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ESPIRiT—An Eigenvalue Approach to Autocalibrating
Parallel MRI: Where SENSE Meets GRAPPA

Martin Uecker,1* Peng Lai,2 Mark J. Murphy,1 Patrick Virtue,1 Michael Elad,3 John M. Pauly,4

Shreyas S. Vasanawala,5 and Michael Lustig1

Purpose: Parallel imaging allows the reconstruction of images
from undersampled multicoil data. The two main approaches
are: SENSE, which explicitly uses coil sensitivities, and GRAPPA,
which makes use of learned correlations in k-space. The pur-
pose of this work is to clarify their relationship and to develop
and evaluate an improved algorithm.
Theory and Methods: A theoretical analysis shows: (1) The cor-
relations in k-space are encoded in the null space of a calibration
matrix. (2) Both approaches restrict the solution to a subspace
spanned by the sensitivities. (3) The sensitivities appear as the
main eigenvector of a reconstruction operator computed from
the null space. The basic assumptions and the quality of the
sensitivity maps are evaluated in experimental examples. The
appearance of additional eigenvectors motivates an extended
SENSE reconstruction with multiple maps, which is compared to
existing methods.
Results: The existence of a null space and the high quality of
the extracted sensitivities are confirmed. The extended recon-
struction combines all advantages of SENSE with robustness to
certain errors similar to GRAPPA.
Conclusion: In this article the gap between both approaches
is finally bridged. A new autocalibration technique combines the
benefits of both. Magn Reson Med 71:990–1001, 2014. © 2013
Wiley Periodicals, Inc.
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INTRODUCTION

In parallel MRI, data are simultaneously acquired from
multiple receiver coils. Each coil exhibits a different spatial
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sensitivity profile, which acts as additional spatial encod-
ing function. This can be used to accelerate the acquisition
by subsampling k-space and reconstructing images by
using the sensitivity information. Two different lines of
reconstruction algorithms are in use today: Reconstruc-
tion algorithms based on explicit knowledge of the coil
sensitivities such as SENSE (1,2) and algorithms based on
local kernels in k-space, which exploit the learned corre-
lation between multiple channels in neighboring points in
k-space, such as GRAPPA (3) and SPIRIT (4).

At least in principle, algorithms based on explicit knowl-
edge of the sensitivities allow optimal reconstruction, e.g.
in the sense of minimum mean square error or minimum-
variance unbiased estimation, when used with exact sen-
sitivities. Another advantage is that they are very general.
They can be used with arbitrary sampling trajectories (5),
and priors on the image can be easily incorporated (6–8).
However, it is often very difficult to accurately and robustly
measure the sensitivities and even small errors can result
in inconsistencies that lead to visible artifacts in the image.
Various algorithms have been developed to enable auto-
calibration of the coil sensitivities (9) and to improve the
calibration, for example, by joint estimation of the sensi-
tivities and image (10,11). On the other hand, algorithms
based on learned correlations tend to fail for high accel-
eration factors, but are much more robust to errors. This
later property makes them the preferred choice in clinical
practice today.

In this work, we bridge the gap by describing SENSE and
GRAPPA as subspace methods, i.e., both reconstruct miss-
ing data by restricting the solution to a subspace. SENSE
achieves this by combining the coil images using precal-
culated sensitivity maps, while autocalibrating methods
achieve it by filtering with calibrated kernels in k-space.
We then show that the dominant eigenvector of these k-
space operators appear and behave as sensitivity maps.
More importantly, we show how these maps can be rapidly
computed using an eigenvalue decomposition in image
space, which results in robust high-quality sensitivity maps
that can be estimated just from autocalibration lines in
k-space. Because this procedure has evolved from the
calibration of the original SPIRiT approach and its effi-
cient eigenvector-based implementation (12,13), parallel
imaging using eigenvector maps will be referred to as
ESPIRiT in this manuscript. Finally, a specific implemen-
tation of ESPIRiT is presented, which utilizes multiple sets
of sensitivity maps. This approach enforces relaxed (“soft”)
sensitivity constraints in an extended SENSE-based recon-
struction algorithm instead of the usual strict constraint
based on a single set of sensitivities—hence, we coin the
term “soft SENSE.” This implementation of ESPIRiT uses
explicit maps, but offers robustness against certain types
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of error similar to autocalibrated methods. In particular,
it is robust to the field of view (FOV) limitation problem
described in Ref. 14.

