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Today’s Talk is About

Sparsity
and                                 

Redundancy

We will try to show today that
• Sparsity & Redundancy can be used to design new/renewed  & 

powerful signal/image processing tools (e.g., transforms, priors, 
models, compression, …),

• The obtained machinery works very well – we will show these ideas 
deployed to image processing applications. 
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …

Welcome                         
to                               

Sparseland
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Generating Signals in Sparseland

M K

N

D
A fixed Dictionary

•Every column in  
D (dictionary) is 
a prototype 
signal (Atom).

•The vector α is 
generated 
randomly with 
few non-zeros in 
random locations 
and random 
values. 

A sparse 
& random 
vector

=

α
x

N
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• Simple: Every 
generated signal is built 
as a linear combination 
of few atoms from our 
dictionary D

• Rich: A general model: 
the obtained signals are 
a special type mixture-
of-Gaussians (or 
Laplacians).

Sparseland Signals Are Special

Multiply 
by D

αD=x

M 
α
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D

Transforms in Sparseland ?

Nx ℜ∈

M αD

M • Assume that x is known to emerge from     . .

• We desire simplicity, independence, and expressiveness. 

M • How about “Given x, find the α that generated it in     ” ? 

Kℜ∈αT 
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Known 

So, In Order to Transform …

We need to solve an   
under-determined                        
linear system of equations:

=
x=αD

• We will measure sparsity
using the L0 norm:

0α

• Among all (infinitely 
many) possible solutions 
we want the sparsest !!
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-1 +1

1

( ) pxxf =

x

Measure of Sparsity?

∑=
=

k

1j

pp
p xx

1
1α

2
2α

1p

p
p

<

α
0p

p
p

→

α

As p → 0 we  
get a count         
of the non-zeros 
in the vector

0α
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α̂• Are there practical ways to get     ?

Signal’s Transform in Sparseland

α

α
α

D=x.t.s

Min
0 α̂Multiply 

by D

αD=x

A sparse 
& random 

vector

=α

4 Major 
Questions

αα =ˆ• Is            ? Under which conditions?

• How effective are those ways?

• How would we get D?  
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Inverse Problems in Sparseland ?

• Assume that x is known to emerge from     .    M

M 
αD

Nx ℜ∈

vxy += H• Suppose we observe               , a “blurred” and noisy 
version of x with          . How will we recover x?ε≤

2
v

xH
My ℜ∈

• How about “find the α

Noise

that generated the x …” again? 

Kˆ ℜ∈α
Q
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Inverse Problems in Sparseland ?

Multiply 
by D

αD=xA sparse 
& random 

vector

=α “blur”
by H

vxy += H

v

4 Major 
Questions 
(again!)

• How would we get D?  

α̂• Are there practical ways to get     ?

• How effective are those ways?

αα =ˆ• Is            ? How far can it go? 

εα

α
α

≤−
2

0

y

.t.sMin

HD
α̂
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Back Home … Any Lessons?

Several recent trends worth looking at: 

JPEG to JPEG2000 - From (L2-norm) KLT to wavelet and non-
linear approximation

From Wiener to robust restoration – From L2-norm (Fourier)     
to L1. (e.g., TV, Beltrami, wavelet shrinkage …)

From unitary to richer representations – Frames, shift-invariance, 
steerable wavelet, contourlet, curvelet

Approximation theory – Non-linear approximation

ICA and related models

Sparsity. 

Overcompleteness.

Sparsity. 

Sparsity & Overcompleteness.

Independence and Sparsity.

Sparseland

is HERE
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To Summarize so far …

We do! this model is 
relevant to us just as 

well.
Who     

cares?

So, what      
are the 

implications?

Sparsity?  
looks  

complicated
(a) Practical solvers? 
(b) How will we get D?
(c) Applications?

The Sparseland model       for 
signals is interesting since it 
is rich and yet every signal 
has a simple description

M 

We need to solve (or 
approximate the solution 
of) a linear system with 
more unknowns than 

equations, while finding the 
sparsest possible solution



Sparse and Redundant                    
Signal Representation, 
and Its Role in 
Image Processing

14=
x=αD

Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …

T

Q
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Lets Start with the Transform …

known

αα
α

D=x.t.sMin:P 00

Put formally,

Our dream for Now: Find 
the sparsest solution of =

Known 

x=αD
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Multiply 
by D

αD=x

=α

M 
Question 1 – Uniqueness? 

