach is expected to lead to a
gain both in the denoising performance and the computational

Manuscript received May 19, 2007; revised June 09, 2008. First published
December 2, 2008; current version published December 12, 2008. This work
was supported in part by the Israel Science Foundation Grant 796/05. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Mario A. T. (G. E.) Figueiredo.

The authors are with the Department of Computer Science, The
Technion—Israel Institute of Technology, Haifa 32000, Israel (e-mail:
matanpr@cs.technion.ac.il; elad@cs.technion.ac.il).

Digital Object Identifier 10.1109/TIP.2008.2008065

load, when compared to applying a single image denoising al-
gorithm to each image separately. These desired and expected
gains emerge from the high temporal redundancy in image se-
quences. Indeed, in many cases, image sequences are noisier
than single images due to the high capture rate, making the use
of the temporal dimension that much more important.

Denoising of video sequences attracted some attention in the
past decade, with various suggested algorithms and principles.
One suggested approach that utilizes the temporal redundancy
is motion estimation [5], [7], [9], [13]. The estimated trajecto-
ries are used to filter along the temporal dimension, either in
the wavelet domain [5], [7], [13] or the signal domain [9]. Spa-
tial filtering may also be used, with stronger emphasis in areas
in which the motion estimation is not as reliable. A similar ap-
proach described in [10] detects for each pixel weather it has un-
dergone motion or not. Spatial filtering is applied to each image,
and for each pixel with no motion detected, the results of the
spatial filtering are recursively averaged with results from pre-
vious frames. The method described in [15] employs a similar
principle with a fuzzy logic used to replace the binary motion
detection.

A different approach to video denoising is treating the image
sequence as a 3-D volume, and applying various transforms to
this volume in order to attenuate the noise. Such transforms can
be a Fourier-wavelet transform [12], an adaptive wavelet trans-
form [11], or a combination of 2-D and 3-D dual-tree complex
wavelet transform [8].

A third approach towards video denoising employs spatio-
temporal adaptive average filtering for each pixel. The method
described in [6] uses averaging of pixels in the neighborhood of
the processed pixel, both in the current frame and the previous
one. The weights in this averaging are determined according to
the similarity of 3 3 patches around the two pixels matched.
The method in [14] extends this approach by considering a full
3-D neighborhood around the processed pixel (which could be
as large as the entire sequence), with the weights being com-
puted using larger patches and, thus, producing more accurate
weights. An adaptive selection of the neighborhood size used for
averaging is employed in [16] for obtaining improved results.
The current state-of-the-art reported in [17] also finds similar
patches in the neighborhood of each pixel; however, instead of
a weighted averaging of the centers of these patches, noise atten-
uation is performed in the transform domain. More on some of
these algorithms and their comparison to our proposed scheme
is found in Section IV.

In this paper, we explore a method that utilizes sparse and
redundant representations for image sequence denoising, ex-
tending the work reported in [1] and [2]. In the single image
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setting, the K-SVD algorithm, as presented in [18] and [19], is
used to train a sparsifying dictionary for the corrupted image,
forcing each patch in the image to have a sparse representation
describing its content. Put in a maximum a posteriori proba-
bility (MAP) framework, the developed algorithm in [1] and [2]
leads to a simple algorithm with state-of-the-art performance for
the single image denoising application.

This paper extends the above algorithm by considering 3-D
(spatio-temporal) patches, a propagation of the dictionary over
time, and averaging that is done on neighboring patches both in
space and time. As the dictionary of adjacent frames (belonging
to the same scene) is expected to be nearly identical, the number
of required iterations per frame can be significantly reduced.
Utilizing patches in nearby frames for the denoising process
is also examined. All of these modifications lead to substantial
benefits both in complexity and denoising performance, outper-
forming all the recently published video denoising methods.

The structure of the paper is as follows. In Section II, we
describe the principles of sparse and redundant representations
and their deployment to single image denoising. Section III dis-
cusses the generalization to video, discussing various options
of using the temporal dimension with their expected benefits
and drawbacks. Each proposed extension is experimentally
validated. Section IV surveys the literature, describing several
leading and competitive video denoising algorithms. A perfor-
mance comparison of these methods and the one introduced
in this paper is given, demonstrating the superiority of the
proposed approach. Section V summarizes and concludes the
paper.