THEORY

SENSE

SENSE poses the parallel imaging reconstruction as a lin-
ear inverse problem. Let m be the underlying magnetization
image. Let Si be a diagonal matrix representing the sensi-
tivity of the ith coil (1 ≤ i ≤ N for N coils) and let F
be a Fourier operator and P an operator that chooses only
acquired locations in k-space. The received signal for the
ith coil can be written as

yi = PFSim
∣∣∣ 1 ≤ i ≤ N . [1]

When the coil sensitivities are known or can be mea-
sured with sufficient accuracy, the reconstruction is a linear
inverse problem that can be solved by (usually regularized)
least squares either directly (2) or iteratively (5).

For the individual coil images mi = Sim, it follows that

mi = Ŝi

N∑
j

ŜH
j mj

∣∣∣ 1 ≤ i ≤ N , [2]

where Ŝi = [∑N
j=1 SH

j Sj ]− 1
2 Si are the normalized sensitivity

maps. Equation [2] states that the vector of individual coil
images is spanned point-wise by the vector of coil sensitiv-
ities. It also implies that the coil images vector belongs to a
smaller subspace of a dimensionality 1/N of its size – i.e.,
has redundant, correlated information. This subspace idea
is exploited in a related algorithm by Samsonov et. al. (15),
where the reconstruction problem in Eq. [1] can be re-
defined to solve for the individual coils images mi = Sim.
It uses the projection-onto-convex-sets algorithm (POCS)
to compute a solution which lies in the subspace defined
by Eq. [2] and is consistent with the data according to
yi = PFmi .

GRAPPA

GRAPPA is an auto-calibrating coil-by-coil reconstruction
method. It poses the parallel imaging reconstruction as an
interpolation problem in k-space. In the GRAPPA algo-
rithm, unacquired k-space values are synthesized by a
linear combination of acquired neighboring k-space data
from all coils.

To describe GRAPPA in simple notations, it is convenient
to define a set of block operators. The operators Rr rep-
resent the operation of choosing a block of k-space (from
all the coils) out of the entire grid around the k-space
positions indexed by r. The operators Pr represent local
sampling patterns that choose only acquired samples from
a block of k-space. Let y be a multicoil k-space grid con-
catenated into a vector in which unacquired data are zero
filled. So, the product PrRry is a vector containing only the
acquired k-space neighborhood around the k-space posi-
tion r. Then, the recovery of a missing sample in the ith
coil at an unacquired position r is simply given by

xi(r) = (PrRry )T gri . [3]

Here, gri are sets of reconstruction weights, called a
GRAPPA kernel, specific to the particular sampling pattern
around position r. The notation ()T represents a nonconju-
gated transpose. The full k-space grid is reconstructed by
evaluating Eq. [3] for all coils at each unacquired k-space
position.

The GRAPPA kernels can be obtained by solving the rela-
tion in Eq. [3] for the unknown variables gri at different
positions in k-space, where the xi are known. Typically, this
is done in a fully acquired region in the center of k-space,
e.g., autocalibration (AC) region. To perform the calibra-
tion, it is useful to construct a so-called calibration matrix,
denoted by A, from the AC portion of the acquired data. It is
constructed by sliding a window throughout the AC data,
taking each block (Rry )T inside the AC region to be a row in
the matrix. The columns of A are shifted versions of the AC
area, leading to a matrix structure known as Block-Hankel.
Figure 1 illustrates the operators and data organization
described so far. To obtain conditions for the weights gri ,
Eq. [3] is rewritten using the calibration matrix and applied
to all locations inside the AC region. This yields a set of
ideal conditions for the reconstruction weights:

yAC
i = APT

r gri , [4]

where yAC
i are data from the ith coil inside the AC region

(orange square in Fig. 1). In practice, kernels which solve
this set of equations approximately are computed by solv-
ing a regularized least-squares problem (4,16,17).

