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ABSTRACT
Various patch-based image denoising algorithms have been
shown to be very effective. Nevertheless, in most cases the
difference between the noisy image and its denoised version
(called ”method-noise”) still contains traces of the original
image content. In this paper we propose a novel technique for
improving the K-SVD denoising results. Our scheme starts
by applying the K-SVD on the given noisy image. Then, for
each patch, we recover the ”stolen” image content informa-
tion from the method-noise by performing iterations of de-
noising using the same atoms that represent the first-stage de-
noised patch. Experimental results demonstrate the efficiency
of this technique.

Index Terms— Image denoising, method-noise, sparse
representations, dictionary, K-SVD

1. INTRODUCTION

Cleaning additive noise from signals or images (known as de-
noising) is a classical and long-studied problem in signal pro-
cessing. Consider a given measurement signal y ∈ Rn ob-
tained from the clean signal x ∈ Rn by a contamination of
the form y = x + v. In this paper we shall restrict our dis-
cussion to zero mean i.i.d. Gaussian noise v ∈ Rn, where σ
is known. The denoising goal is to recover x from y, which
can be viewed as the need to separate between the original
signal x and the additive noise v.

Signal/image processing algorithms rely heavily on data-
models (also referred to as priors in a Bayesian context)
[1, 2]. The evolution of these models and the progress made

in recent years resulted in a massive improvement in many
practical applications, and in particular denoising. There
are many noise cleaning algorithms, and many of today’s
state-of-the-art methods share in common the fact that they
are patch-based, e.g. the K-SVD [3], BM3D [4], NLM [5],
LSSC [6], many variants of these, and there are others [7–13].
In this paper we will pay special attention to the K-SVD and
propose a method to boost its performance.
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the Intel Collaborative Research Institute for Computational Intelligence.
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Fig. 1. K-SVD denoised image (left) and the obtained method-noise
(right) for Lena with σ = 25.

The difference between the noisy and the denoised image
is often referred to as the ”method-noise” or the ”residual”
image, given by ∆0 = y − x̂, where x̂ is the denoised ver-
sion of y. Restricted to the additive Gaussian case, the work
in [14] suggested to assess denoising quality based on visu-
ally inspecting the method-noise: The less image structures
seen in it, the better the denoising performance. Indeed, even
state-of-the-art denoising techniques contain traces of the im-
age content in the method-noise due to imperfect denoising.
Fig. 1 demonstrates this for the K-SVD result.

Motivated by this fact, the work reported in [15–18] re-
lies on the method-noise in order to obtain improved denois-
ing performance. The work in [15] introduces image quality
measures that are based on the method-noise without using a
reference-image. They suggest an iterative technique to ex-
tract the residual information from the method-noise based
on an adaptive Wiener filter [19]. An improvement of the
NLM [5] is suggested in [16] by modifying the weight func-
tion and adopting similar ideas to the ones developed in [15].
The work in [17] proposes a user-interactive approach which
applies a variant of the bilateral filter [20] that exploits the
cleaned image and the method-noise in order to extract the
residual information. The work reported in [18] builds on the
BM3D [4], replacing its second (Wiener filter) layer by an
adaptive spatial filtering similar to the one practiced in [17].

In this work we suggest a denoising improvement tailored
specifically to the K-SVD algorithm [3]. K-SVD determines
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Fig. 2. Flowchart of the proposed iterative technique.

for each patch a small set of atoms that participate for its rep-
resentation. Nevertheless, after patch-averaging, orthogonal-
ity of the overall residual to these atoms is lost. We propose
to leverage this property in order to salvage ”stolen” image
content that resides in the method-noise.

This paper is organized as follows: In Section 2 we
present some background material on K-SVD denoising, in
Section 3 we present our novel denoising-boosting technique,
and in Section 4 we demonstrate the improvements obtained
for several test images and noise levels.

2. BRIEF BACKGROUND ON K-SVD

In this section, we briefly recall the K-SVD method for image
denoising, based on sparse representation of its patches. The
reader is referred to [2, 3] for more details.