II. IMAGE DENOISING USING SPARSITY AND REDUNDANCY

A method of denoising images based on sparse and redundant
representations is developed and reported in [1] and [2]. In this
section, we provide a brief description of this algorithm, as it
serves as the foundation for the video denoising we develop in
Section III.

A noisy image results from noise superimposed on an
original image . We assume the noise to be white, zero-
mean Gaussian noise, with a known standard deviation

(1)

The basic assumption of the denoising method developed in
[1] and [2] is that each image patch (of a fixed size) can be
represented as a linear combination of a small subset of patches
(atoms), taken from a fixed dictionary. Using this assumption,
the denoising task can be described as an energy minimization
procedure. The following functional describes a combination of
three penalties to be minimized:

(2)

The first term demands a proximity between the measured
image, , and its denoised (and unknown) version . The
second term demands that each patch from the reconstructed

image (denoted by1 ) can be represented up to a bounded
error by a dictionary , with coefficients . The third part
demands that the number of coefficients required to represent
any patch is small. The values are patch-specific weights.
Minimizing this functional with respect to its unknowns yields
the denoising algorithm.

The choice of is of high importance to the performance of
the algorithm. In [1], [2] it is shown that training can be done
by minimizing (2) with respect to as well (in addition to
and ). The proposed algorithm in [1] and [2] is an iterative
block-coordinate relaxation method, that fixes all the unknowns
apart from the one to be updated, and alternates between the
following update stages.

1) Update of the sparse representations : Assuming that
and are fixed, we solve a set of problems of the form

(3)

per each location . This means that we seek for each
patch in the image the sparsest vector to describe it using
atoms from . In [1] and [2], the orthogonal matching
pursuit (OMP) algorithm is used for this task [20], [22],
[23].

2) Update the dictionary : In this stage, we assume that
is fixed, and we update one atom at a time in , while
also updating the coefficients in that use it. This is
done via a rank-one approximation of a residual matrix, as
described in [18], [19], and [24].

3) Update the estimated image : After several rounds of up-
dates of and , the final output image is computed
by fixing these unknowns and minimizing (2) with respect
to . This leads to the quadratic problem

(4)

which is solved by a simple weighting of the represented
patches with overlaps, and the original image .

The improved results obtained by training a dictionary based on
the noisy image itself stem from the dictionary adapting to the
content of the actual image to be denoised. An added benefit is
that the K-SVD algorithm has noise averaging built into it, by
taking a large set of noisy patches and creating a small, relatively
clean representative set. More recently, the above described al-
gorithm was generalized to handle color image denoising, de-
mosaicing, and inpainting, leading in all these applications to
state-of-the-art results [25].

III. EXTENSION TO VIDEO DENOISING

In this section, we describe, step by step, the proposed ex-
tensions to handling image sequences. We also provide exper-
imental results for each proposed extension, validating its ef-
ficiency. A description of the test set and a comparison of the
overall algorithm to other state-of-the-art methods appear in the
next section. To validate the efficiency of the proposed exten-
sion steps, we super-impose white Gaussian noise on several se-
quences, which are then denoised and quantitatively compared.

1The matrix� stands for an operator that extracts a patch of fixed size from
the image in location ��� ��.
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The measure of quality of the denoising result versus the orig-
inal signal is the Peak-Signal-to-Noise-Ratio (PSNR), given
by

where both signals use the scale 0–255. The PSNR is computed
for each image in the sequence, and then averaged over the entire
sequence, for assessment of the overall denoising quality.