By construction, one of the columns of A is yAC
i . This is

illustrated in Figure 1, where the area in the calibration
marked by dashed orange square is used to construct the
fifth column of A. We can write this as Aei = yAC

i , where, ei
is a vector with “1” in the appropriate position that chooses
the ith coil data, and “0” elsewhere. Rewriting Eq. [4], we
get,

0 = APT
r gri − yAC

i

= APT
r gri − Aei

= A(PT
r gri − ei). [5]

This means that PT
r gri − ei are null-space vectors of the

calibration matrix. The existence of a null-space implies
redundancy in A and hence correlations between blocks
of k-space, which can be used to synthesize missing sam-
ples. However, PT

r gri−ei are very specific null-space vectors
which may represent only part of the redundant informa-
tion. For this reason, we turn to characterize the null space
directly.

Calibration Matrix and Null-Space Reconstruction

A very useful way to analyze the calibration matrix is to
compute its singular value decomposition (SVD):

A = UΣV H [6]

The columns of the V matrix in the SVD are a basis for
the rows of A, and therefore basis for all the overlapping
blocks in the calibration data. We can separate V into V⊥
which spans the null space of A and V‖ which spans its
row space. This is demonstrated well in Figure 2 using data
obtained with an eight-channel head coil. The underlying
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FIG. 1. Data organization, indexing, and operators that are used in the article. Top: The calibration matrix A is constructed by sliding a
window through the calibration data. The rows of A are overlapping k-space blocks from calibration data. Bottom-left: The indexing used
to represent samples in k-space. Bottom-right: Applying Rr extracts a block in k-space and reorders it as a vector. Bottom-middle: Pattern
set matrices associated with the k-space positions on the right. Applying PrRry extracts only acquired data from a block in k-space around
position r.

information that we learn from the decomposition of the
calibration data is that it lies in the subspace spanned by
V‖ and not by V⊥. This information can then be used in the
reconstruction to extrapolate unacquired measurements as
this relation should be true for all the blocks in k-space and
not just for the AC lines.

Given an undersampled k-space grid, each k-space block
of the reconstruction x must satisfy two constraints,

V‖V H
‖ Rrx = Rrx or V H

⊥ Rrx = 0
∣∣ ∀ r [7a]

PrRrx = PrRry
∣∣ ∀ r. [7b]

The first is consistency with the calibration and the second
is consistency with the data acquisition. Interpreting the
(formally overdetermined) set of null-space constraints in
the least-squares sense yields the normal equations

∑
r

RH
r V⊥V H

⊥ Rr x = 0. [8]

In the following, periodic boundary conditions are
assumed, because they simplify the discussion consider-
ably. Although this assumption is often implicitely used in
MRI, it should be noted that it introduces minor numer-
ical errors, which could be avoided by a rigorous deriva-
tion (18). Assuming this, the equation can be transformed
further to

∑
r

RH
r

(
I − V‖V H

‖
)

Rr x = 0

M−1
∑

r

RH
r V‖V H

‖ Rr

︸ ︷︷ ︸
W

x = x, [9]

where M represents
∑

r RH
r Rr and equals the number of

samples in each patch of k-space data selected by Rr . This
result can also be obtained by multiplying the first equa-
tion in 7a with RH

r from the left and summing over r.
Because an operation of the form V H‖ Rr computes the cor-
relation with each kernel in V‖ when performed for all
r, it can be expressed as a set of convolutions. This also
applies to its adjoint

∑
r RH

r V‖ and the symmetric product∑
r RH

r V‖V H‖ Rr . Thus, by construction, W is a convolution
with a matrix-valued kernel where the matrix operates on
the channel dimension. While the operations V‖V H‖ and
V⊥V H⊥ are projections operating on patches, the operation
W is an average of projections and, therefore, Hermitian
and positive semidefinite with eigenvalues smaller or equal
to one.