α

α
α

D=x.t.s

Min
0 α̂

Suppose we can            
solve this exactly

αα =ˆWhy should we necessarily get          ?

It might happen that eventually                  .00ˆ αα <
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Matrix “Spark”

Rank  = 4Rank  = 4

Spark = 3Spark = 3

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Example:

Donoho & E. (‘02) 

Definition: Given a matrix D, σ=Spark{D} is the smallest
and and number of columns that are linearly dependent.

* In tensor decomposition, 
Kruskal defined something 
similar already in 1989.

*
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Uniqueness Rule

αα
α

D=x.t.sMin:P 00

Suppose this problem has been solved somehow

This result implies that if       generates 
signals using “sparse enough” α, the 
solution of the above will find it exactly.

M 

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).
02

ασ
>

Uniqueness

Donoho & E. (‘02) 
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α̂Are there reasonable ways to find     ?

M 
Question 2 – Practical P0 Solver? 

α

α
α

D=x.t.s

Min
0 α̂Multiply 

by D

αD=x

=α
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Matching Pursuit (MP)

=

Mallat & Zhang (1993)

• Next steps: given the 
previously found atoms, find 
the next one to best fit …

• The Orthogonal MP (OMP) is an improved 
version that re-evaluates the coefficients after 
each round.

• The MP is a greedy 
algorithm that finds one 
atom at a time.

• Step 1: find the one atom 
that best matches the signal. 
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Basis Pursuit (BP)

αα
α

D=x.t.sMin
0

Instead of solving

αα
α

D=x.t.sMin
1

Solve Instead

Chen, Donoho, & Saunders (1995)

• The newly defined problem is convex (linear programming).

• Very efficient solvers can be deployed:
Interior point methods [Chen, Donoho, & Saunders (`95)] ,

Sequential shrinkage for union of ortho-bases [Bruce et.al. (`98)],  

Iterated shrinkage [Figuerido & Nowak (`03), Daubechies, Defrise, & Demole (‘04), 
E. (`05), E., Matalon, & Zibulevsky (`06)].
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Multiply 
by D

αD=x

=α

M 
Question 3 – Approx. Quality? 

α

α
α

D=x.t.s

Min
0 α̂

α̂
How effective are the MP/BP 
in finding     ? 
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Evaluating the “Spark”

• The Mutual Coherence M is the largest off-diagonal           
entry in absolute value.

DT

=D

DTD

• Compute

• The Mutual Coherence is a property of the dictionary 
(just like the “Spark”). In fact, the following relation             
can be shown: 

M
1

1 +≥σ

Assume 
normalized 
columns
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BP and MP Equivalence

Given a signal x with a representation           ,

Assuming that                        , BP and MP are 

Guaranteed to find the sparsest solution. 

αD=x

( )M115.00 +<αDonoho & E. (‘02) 
Gribonval & Nielsen (‘03)

Tropp (‘03) 
Temlyakov (‘03)

Equivalence

MP and BP are different in general (hard to say which is better).

The above result corresponds to the worst-case.

Average performance results are available too, showing much better 
bounds [Donoho (`04), Candes et.al. (`04), Tanner et.al. (`05), Tropp et.al. (`06)]. 
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What About Inverse Problems?

εα

α
α

≤−
2

0

y

.t.sMin

HD
α̂“blur”

by H

vxy += H

v

• We had similar questions regarding uniqueness, practical solvers, 
and their efficiency.

• It turns out that similar answers are applicable here due to several 
recent works [Donoho, E. and Temlyakov (`04), Tropp (`04), Fuchs (`04), 
Gribonval et. al. (`05)].

Multiply 
by D

αD=xA sparse 
& random 

vector

=α



Sparse and Redundant                    
Signal Representation, 
and Its Role in 
Image Processing

26=
x=αD

To Summarize so far …

The Sparseland model for 
signals is relevant to us. 

We can design transforms 
and priors based on it

Use pursuit        
Algorithms

Find the 
sparsest 
solution?

A sequence of works 
during the past 3-4 

years gives theoretic 
justifications for these 

tools behavior

Why works so 
well?

What next?
(a) How shall we find D?

(b) Will this work for 
applications? Which?
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Problem Setting

Multiply 
by D

αD=x

M α

L
0

≤α

Given these P examples and a 
fixed size [N×K] dictionary D:

1. Is D unique?

2. How would we find D?

{ }P
1jjX

=
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Uniqueness?