A. Constructing the Algorithm

Considering the objective function in (2), extending it to
handle image sequences might seem to be a simple task. By let-
ting and represent the noisy and clean videos respectively
(instead of the noisy and clean images), and adding an index
in the range to account for the time dimension, we arrive
at a desired penalty term that contains all the forces described
in the single image denoising setting. This formulation forms
one MAP energy function for the entire sequence

(5)

The term extracts a patch of a fixed size from the volume
in time and spatial location . This patch may be 3-D, in

general, this way exploiting the temporal axis to our benefit.
Minimizing this functional with respect to its unknowns gen-

erates a single dictionary for the entire sequence and cleans all
the images at once with such a dictionary. The transition to
three dimensions appears in the finer details of the algorithm.
The patches are transformed into 3-D ones, in the sense that
they can contain pixels from more than one image. A 3-D patch
is created by taking a block around the pixel that ex-
tends by in each axis respectively. This makes the
patch symmetrical around the center image and, therefore, is not
causal.2 This structure also requires paying special attention to
the dictionary initialization. In our tests, the basis for the initial
dictionary is the same 2-D overcomplete DCT dictionary. Each
atom is then replicated times to create a 3-D atom of
the wanted temporal width.

As already mentioned, in the penalty term in (5) all the
patches in the sequence are used for training a single dictionary,
that is then applied to the entire sequence. However, training
a single dictionary for the entire sequence is problematic; The
scene is expected to change rapidly, and objects that appear
in one frame might not be there five or ten frames later. This
either means that the dictionary will suit some images more
than others, or that it would suit all of the images but only
moderately so. Obtaining state-of-the-art denoising results
requires better adaptation.

2Causality can be enforced, but was found to lead to a slightly inferior per-
formance.

Fig. 1. PSNR gain (difference in decibels relative to the 2-D atoms’ method)
achieved by using 3-D atoms versus 2-D atoms.

An alternative approach could be proposed by defining a lo-
cally temporal penalty term, that on one hand allows the dictio-
nary to adapt to the scene, and on the other hand, exploits the
benefits of the temporal redundancy. A natural such attempt is
rewriting the penalty in (5) for each image separately

(6)

defined for .
The temporal repetitiveness of the video sequence can be

further used to improve the algorithm. As consecutive images
and are similar, their corresponding dictionaries are

also expected to be similar. This temporal coherence can help
speed-up the algorithm. Fewer training iterations are necessary
if the initialization for the dictionary is the one trained for
the previous image.

Returning to the first step of migrating from 2-D to 3-D
patches, how important is this change? To answer this question
we test the effects of 2-D and 3-D atoms on the performance
of the overall video denoising algorithm (with a temporally
adaptive and propagated dictionaries). The results of such a
comparison appears in Fig. 1. For the 3-D case, one set of
parameters (noise-level dependent) is used for all movies. The
3-D atoms used in these tests are 5 images wide (two images
away in each direction). For the 2-D case, it is difficult to
find one set of parameters that does justice to all movies. We,
therefore, use the optimal set found for each movie, as this does
not change the conclusions drawn from this comparison.

The performance gain achieved by using 3-D atoms is very
noticeable. A better understanding of the reasons the 3-D atoms
outperform the 2-D ones can be gained by looking at the content
of the dictionary. Fig. 2 shows several atoms from the trained
3-D dictionary, for image #10 of the “garden” sequence (several
frames from this sequence appear at the end of this section). This
sequence has a camera motion to the right, so the entire scene
moves to the left. The described motion can be seen clearly in
the atoms. The central part of the atom (coming from the current
image) has moved to the left compared to the top part (coming
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Fig. 2. Several (8) 3-D atoms (each of size � � � � �, but only the temporal
center is shown) trained for image #10 of the garden sequence. Each vertical
column is one atom.

Fig. 3. PSNR gain (average of all sequences) by propagating the dictionary and
using the specified number of training iterations for each image. The reference
option is with no propagation, and 15 K-SVD iterations.

Fig. 4. Dictionaries trained by propagating (left) and not propagating (right)
the dictionary between images. Top: Central part (time-wise) of each dictionary.
Bottom: Several enlarged atoms, showing the three center temporal layers.

from the previous image). In the same manner, the bottom part
(coming from the next image) has moved to the left relative to
the center part. The question of what happens to the dictionary
when the motion is not global naturally arises. In such cases, the
dictionary has several atoms reflecting each of the patterns and
motions.