Rewriting the first constraint in matrix form and merging
all identical equations of the second constraint yields

Wx = x [10a]

Px = Py , [10b]
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FIG. 2. Singular value decomposition (SVD) of the calibration matrix. a: Magnitude of the calibration data in k-space and images from an
eight-channel head coil. b: Magnitude of the SVD decomposition. The singular values are ordered by magnitude and appear on the diagonal
of Σ. c: A zoomed view of the V matrix of the SVD and a plot of the singular vectors show that the calibration matrix has a null space. The
k-space signal has support in V‖ and none in V⊥.

where P is a mask selecting only the acquired samples
out of a full grid and results from merging the overlapping
PrRr for all patches. The constraints can be enforced itera-
tively as in SPIRiT, which is different only in the operator
W. This leads to a null-space reconstruction (13), which
was independently developed by Zhang et al. and reported
in Ref. 19. We extend these notions further and develop
a new computationally efficient approach in which the
connection to SENSE-based methods is made.

Sensitivity Maps as an Eigenvalue Problem

The null-space method (Eqs. [10]) computes a solution in
the null space of W−I , while SENSE computes a solution in
the subspace spanned by the coil sensitivities (Eq. [2]). This
suggests that these subspaces can be explicitly identified.

The solution x must satisfy Wx = x, therefore, by defini-
tion, x belongs to a subspace spanned by the eigenvectors
of W corresponding to the eigenvalue “1”. If we write x in
terms of the k-space of the original image weighted by the
coil sensitivities, we get

x = FSm, [11]

where S = [S1S2 · · · SN ]T is a vector of stacked coil sensi-
tivities. Assuming that this is indeed a solution of Eqs. [10],
we get

WFSm = FSm. [12]

Applying the inverse Fourier transform on both sides of
the equation, it follows that the vector of coil images is an
eigenvector of F−1WF for the eigenvalue “1:”

F−1WFSm = Sm [13]

If we perform a direct eigenvalue decomposition of
W, we should be able to find the sensitivities explicitly.
Because the operator W is a positive semidefinite matrix-
valued convolution, it decouples into point-wise positive
semidefinite matrix operations in the image domain:

F−1WF
∣∣
q = Gq [14]

The eigenvalue decomposition of the operator W is simpli-
fied to solving a much smaller eigenvalue decomposition
of Gq for each position q in images space. The steps of
one possible procedure for the computation of Gq from
the K kernels in V‖ are illustrated in Figure 3. Defining
�s(q) = [

s1(q) s2(q) · · · sN (q)
]T as the sensitivities at spatial

position q and m(q) as the magnetization at this position,
Eq. [13] is reduced to

Gq�s(q)m(q) = �srm(q). [15]

At positions where m(q) is nonzero, this yields a condition
for the sensitivities:

Gq�sq = �sq [16]

Thus, the explicit sensitivity maps can be found by an
eigenvalue decomposition of all Gq’s choosing only the
eigenvectors corresponding to eigenvalue “=1.” This is
shown in Figure 4 for data from an eight-channel head
coil. At locations where no eigenvalue “=1” is found, the
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FIG. 3. The construction of the Gq matrices in Eq. [14] is an efficient way to calculate the eigenvalues and vectors of W . Each basis vector in
V‖ is reshaped (and flipped) into a convolution kernel in k-space. The convolutions can be efficiently implemented as multiplications in image
space, resulting in separable K ×N matrix multiplications Gq for each image-space position, where K is the number of kernels in V‖ (the rank
of the calibration matrix A). Then Gq = GH

q Gq. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

sensitivities are set to zero. These positions correspond to
locations without signal. The eigenvectors are defined only
up to multiplication with an arbitrary complex number. For

this reason, the norm of the eigenvectors at each location
are normalized to one and one arbitrary chosen channel is
used as a reference with zero phase (20).

