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Today’s Talk is About

We will try to show today that

e Sparsity & Redundancy can be used to design new/renewed &
powerful signal/image processing tools (e.g., transforms, priors,
models, compression, ...),

e The obtained machinery works very well — we will show these ideas
deployed to image processing cpplications,
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Motivating Sparsity & Overcompleteness

2. Problem 1: Transforms & Regularizations
How & why should this work?

3. Problem 2: What About D?

The quest for the origin of signals

4. Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Generating Signals in Sparseland

eEvery column in
D (dictionary) Is
a prototype
signal ( ).

N
— . e The vector QL is

| generated
A fixed Dictionary A sparse X randomly with |
&random  — few non-zeros in
vector )
random locations
and random

values.
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Sparseland Signals Are Special

« Simple: Every
generated signal is built
as a linear combination
of few atoms from our
dictionary D

- Rich: A general model:
the obtained signals are
a special type mixture-
of-Gaussians (or
Laplacians).
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Transforms in Sparseland ?

 Assume that x is known to emerge from M.

e We desire simplicity, independence, and expressiveness.

« How about “Given ¥, find the a that generated it in M ?
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So, In Order to Transform ...

We need to solve an
under-determined
linear system of equations:

e Among all (infinitely
many) possible solutlons
we want the

e We will measure sparsity

using the L, norm: B Known
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Measure of Sparsity?
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Signal’s Transform in Sparseland

A sparse ¢ my
& random | =
vector E » H H
_ | Multiply n-je ~
o =|:| ) EEEa——) ) G
— g by D s.t. Xx=Da
5 X =Da
e Is 0 = o ? Under which conditions?
4 Major * Are there practical ways to get o ?
Questions

 How effective are those ways?

e How would we get D?
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Inverse Problems in Sparseland ?

e Assume that x is known to emerge from M.

e Suppose we observe y =HXx + v, a “blurred” and noisy
version of x with Mz < ¢. How will we recover x?

 How about “find the a that generated the x ...” again?

Da

Noise
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Inverse Problems in Sparseland ?

A sparse (my _ V
& random | = X i Dg .
vector | & ‘
F | Muttiply [ ] “blur” Min ol st
— = o
g - » by D » by H »+» HX—HDQHZSS »_
: y=Hx+v
e Is o = o ? How far can it go?
4 Ma!or e Are there practical ways to get o ?
Questions —
(again!) » How effective are those ways?

 How would we get D?
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Back Home ... Any Lessons?

Several recent trends worth looking at:
= JPEG to JPEG2000 - From (L,-norml.k

= From u
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To Summarize so far .

The Sparseland model M for

signals is interesting since it
Is rich and yet every signal
has a simple description

(a) Practical solvers?
(b) How will we get D?
(c) Applications?
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Sparsity?
looks
complicated

We do! this model is
relevant to us just as

well.

So, what
are the
implications?

We need to solve (or
approximate the solution
of) a linear system with

more unknowns than

eqguations, while finding the
sparsest possible solution
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A Visit to Sparseland

Motivating Sparsity & Overcompleteness

Problem 1: Transforms & Regularizations

How & why should this work? .

Problem 2: What About D?
The quest for the origin of signals

Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Lets Start with the Transform ...

Our dream for Now: Find
the sparsest solution of

BIVEDS

Put formally,
Min

L
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Question 1 — Unigueness?

M X =Da
| in |
— M&“B'y ) )

s.t. X=Dua

1K)

IR
|

Suppose we can
solve this exactly

[ 4
ENEEEEEN EENER EEEEEEEE
| .

Why should we necessarily get o = a.?

It might happen that eventually HQHO < HQHO .
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Matrix “Spark”

Definition:

Donoho & E. (‘02)

Example:

oS = O O
_—O O O

* In tensor decomposition,
Kruskal defined something
similar already in 1989.
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Uniqueness Rule

Do = X

Suppose this problem has been solved somehow
Min HQHO s.t. X=Dua
Uniqueness If we found a representation that satisfy
o
%> Jal,
Then necessarily it i1s unique (the sparsest).

This result implies that if M generates

signals using “sparse enough” O, the
solution of the above will find it exactly.
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Question 2 — Practical P, Solver?

L — Min o, ‘
by D

s.t. X=Da

IR
|

Are there reasonable ways to find o ?

IR
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Matching Pursuit (MP) ...« v (o9
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e The MP Is a greedy
algorithm that finds one - Esesea
atom at a time. A e i e R e e A

® Step 1: flnd the one atom RS EEEEESEEEEEEEEEEEEEEE,
that the signal.

e Next steps: given the
previously found atoms, find
the next one to

e The Orthogonal MP (OMP) is an improved
version that re-evaluates the coefficients after
each round.
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BaSIS Pu rsu It (B P) Chen, Donoho, & Saunders (1995)

AT e

e The newly defined problem is convex (linear programming).

e Very efficient solvers can be deployed:
» Interior point methods [Chen, Donocho, & Saunders (795)] ,
= Sequential shrinkage for union of ortho-bases [Bruce et.al. (798)],

» |terated shrinkage [Figuerido & Nowak (~03), Daubechies, Defrise, & Demole ('04),
E. ("05), E., Matalon, & Zibulevsky ("06)].
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Question 3 — Approx. Quality?