To gauge the possible speed-up and improvement achieved
by temporally adaptive and propagated dictionary, we test the
required number of iterations to obtain similar results to the non-
propagation alternative. Fig. 3 presents the results of such an ex-
periment. Several options for the number of training iterations
that follow the dictionary propagation are compared to the non-
propagation (using 15 training iterations per image) option.

Fig. 5. PSNR gain achieved by also using patches that are one image away for
training and cleaning.

The clear conclusion from these results is that propagation
is crucial and leads to improved denoising performance.3 More
insight to the reasons for such an improvement can be seen in
Fig. 4, that shows the dictionaries trained for frame #30 of the
“garden” sequence. The left dictionary is the one trained after
propagating the dictionary (from image #10), using 4 training
iterations for each image. The right part of the figure shows
the trained dictionary from the DCT using 15 training itera-
tions. This comparison shows that propagation of the dictio-
nary leads to a cleaner version with clearer and sharper texture
atoms. These benefits are attributed to the memory induced by
the propagation. Indeed, when handling longer sequences, we
expect this memory feature of our algorithm to further benefit
in denoising performance. This was verified in tests on longer
sequences.

A second conclusion is that the number of training iterations
should not be constant, but rather depend on the noise level. It
appears that the less noisy the sequence, the more training iter-
ations are needed for each image. In higher noise levels, adding
more iterations hardly results in any denoising improvement.

So far, we discussed the use of 3-D atoms and a temporally
adaptive dictionaries. However, in the formulation written in (6),
only patches centered in the current image are used for training
the dictionary and cleaning the image. In the global temporal
term as in (5), all the patches in the sequence were used for these
tasks. A compromise between temporal locality and exploiting
the temporal redundancy is again called for. This compromise
is achieved by using patches centered in a limited number of
neighboring images of the image currently denoised, both in
training and cleaning. Introducing this into the penalty term in
(6) leads to the modified version

(7)

defined for .

3In a real system, employing dictionary propagation requires some scene-cut
detection algorithm to reset the dictionary when the scene changes at once.
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Fig. 6. Football sequence (frames 15 and 70) with � � ��. Left: Original
frame. Middle: Noisy frame. Right: Cleaned frame.

Fig. 7. Tennis sequence (frames 15 and 60) with � � ��. Left: Original frame.
Middle: Noisy frame. Right: Cleaned frame.

The effectiveness of the extended training set can be seen by
observing Fig. 5, in which we show the gain (or loss) in PSNR
achieved by also using patches centered one image away (i.e.,
the patches are taken from three frames). All the tests in this
experiment are done on one quarter of the patches in the spatio-
temporal region (chosen randomly) so as to lead to a reduced
complexity algorithm.

It is visible from the graph that using an extensive set indeed
results in an improved performance. Tests taking patches also
from two images away were also run; however, there was no
significant advantage in performance to justify this additional
computational burden.

B. Overall Algorithm and Parameter Selection

The penalty term in (7) is the penalty term we target in the
algorithm that follows. The algorithm for minimizing this func-
tional is founded on the same principles as the ones described
in Section II, with the obvious modifications due to the 3-D na-
ture of the treatment done here. Three visual examples of the
denoising results can be seen in Figs. 6–8.

We have run many tests to tune the various parameters of the
proposed algorithm, which have a crucial effect on the overall
denoising performance. These tests have resulted in a selection
of a single set of parameters (as a function of noise level). In
conjunction with the previously described experiments, this set
of parameters includes 3-D atoms (which are five images wide),

Fig. 8. Garden sequence (frames 10 and 20) with� � ��. Left: Original frame.
Middle: Noisy frame. Right: Cleaned frame.

propagation of the dictionary with the number of training itera-
tions being noise-level dependent, and a training set which ex-
tends one image in each temporal direction. During the experi-
mentation with other parameters, we have found, for example,
that higher noise levels require that the spatial size of the blocks
is slightly smaller than at low noise levels.

We have also found that at high noise levels, the redundancy
factor (the ratio between the number of atoms in the dictio-
nary to the size of an atom) should be smaller. At high noise
levels, obtaining a clean dictionary requires averaging of a large
number of patches for each atom. This is why only a relatively
small number of atoms is used. At low noise levels, many de-
tails in the image need to be represented by the dictionary. Noise
averaging takes a more minor role in this case. This calls for a
large number of atoms, so they can represent the wealth of de-
tails in the image.