If            is rich enough* and if

then D is unique.

{ }
2

Spark
L

D
<

Uniqueness

Comments:

M ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L
K• “Rich Enough”: The signals from      could be clustered to     groups that 

share the same support. At least L+1 examples per each are needed.

Aharon, E., & Bruckstein (`05)

• This result is proved constructively, but the number of examples needed 
to pull this off is huge – we will show a far better method next. 

• A parallel result that takes into account noise is yet to be constructed. 

{ }P
1jjx

=
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Each example is                    
a linear combination                   

of atoms from D

Practical Approach – Objective 

D≈X A

Each example has a 
sparse representation with 

no more than L atoms

L,j.t.sxMin
0j

P

1j

2

2jj,
≤α∀−α∑

=

D
AD

Field & Olshausen (96’)
Engan et. al. (99’)

Lewicki & Sejnowski (00’)
Cotter et. al. (03’)

Gribonval et. al. (04’)(n,K,L are assumed known, D has norm. columns)
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K–Means For Clustering 

DInitialize         
D

Sparse Coding
Nearest Neighbor

Dictionary 
Update

Column-by-Column by  
Mean computation over 
the relevant examples

XT

Clustering: An extreme sparse coding  
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The K–SVD Algorithm – General 

DInitialize         
D

Sparse Coding
Use MP or BP

Dictionary 
Update

Column-by-Column by  
SVD computation

Aharon, E., & Bruckstein (`04)

XT
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K–SVD Sparse Coding Stage

D

X

L,j.t.sxMin
0j

P

1j

2

2jj ≤∀∑ −
=

ααD
A

For the jth
example           
we solve 

L.t.sxMin 0
2

2j ≤− αα
α

D

T

Pursuit Problem !!!
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K–SVD Dictionary Update Stage

D
Gk : The examples in         
and that use the column dk.

{ }P

1jjX
=

?dk =

The content of dk influences 
only the examples in Gk.

Let us fix all A apart from the 
kth column and seek both dk
and the kth column to better 
fit the residual!
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dk is obtained by SVD on the examples’ residual in Gk.

K–SVD Dictionary Update Stage

D
?dk =Residual

E

kα

We should solve:

2

Fk
T
k,d

dMin
kk

E−α
α
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K–SVD: A Synthetic Experiment

D

Create A 20×30 random dictionary 
with normalized columns

Generate 2000 signal examples with 
3 atoms per each and add noise

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
el

at
iv

e 
A

to
m

s 
F

ou
nd

MOD performance

K-SVD performance

Results

D

Train a dictionary using the KSVD 
and MOD and compare 
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To Summarize so far …

The Sparseland model for 
signals is relevant to us. In 
order to use it effectively 

we need to know D

Use the K-SVD 
algorithm

How D
can be 
found?

We have established a 
uniqueness result   
and shown how to 
practically train D
using the K-SVD

Will it work 
well? 

What next?
(a) Deploy to applications

(b) Generalize in various ways: 
multiscale, non-negative 
factorization, speed-up, …

(c) Performance guarantees?
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Application 1: Image Inpainting
Assume: the signal x has been created                                        
by x=Dα0 with very sparse α0.

Missing values in x imply                                                          
missing rows in this linear                                     
system. 

By removing these rows, we get               .

Now solve

If α0 was sparse enough, it will be the  solution of the 
above problem! Thus, computing Dα0 recovers x perfectly.

x0 =αD

=x~
~

=αD

α=α
α

D
~

x~.t.s0Min
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Application 1: The Practice

2
2

p
p yArgMinˆ α−λ+α=α

α
D

Given a noisy image y, we can clean it using the Maximum A-
posteriori Probability estimator by solving  

What if some of the pixels in that image are missing (filled 
with zeros)? Define a mask operator as the diagonal matrix W, 
and now solve instead

α= ˆx̂ D

2
2

p
p yArgMinˆ α−λ+α=α

α
WD α= ˆx̂ D

When handling general images, there is a need to concatenate two
dictionaries to get an effective treatment of both texture and cartoon 
contents – This leads to separation [E., Starck, & Donoho (’05)].
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Inpainting Results

Source

Outcome

Predetermined 
dictionary:             
Curvelet (cartoon) 
+ Overlapped 
DCT (texture)
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Inpainting Results

Source

Outcome

predetermined 
dictionary:             
Curvelet (cartoon) 
+ Overlapped 
DCT (texture)
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Inpainting Results
20%

50%

80%
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The solution: Force shift-invariant sparsity - on each  
patch of size N-by-N (e.g., N=8) in the image, including 
overlaps.