Sparse and redundant representation modeling and dictio-
nary learning using the K-SVD, lead to a highly effective de-
noising method. Such an algorithm divides the noisy image
into
√
n×
√
n maximally overlapping patches, where n (e.g

64) is a fixed a-priori. Then, it trains a dictionary D ∈ Rn×m
using the corrupted image itself, where D is composed of
m > n atoms. The next stage is to represent each noisy patch
by a sparse composition over the trained dictionary using the
Orthonormal Matching Pursuit (OMP). This implies that the
corresponding patch residual after denoising is necessarily
orthogonal to the chosen atoms. Finally the denoised image
is obtained by averaging the cleaned patches. Note that this
averaging ruins the orthogonality mentioned above. The K-
SVD algorithm can be described as the outcome of a mini-
mization problem:

{αij ,D, x̂} = arg min
αij ,D,x

λ‖x− y‖22

+
∑
i,j

µij‖αij‖0 +
∑
i,j

‖Dαij − Rijx‖22,

where x̂ is the denoised image, D is the trained overcomplete
dictionary, αij represents the sparse representation vector for
the (i, j)-patch in x̂, and Rij is a matrix that extracts the (i, j)-
patch from the image. The notation ‖αij‖0 stands for the
number of the nonzeros in αij .

3. THE PROPOSED TECHNIQUE

Our scheme starts by applying K-SVD denoising on the noisy
image y, giving (i) x̂0 the pre-refined denoised image, (ii)
∆0 = y − x̂0 the method-noise, and (iii) Supp{αij} the
atoms participating in the representation of the first-stage de-
noised (i, j)-patch. The main idea behind our approach is the
belief that the method-noise contains residual image content
that can be represented as a linear combination of the very
same atoms used in the initial denoising stage. This belief
relies on the gap that exists between the local patch treat-
ment and the final global outcome - patches are processed
separately and then merged by averaging over their overlaps.
Therefore, the eventual (global) residual is not orthogonal
w.r.t. to the atoms used for the local filtering. The pro-
posed process exploits this property to recover image content
from the method-noise. Our algorithm iteratively cleans the
method-noise by alternating between local patch processing
and global averaging. Fig. 2 presents a block diagram of the
proposed technique; we repeatedly scrub the method-noise
image by applying a modified K-SVD, where the supports
from the first denoising stage are used, such that the method-
noise patches are projected onto these pre-chosen subspaces1,
followed by averaging the overlapped patches. Thus, this
modified K-SVD is different from the regular K-SVD [3] in
one major respect - no pursuit is needed. The following is a
pseudo-code description of the proposed algorithm:

Init Stage:
(i) {Supp{αij},D, x̂0} ← K-SVD(y), i.e. denoise the

given noisy image using the K-SVD algorithm [3].

(ii) Set k = 0 and ∆0 = y − x̂0, x̂∗ = x̂0.

(iii) Compute H, a mask obtained by detecting the active
regions in x̂0.

Repeat several times:
Update Residual Stage:
(i) For each residual (i, j)-patch, ∆ij = Rij∆k, compute:

βij ← OMP(∆ij ,D, Supp{αij}, δ), i.e. allow a
slight modification to the given αij support (more
details below) in representing this error patch, and
assign the sparse-coding βij to it.

(ii) Compute the global ∆k+1 residual image by averaging
all the overlapping Dβij patches by

∆k+1 =
(∑

ij RTijRij
)−1 (∑

ij RTijDβij
)

Stopping Criterion:
(i) Set x̂k+1 = x̂0 + H ·∆k+1.

(ii) if
∣∣Corr (H · x̂k+1,H · (y − x̂k+1)

)∣∣ increases com-
pared to the previous step, conclude.

1Actually, we slightly modify these supports - see hereafter.
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Fig. 3. PSNR [dB] of our iterative technique versus the itera-
tion number for Fingerprint, Barbara, House and Peppers with
σ = 75. Note that k = 0 stands for the regular K-SVD result.