A comparison between the final 3-D algorithm and the orig-
inal single image algorithm can be seen in Table IV, which ap-
pears in the next section.

C. Complexity of the Algorithm

The algorithm is divided into two parts: (i) dictionary training
and (ii) image cleaning. The dictionary training is an iterative
process, of repeatedly running sparse coding (OMP) followed
by a dictionary update (SVD step). The image cleaning is com-
posed of a simple per-pixel averaging. In order to analyze the
complexity of the algorithm, we present the following nota-
tions: —the number of pixels in an atom; —the number of
atoms in the dictionary; —the average number of atoms used
in the representation of a patch; —the number of pixels in one
frame; —the number of frames taken into account in
the training and denoising; and —the number of training iter-
ations.

The sparse-coding stage—solving the problem posed in (3)
using the OMP algorithm—requires operations for one
patch [20]. Applying this to each of the patches in the
spatio-temporal window requires operations.
The update of the dictionary requires operations
[18], [19]. The image cleaning is done by a simple averaging of
patches, requiring operations. Since there are
iterations of sparse coding and dictionary update, and one final
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estimate of the output image, the overall algorithm complexity
is given by

Let us illustrate this complexity for a nominal case: The value
of is noise-level dependant, being 1 for –25. The
number of training iterations is 2 when propagating the dictio-
nary. Assuming that we process patches of size pixels
each ( patches) using a dictionary with atoms,
over a window of one frame , there are 75,000 op-
erations per pixel. This very demanding algorithm is essentially
such because of the need to multiply the patches by the dictio-
nary—a matrix of size .

Reducing the complexity of the algorithm is a necessary step
in turning the algorithm into a reasonable one. There are several
methods of reducing its complexity.

1) The image can be divided into several parts (with small
overlaps), and a smaller dictionary (i.e., with a smaller
number of atoms) can be trained for each part. This saves
computations, as each patch considers less atoms, thus re-
ducing the value of the effective in the above formula.
Further, one part’s dictionary can be used for initialization
for all other parts, saving more computations. Several tests
using this approach indicate that not only does this lead to a
speedup factor of 4–10, it actually leads to an improvement
(approx. 0.1–0.2 dB in our tests) in the denoising perfor-
mance. We believe that delicate parameter tuning for this
approach will result in a more substantial improvement, es-
pecially in weak noise scenarios.

2) Choosing nonoptimal values for the parameters of the al-
gorithm is another way to control complexity. One of the
parameters is the temporal extent , i.e., from which
images are patches drawn for the training process (it is
important not to confuse with the temporal extent of the
atoms, which should remain 3-D). Using only patches from
the current image (and not from neighboring images) cuts
complexity by a factor of 3 and costs approx. 0.2–0.4 dB.
Reducing the overlap between patches, by using only every
other patch in each axis, reduces complexity by a factor of
4, and costs only around 0.1 dB. Combining them causes a
reduction of more than 0.5 dB, probably because too few
patches are left for use.

3) Running all iterations except maybe the last one (which is
also the cleaning iteration) on a subset of the patches does
not cause noticeable degradation in performance. When
using , this can gain almost a factor of 2 in the overall
complexity.

4) The core operation of matrix multiplication can be replaced
by an approximation of it (e.g., using singular value de-
composition (SVD) on the dictionary [24]). We have not
explored this option in detail and, thus, cannot report on its
effectiveness.

5) The facts that OMP is done independently on each patch,
and the K-SVD independently on each atom, lend this al-
gorithm easily to a parallel implementation on any number
of processors, again leading to a substantial speedup. Since

8-CPU structures or equivalent FPGA are currently avail-
able at affordable prices, and due to the parallel nature of
almost the entire algorithm, this can be viewed as a viable
option for reducing the overall run-time by about one order
of magnitude.

To summarize, by making slight adaptations to the algo-
rithm (e.g., dividing the image to parts, controlling the overlap
between patches, and more), 1–2 orders of magnitude in the
number of computations can be gained without a noticeable
drop in performance. This leads to a rough estimate of 2,000
operations per pixel, which is definitely more reasonable. Note
that another one order of magnitude can be gained by a parallel
implementation.