S — Min |, ‘
by D

s.t. Xx=Dua

i)

IR
|

How effective are the MP/BP
in finding o ?

Sparse and Redundant

Signal Representation, 22
and Its Role in

Image Processing

T

Do=X |




Evaluating the “Spark”

® ComDUte | ‘ B ]: r.'-..

DT Assume

normalized T B
columns D D

e The Mutual Coherence M is the largest off-diagonal
entry in absolute value.

e The Mutual Coherence is a property of the dictionary
(Just like the “Spark”). In fact, the following relation

can be shown: 1
c=>1+ M
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BP and MP Equivalence

Donoho & E. (‘02)
Gribonval & Nielsen (‘03)

Tropp (‘03)
Temlyakov (‘03)

= MP and BP are different in general (hard to say which is better).

= The above result corresponds to the worst-case.

= Average performance results are available too, showing much better
bounds [Donoho (T04), Candes et.al. (T04), Tanner et.al. (C05), Tropp et.al. (C06)].
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What About Inverse Problems?

A
& random | X =Da v
vector | = ‘ .
_|E Multiply [ “blur” L g Min o, st ) @
Q= » YAD by H + |y ~HDg, < &
: y=Hx+v

e We had similar questions regarding uniqueness, practical solvers,
and their efficiency.

e |t turns out that similar answers are applicable here due to several
recent works [Donoho, E. and Temlyakov (04), Tropp (~04), Fuchs (~04),
Gribonval et. al. (T05)].
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To Summarize so far ...

The Sparseland model for

signals is relevant to us. Find the Use pursuit
We can design transforms [ESERES Algorithms
and priors based on it solution?

Why works so
well?

A sequence of works
during the past 3-4
years gives theoretic
justifications for these
tools behavior

(a) How shall we find D?

(b) Will this work for
applications? Which?
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Agenda

A Visit to Sparseland

Motivating Sparsity & Overcompleteness

Problem 1: Transforms & Regularizations
How & why should this work?

Problem 2: What About D?
The quest for the origin of signals

Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Problem Setting

A
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Y

Given these P examples and a
fixed size [NxK] dictionary D:

1.

Is D unique?

2. How would we find D?
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Uniqueness?

- If {xj }.P is rich enough* and if
Uniqueness j=1
P Spark{D}
2
Comments: then D Is unique.

» “Rich Enough”: The signals from M could be clustered to @ groups that
share the same support. At least L+1 examples per each are needed.

e This result is proved constructively, but the number of examples needed
to pull this off is huge — we will show a far better method next.

e A parallel result that takes into account noise is yet to be constructed.
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Practical Approach — Objective

Field & Olshausen (96°)

Engan et. al. (99"

Lewicki & Sejnowski (00")

Cotter et. al. (03")
Gribonval et. al. (04’)

(n,K,L are assumed known, D has norm. columns)
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K—Means For Clustering

Clustering: An extreme sparse coding

Initialize
D

]

Sparse Coding

Nearest Neighbor T

| | X

Dictionary
Update

Column-by-Column by

|
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The K—SVD Algorithm — General

Initialize
D

]

D

Sparse Coding

Use MP or BP

|

C

Do = X

Dictionary
Update

Column-by-Column by

Ky



K—SVD Sparse Coding Stage

| P 2 - | | I T O || | | [ [ [ e
vin - 2Jog; —xf; st vl <t Ty

vin Du—x] st |, <t

Pursuit Problem !!!
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K—SVD Dictionary Update Stage

Sparse and Redundant
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: The examples in{ x|’

Jij=1

that use the column d,.

-

The content of d, influences
only the examples in G,.

-

Let us fix all A apart from the
kth column and seek both d,
and the kt column to better
fit the residual!
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K—SVD Dictionary Update Stage

We should solve:

Residual

Min || T d, - E” E il

d, . a|i/ / it

d, Is obtained by on the examples’ residual in G,.
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K—SVD: A Synthetic Experiment

Create A 20x30 random dictionary  Generate 2000 signal examples with Train a dictionary using the KSVD

with normalized columns

-

_ Sparse and Redundant
Signal Representation,

' and Its Role in
D(_X = )_( 5 Image Processing

3 atoms per each and add noise and MOD and compare
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MOD performance
K-SVD performance
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To Summarize so far ...

The Sparseland model for

signals is relevant to us. In
order to use it effectively
we need to know D

Use the K-SVD
algorithm

We have established a
unigueness result
and shown how to
practically train D

using the K-SVD

(a) Deploy to applications

(b) Generalize in various ways:
multiscale, non-negative

factorization, speed-up, ...