The output of this algorithm is x̂∗. Corr stands for a simple
correlation, and |·| stands for absolute value (see details be-
low), H is a matrix that indicates the image texture/active re-
gions, and · denotes term-by-term matrix multiplication. The
need for H comes from the fact that our method is mostly
effective in texture and edge areas, and less so in smooth re-
gions. As to the computational complexity of this algorithm,
in each iteration the added complexity to the regular K-SVD
is due to (i) pursuit of δ atoms (δ = 1 in our experiments),
and (ii) projection of the residual patches onto the chosen sub-
spaces. These are far simpler than the core K-SVD algorithm.
We now give more details on the modification of the support
and the stopping criterion mentioned above.

3.1. Modifying the Initial Supports

While our proposed method can use the very same supports as
found by the initial K-SVD algorithm, we found that allow-
ing a slight modification to these supports may lead to further
denoising improvement. For each patch, we suggest to ex-
pand the chosen set of atoms by additional δ ones. Assuming
‖αij‖0 = Tij , we consider the following procedure:
(i) For each patch, create the matrix Dij of size n× Tij ,

its columns are atoms from D that correspond to the
nonzero entries of αij . Then, find the representation
vector by zij =

(
DTijDij

)−1
DTij∆ij where ∆ij is the

residual (i, j)-patch.

(ii) Expand zij support by sparse-coding additional δ atoms
(from the remaining m− Tij dictionary columns) by
setting zij vector as initial solution for the OMP.

With βij ← OMP (∆ij ,D, Supp{αij}, δ) we denote the
above-mentioned algorithm for expanding αij support, where
βij is the updated vector that represents ∆ij patch over D.

3.2. Stopping Criterion

In this section we propose a stopping criterion for the above
algorithm in order to obtain the best denoising improvement.
Fig. 3 demonstrates the need for such an estimation, as the
quality may deteriorate at first, then improve, and finally con-
verge back to zero improvement (since infinitely many steps
lead to the original K-SVD outcome). It shows the Peak Sig-
nal to Noise Ratio (PSNR) versus the iteration number of the
proposed technique. As can be seen, the iteration that obtains
maximum PSNR value varies from one image to another de-
spite of similar noise standard deviation. As the PSNR of
the initial residual image is very low, projection of its patches
onto the modified first-stage subspaces results in a PSNR de-
terioration. The multi-stage filtering scrubs the noise care-
fully and leads to a final PSNR improvement.

The original image x, and the additive noise v are inde-
pendent, and therefore we can assume that the less depen-
dency between the denoised (x̂) and method-noise (y − x̂)
images, the better is the effective denoising performance (or
image-noise separation). Following [15], we use the ”Pear-
son’s correlation test”, which measures the dependency be-
tween two variables, x and v by Corr(x, v) = σxv

σxσv
, where

σx and σv are the standard deviations of x and v respectively,
and σxv is their covariance. The closerCorr(x, v) to zero, the
less dependent x and v are. We propose the minimum abso-
lute value ofCorr

(
H · x̂k,H · (y − x̂k)

)
as our stopping cri-

terion, where H · x̂k and H · (y − x̂k) are the active regions
of the k-iteration denoised and method-noise image, respec-
tively.

4. EXPERIMENTAL RESULTS

In this section, detailed results of the proposed algorithm for
various grayscale images and different noise standard devi-
ation σ are presented. The parameters for both the regular
and our iterative technique are based on the ones reported
in [3]. We repeat our technique for 8 iterations and choose
δ = 1 atom. H is obtained by (i) applying ”Canny edge de-
tector” [21] on x̂0, and then (ii) dilating the result. Fig. 4 (g)
demonstrates H mask for the image Barbara.