The entire simulations described in this and the next sec-
tion were run with a nonoptimized Matlab implementation
of the proposed algorithm on a 2.4-GHz Pentium with 2-Gb
RAM, with the required variations for each test. Using our
implementation, processing a CIF (approx. 280 360) frame
with this Matlab implementation requires 5–120 s, depending
on the noise level (higher noise level requires less time) and
the content of the scene (more textured scenes requiring more
time).

IV. COMPARISON TO STATE-OF-THE-ART

A. Overview of Other Methods

We compare the proposed algorithm to four methods that
have been shown to display state-of-the-art results and are re-
ported in [13], [14], [16], and [17]. We do not provide a com-
prehensive comparison to the algorithm reported in [6] since it
is a simplified version of the one described in [14].

The method described in [13] operates fully in the wavelet do-
main. Motion estimation and adaptive temporal filtering (along
the estimated trajectories) are applied recursively, followed by
an intraframe spatially adaptive filter. Two types of motion reli-
ability measures are estimated. One is a reliability measure per
orientation, applied in the motion estimation stage. The other
is a reliability measure per wavelet band, effecting the parame-
ters of the temporal filter. The subsequent spatial filtering is de-
signed to have an increased effect where the temporal filtering
had been less effective due to low reliability.

The Nonlocal Means (NL-Means) algorithm reported in [3]
and [14] takes an alternative approach to the problem. Instead of
an explicit motion estimation for each patch, all the patches in
its 3-D neighborhood are considered and their center pixels are
averaged. Each patch is weighted according to its similarity to
the center patch, making the motion-estimation a fuzzy and im-
plicit one. Instead of computing a single motion vector for each
patch, several possible vectors are allowed to co-exist, each with
a different probability. As contributing patches may also appear
within the same image, the interpretation of this approach as
fuzzy motion estimation is inaccurate; still, it provides some in-
tuition into the success of this approach. This approach focuses
on the fusion of noisy estimates rather than obtaining accurate
motion estimation.

The method described in [16] extends the NL-Means ap-
proach. Statistical measures are used for optimal adaptive
selection of the neighborhood size for each pixel. Furthermore,
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TABLE I
RESULTS OF THE PROPOSED ALGORITHM COMPARED TO THOSE REPORTED IN [13]. THE CHOSEN SEQUENCES AND NOISE POWERS ARE THOSE REPORTED IN [13]

TABLE II
RESULTS OF THE PROPOSED ALGORITHM COMPARED TO THOSE REPORTED IN [16]. THE CHOSEN SEQUENCES AND NOISE POWERS ARE THOSE REPORTED IN [16]

the parameters for computing the weights assigned to each
pixel in the neighborhood are also adaptively selected. These
powerful tools result in improved denoising performance com-
pared to the original NL-Means approach.

The VBM3D, reported in [17], also uses a multitude of
patches in the 3-D neighborhood of each pixel for attenuating
the noise. However, the patches are used in a different manner.
The most similar patches in the neighborhood are collected
and stacked into a 3-D array. A 3-D wavelet transform is then
applied, with hard-thresholding used for noise suppression.
After the inverse transform is applied, the patches are returned
to their original locations, and averaged. A second iteration fol-
lows, with Wiener filtering used to improve denoising results.

We now turn to present a comprehensive performance com-
parison between these four methods and the proposed algorithm.
Note that since the above papers chose different video sequences
to test on, we provide several groups of tests, to address each.

B. Comparison Results

The comparison to the method reported in [13] was done on
the sequences appearing in that paper (and also found in the
first author’s website). The mean PSNR results of our proposed
method, the results of [13], and the differences between them
(for frames 5–35 of each sequence) all appear in Table I. Aver-
aging over all these tests, the proposed method outperforms the
one reported in [13] by 1.63 dB, and specifically on each and
every test.

We now turn to compare the proposed method to the work
reported in [16], which displayed superior denoising results rel-
ative to other methods it was compared to. We synthesized the

same experiments as those in [16], and report the results in
Table II. Again, it is clear that the proposed method performs
better in these tests with an average gain of 1.79 dB.