Application 2: Image Denoising

Given a noisy image y, we have already mentioned the 
ability to clean it by solving  

When using the K-SVD, it cannot train a dictionary for 
large support images – How do we go from local treatment 
of patches to a global prior? 

2
2

p
p yArgMinˆ α−λ+α=α

α
D α= ˆx̂ D
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Our prior

Extracts a patch 
in the ij location

L.t.s

xyx
2
1

ArgMinx̂

0

0ij

ij

2

2ijij
2
2}{,x ijij

≤α

∑ α−μ+−=
α

DR

Application 2: Image Denoising

2
2

p
p yArgMinˆ α−λ+α=α

α
D α= ˆx̂ D

Our MAP penalty 
becomes
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K-SVD

L.t.sxyxArgMinx̂
0

0ij
ij

2

2ijij
2
22

1

,}{,x ijij

≤αα−μ+−= ∑
α

DR
D

x=y and D known

L.t.s

xMin

0
0

2
2ijij

≤α

α−=α
α

DR

Compute αij per patch 

using the matching pursuit

x and αij known

∑ α−
α ij

2

2ijxMin DR

Compute D to minimize

using SVD, updating one 
column at a time

D and αij known

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
αμ+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ+= ∑∑

−

ij
ij

T
ij

1

ij
ij

T
ij yIx DRRR

Compute x by

which is a simple averaging 
of shifted patches

Application 2: Image Denoising
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Sparse-code every 
patch of 8-by-8 

pixels  

Application 2: The Algorithm

Update the 
dictionary based on 

the above codes  

D

Compute the 
output image 

x

Complexity of this 
algorithm: 
O(N2×L×Iterations) 
per pixel. For N=8, 
L=1, and 10 
iterations, we need 
640 operations per 
pixel.
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Initial dictionary 
(overcomplete DCT) 64×256

Denoising Results
Source

Result 30.829dB

The obtained dictionary after  
10 iterations

Noisy image 

20=σ

The results of this algorithm compete favorably 
with the state-of-the-art (e.g., GSM+steerable

wavelets [Portilla, Strela, Wainwright, & Simoncelli (‘03)] -
giving ~0.5-1dB better results)
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Application 3: Compression

The problem: Compressing photo-ID images.

General purpose methods (JPEG, JPEG2000)                        
do not take into account the specific family. 

By adapting to the image-content (PCA/K-SVD),        
better results could be obtained.

                               

For these techniques to operate well, train                     
dictionaries locally (per patch) using a                        
training set of images is required.

In PCA, only the (quantized) coefficients are stored,           
whereas the K-SVD requires storage of the indices                             
as well.

Geometric alignment of the image is very helpful                
and should be done. 



Sparse and Redundant                    
Signal Representation, 
and Its Role in 
Image Processing

50=
x=αD

Application 3: The Algorithm

Training set (2500 images)Detect main features and warp 
the images to a common 

reference (20 parameters) 

O
n the training set

Divide the image into disjoint 
15-by-15 patches. For each 

compute mean and dictionary

Per each patch find the 
operating parameters (number 

of atoms L, quantization Q) 

Warp, remove the mean from 
each patch, sparse code using L 

atoms, and apply Q)

On the        
test image
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Compression Results

Results   
for 820

Bytes per    
each file

11.99

10.83

10.93

10.49

8.92

8.71

8.81

7.89

8.61

5.56

4.82

5.58
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Compression Results

Results   
for 550

Bytes per    
each file

15.81

14.67

15.30

13.89

12.41

12.57

10.66

9.44

10.27

6.60

5.49

6.36
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Compression Results

Results   
for 400

Bytes per    
each file

18.62

16.12

16.81

12.30

11.38

12.54

7.61

6.31

7.20

?

?

?
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Today We Have Discussed

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Summary

Sparsity and Over-
completeness are important 
ideas that can be used in 
designing better tools in 
signal/image processing 

We are working on resolving 
those difficulties:
• Performance of pursuit alg.       
• Speedup of those methods,
• Training the dictionary,
• Demonstrating applications,
• …

There are 
difficulties in 
using them!

Future transforms and 
regularizations will be data-
driven, non-linear, 
overcomplete, and promoting 
sparsity.

The dream?
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