Table 1 lists the PSNR of the K-SVD and our technique,
the average improvement, (”Boost” column) and the stop-
ping criterion estimation error (ε column). This error is
defined as ε =PSNR(x̂∗

ref )−PSNR(x̂∗
no−ref ), where x̂∗

ref

is obtained by ”scrubbing” the residual image until reaching
maximum PSNR value, and x̂∗

no−ref is obtained by using the
no-reference stopping criteria estimator, as described above.
From Table 1 we can see that our method improves the K-
SVD consistently, and especially for σ in the range of 25
to 100. Notice the robustness and accuracy of the proposed
stopping criteria estimator - the estimation error is almost
negligible. Table 2 shows that with the choice of adding one
atom to each patch, we get the best improvement. Note that



σ/PSNR Barbara Couple Fingerprint House Boats Average Boost ε

15/24.61 32.51 32.59 31.52 31.59 30.05 30.17 34.38 34.39 31.81 31.88 32.06 32.12 0.06 0.03
25/20.18 29.58 29.88 28.91 29.13 27.24 27.52 32.20 32.21 29.34 29.51 29.45 29.65 0.20 0.01
50/14.16 25.41 25.89 25.27 25.69 23.22 23.89 28.02 28.22 25.94 26.20 25.57 25.98 0.41 0.03
75/10.63 22.92 23.13 23.56 23.79 19.99 21.65 25.05 25.40 24.02 24.20 23.11 23.64 0.53 0.06
100/8.14 21.85 21.89 22.61 22.68 18.30 20.00 23.64 23.78 22.85 22.93 21.85 22.26 0.41 0.04

Table 1. Summary of the denoising PSNR [dB] results. In each cell two denoising results are reported. Left: results of regular K-SVD,
Right: results of the proposed technique using stopping criteria statistical estimator. We highlighted the best results for each pair. The last
three columns present the average results, denoising improvement (”Boost”), and estimation error (ε), over all images.

δ -1 0 1 2 3 4
Avg. Boost 0.06 0.12 0.32 0.32 0.28 0.25

Table 2. The K-SVD boosting as a function of δ.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 4. Comparison of the regular K-SVD and our technique with
σ = 25. (a) Noisy image, (b) Zoom on the regular K-SVD result,
(c) Zoom on our result, (d) Regular K-SVD method-noise, (e) The
method-noise after our processing, (f) The extracted residual infor-
mation from (d), and (g) H the active region mask. (includes 75.2%
of the image area). Note that we apply linear contrast stretch on
(d)-(g) images.

in contrast to the above, adding a single atom to the reg-
ular K-SVD deteriorates the performance, with an average
PSNR degradation of 0.65 dB. Fig. 4 demonstrates a visual
improvement for the image Barbara: The regular K-SVD
method-noise image contains residual structures (d). Multi-
plying ∆∗ image (f) by H (g) and then adding the result back
to x̂0 (b) restores some of the tablecloth texture (c), and less
image residual content appears in the final method-noise (e).

We performed several comparative tests between our
scheme and the ones reported in [15–18]. We found that
applying an adaptive Wiener filter on the K-SVD method-
noise, as in [15, 16], is ineffective due to the very low Signal
to Noise Ratio (SNR) of this image2. We tested the mod-
ified bilateral technique in [17, 18] using our activity map
H as a replacement for the interactive part in [17] and the
edge-detection done in [18]. The parameters of this K-SVD
post-processing algorithm were optimized, leading to an av-
erage improvement of 0.15 dB (to be compared to the 0.32
dB that our method gets).

5. CONCLUSION AND FURTHER WORK

In this work we present a simple and efficient method for
boosting the performance of the K-SVD image denoising al-
gorithm. The proposed technique exploits the gap that exists
between the local processing of the image patches and the
eventual global averaging that generates the final outcome.
Our algorithm boosts the overall denoising performance by
extracting image-content information from the method-noise,
leveraging on the very same atoms chosen for the denoising
of the patches in the original algorithm. We applied a vari-
ant of the proposed technique on the method-noise images of
the NLM and the first step of BM3D and obtained an effec-
tive boosting. These efforts are inspired by the seminal work
on the BM3D [4], and the recently published work by Talebi,
Zhu, and Milanfar [23], both offering systematic ways to im-
prove denoising results by a second-layer processing stage
that leverages on the initial denoised result.
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