(c) Performance guarantees?

]
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Agenda

1. A Visit to Sparseland

Motivating Sparsity & Overcompleteness

2. Problem 1: Transforms & Regularizations
How & why should this work?

3. Problem 2: What About D?

The quest for the origin of signals

4. Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Application 1: Image Inpainting

O Assume: the signal x has been created

by x=Da, with very sparse a,. D (x _ X

O Missing values in x imply
missing rows in this linear
system.

L By removing these rows, we get

CITTTTTTTITTTTTITIT ]

Da = X

O Now solve

Min s.t. X = IZ~)
infal, :

4 If o, was sparse enough, it will be the solution of the
above problem! Thus, computing Da,, recovers x perfectly.

I

Do=X |




|

Application 1: The Practice

O Given a noisy image y, we can clean it using the Maximum A-
posteriori Probability estimator by solving

~ , 2
& = ArgMin o> + 2y ~ el =D

1><)
Q)

O What if some of the pixels in that image are missing (filled

with zeros)? Define a mask operator as the diagonal matrix W,
and now solve instead

=D

<)

@ = Arghin [a? + 3.y - WD
o

Q)

0 When handling general images, there is a need to concatenate two
dictionaries to get an effective treatment of both texture and cartoon
contents — This leads to separation

— Sparse and Redundant
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Inpainting Results

age inpainting [2, 10, 20, 38] is the proces Predeterm | ned

ing data in a designated region of a still or

lications range frof ving objects fio . .

wchin 8 and pho ! )

cang e g dictionary:
“ﬂywmmmemge Curvelet (Cartoon)
en‘done by professional artistd* For phot + Ovel’lapp9d

' DCT (texture)

Source

Outcome
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p 41
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Inpainting Results

43 P
i ﬂhj

T 3. dictionary:

Source

‘=% + Qverlapped
il i DCT (texture)
[ i

L,
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Inpainting Results

Sparse and Redundant
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Application 2: Image Denoising

1 Given a noisy image y, we have already mentioned the
ability to clean it by solving

=D

[><)
Q)

2 = Arghin [alf + 7|y ~ Do
a
O When using the K-SVD, it cannot train a dictionary for

large support images — How do we go from local treatment
of patches to a global prior?

Force shift-invariant sparsity - on each
patch of size N-by-N (e.g., N=8) in the image, including
overlaps.

l l Il Sparse and Redundant

= 44
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Application 2: Image Denoising

=D

|>)
Q)

a = ArgMin o} + .|y - Daf, m)y
04

Our MAP penalty
becomes

Extracts a patch
In the 1 location

- 1 ,
X = ArgMin =[x —y|[_ +
X, {0 }ij 2 H —Hz

Our prior
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Application 2: Image Denoising

x=y and D known X and QL known D and QL known

: 4 4 4




Application 2: The Algorithm

Sparse-code every
patch of 8-by-8
pixels

!

Update the
dictionary based on
the above codes

D

Complexity of this
A Ui algorithm:

Ty O(N2xLXIterations)
per pixel. For N=8,
L=1, and 10
iterations, we need
640 operations per
pixel.

Compute the
output image
X

: Sparse and Redundant
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Denoising Results

- =
B 7 , v .:- s ¥ o & _
| o | i .
158 / £ak & &y e ™.
s e i i
¥ F 5 &5
; i
L iy
: il
L3

Result 30.829dB

Noisy image

c=20
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[Portilla, Strela, Wainwright, & Simoncelli (‘03)]
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Application 3: Compression

The problem: Compressing photo-1D images.

General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

For these technigques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

Geometric alignment of the image is very helpful
and should be done.

L Sparse and Redundant
_ Signal Representation,
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Application 3: The Algorithm

Detect main features and warp
the images to a common
reference (20 parameters)

¥

Divide the image into disjoint
15-by-15 patches. For each
compute and

L4

Per each patch find the
operating parameters (number
of atoms L, quantization Q)

4

Warp, remove the mean from
each patch, sparse code using L

L Sparse and Redundant
__ Signal Representation
and Its Role in
Image Processing

atoms, and apply Q)

Training set (2500 images)
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Compression Results
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Compression Results
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Compression Results
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Today We Have Discussed

1. A Visit to Sparseland

Motivating Sparsity & Overcompleteness

2. Problem 1: Transforms & Regularizations
How & why should this work?

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Summary

Sparsity and Over-
completeness are important
iIdeas that can be used in
designing better tools in
signal/image processing

We are working on resolving
those difficulties:
There are

it a0 © Performance of pursuit alg.
CECRUEE |« Speedup of those methods,
e Training the dictionary,

e Demonstrating applications,

Future transforms and
regularizations will be data-
driven, non-linear, The dream?
overcomplete, and promoting
sparsity.
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