We also compare the proposed method to the results of the
classic NL-Means [3], [14] and to the current benchmark in
video denoising, the VBM3D [17]. The tests were run on a set of
four different image sequences—“Football,” “Tennis,” “Flower
Garden,” and “Mobile.” Each of the four test sets is superim-
posed with synthetic white Gaussian noise, using noise levels

5, 10, 15, 20, 25, 30, 35, 40, and 50. The translation be-
tween noise level and mean PSNR of the noisy sequences ap-
pears in Table III, as the clipping of out-of-range gray-values
causes some variation, especially noticed in the strong noise
cases.

For the NL-Means algorithm, we used our implementation to
obtain denoising results for the test sequences. For fairness, we
have varied the parameters, searching for the optimal configu-
ration. It is worth noting that there was no one set of parameters
fitting all sequences at a defined noise level. Instead, we report
the results when all the parameters have been optimized for each
specific test, keeping in mind that this gives the NL-Means al-
gorithm an advantage in these comparisons.

For the VBM3D, the authors of [17] were very kind to provide
us with an implementation of their algorithm (which later was
made available in their website). We compare in Table IV the
results obtained by four algorithms: VBM3D [17], NL-Means
[14], the original K-SVD denoising applied on single images
[1], and the proposed algorithm that is proposed in this paper.

Averaging the above results, we get an average performance
(from the best downwards) of 29.23 dB for our method,
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TABLE IV
COMPARISON OF THE DENOISING RESULTS OF SEVERAL METHODS ON A NUMBER OF TEST SEQUENCES AND NOISE LEVELS. TOP LEFT: VBM3D; TOP RIGHT:

NL-MEANS; BOTTOM LEFT: K-SVD SINGLE IMAGE; AND BOTTOM RIGHT: THE PROPOSED ALGORITHM. THE BEST RESULT FOR EACH SET IS WRITTEN IN BOLD.
RESULTS ARE FOR IMAGES 10–20 OF EACH SET, USING OTHER IMAGES (FOR TEMPORAL FILTERING) AS NECESSARY

TABLE III
PSNR OF NOISY SEQUENCES FOR EACH SEQUENCE AND NOISE LEVEL

COMBINATION. THE DIFFERENCE IS DUE TO THE OUT-OF-RANGE VALUES

28.9 dB for the VBM3D, 27.92 dB for the NL-Means, and,
finally, 27.08 dB for the single-frame K-SVD algorithm.
The proposed method is slightly favorable compared to the
VBM3D, obtaining better mean PSNR at every noise level. We
also note that these results mean that the proposed extension
of [1] and [2] to handle video yields about 2 dB better results
on average than the single image method. This comes only to
prove the necessity and potential of using the temporal axis in
video denoising.

As a final experiment, we compare the visual quality of
the results produced by the three algorithms—the VBM3D,
the NL-Means, and the proposed method. This comparison
appears in Fig. 9, along with the original high-quality image.
We deliberately show results for very strong noise ,
since all these methods are very effective and low-noise cases
appear to be near-perfect and with only delicate differences.

V. CONCLUSION

In this paper, we propose an image sequence denoising algo-
rithm based on sparse and redundant representations. This al-
gorithm is based on the single image denoising algorithm intro-
duced in [1] and [2]. The extension of this basic algorithm to
handle image sequences is discussed both on the mathematical

Fig. 9. Visual comparison of denoising results for one image of the Mobile
sequence with noise level 40. Top Left: Original. Top Right: NL-Means. Bottom
Left: VBM3D. Bottom Right: Proposed Method.

level and in practical terms. Three extensions are proposed: the
use of spatio-temporal (3-D) atoms, dictionary propagation cou-
pled with fewer training iterations, and an extended patch-set for
dictionary training and image cleaning. All these extensions are
thoroughly tested on an extensive set of image sequences and
noise levels, and are found to dramatically improve denoising
performance. The proposed algorithm is also compared to other
state-of-the-art methods, and shown to produce comparable or
favorable results.
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