FIG. 4. Explicit sensitivity maps from autocalibration data using eigenvalue decomposition: The figure shows the eigenvalues and eigen-
vectors of all Gq in a map. Gq has been computed as the Fourier transform of the reconstruction operator W for data from an eight-channel
head-coil using a 24 × 24 k-space calibration region and 6 × 6 kernel size. Left: Eigenvalues sorted in increasing magnitude from top to
bottom. Eigenvalues “=1” appear in positions where there is signal in the image. Right: Magnitude and phase of the eigenvector maps for
each eigenvalue at all spatial positions. As expected, eigenvectors corresponding to eigenvalues “=1” appear to be sensitivity maps. The
magnitude and phase of the sensitivities follows closely the magnitude and phase of the individual coil images (bottom row). The eigenvec-
tors are defined only up to multiplication with an arbitrary complex number. For this reason, the norm of the eigenvectors at each location
are normalized to one and the 8th channel is used as a reference with zero phase. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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In the ideal case, there is only a single eigenvector to the
eigenvalue “1” at each location and all other eigenvalues
are � 1. Then, the solution for Eq. [16] is equivalent
to the projection onto the subspace spanned by the coil
sensitivities (Eq. [2]).

ESPIRiT: Implementation Using Soft SENSE

After computation of a single set of sensitivities, a standard
SENSE reconstruction can be performed. In some cases
errors in the acquisition lead to the appearance of multiple
eigenvectors to eigenvalue “=1” or additional eigenvalues
smaller than one, indicating signal components which can-
not be explained in terms of the strict SENSE model. Then,
Gq has the following form:

Gq =
Mq∑
j=1

λj (q)�sj (q)�sH
j (q) [17]

Here, Mq is usually one or two and all λj are often close
to one. This motivates an extension of the reconstruction
process: Instead of using a single set of sensitivity maps,
Eq. [1] is extended to a “soft” SENSE reconstruction, which
uses a relaxed model of the signal based on multiple (M )
image components mj and multiple sets of maps Sj :

yi = PF
M∑

j=1

Sj
im

j [18]

A least-squares solution of this equation then yields several
images (image components) mj at once.

In most applications, the first component can be used
as the reconstruction, while the other components repre-
sent errors which only have to be taken into account during
reconstruction to avoid artifacts. If the other components
present image content and cannot be discarded, it might
be necessary to do a magnitude combination to avoid sig-
nal loss due to phase cancellation. A third possibility is
to compute the individual coil images according to mi =∑M

j=1 Sj
im

j and then combine the coil images mi in a post-
processing step similar to GRAPPA. The first and last option
can also be used for applications using phase information
in the same way as SENSE and GRAPPA, respectively.

As mentioned above, the reconstruction can be extended
to integrate various regularization terms Q by formulating
it as the optimization of a functional

J (m1, . . . , mM ) =
N∑

i=1

‖yi − PF
M∑

j=1

Sj
im

j‖2
2 + α

M∑
j=1

Q(mj ).

[19]

For example, using the �1-norm with a sparsity (e.g.,
wavelet) transform Ψ in Q(m) = ‖Ψ m‖2

1 yields �1-ESPIRiT,
which is usefull for a compressed sensing reconstruction of
randomly undersampled data, similar to �1-SPIRiT (4,21).

METHODS

In the spirit of reproducible research, we provide source
code with examples for the proposed algorithm. It can be

downloaded from: http://www.eecs.berkeley.edu/∼mlustig/
Software.html

Fully-sampled data of the human brain was acquired on
a 1.5 T scanner (GE, Waukesha, WI) using an eight-channel
head coil for multiple subjects. Two data sets have been
acquired with inversion-recovery prepared 3D RF-spoiled
gradient-echo sequence (TR/TE = 12.2/5.2 ms and TR/TE
= 9.7/4.1 ms, TI = 450 ms, FA = 20◦, BW = 15 kHz, matrix
size: 256×180×230 and 200×200×200, resolution: 1 mm
isotropic) and one data set with a 2D spin-echo sequence
(TR/TE = 550/14 ms, FA = 90◦, BW = 19 kHz, matrix size:
320×168, slices: 6, slice thickness: 3 mm) using a reduced
FOV of 200 × 150 mm2, which was smaller than the head
of the subject in phase-encoding direction (lateral).

The 3D data has been Fourier transformed along the read-
out direction and all further processing has been done
for 2D k-space data of selected sections. The compu-
tation of the eigenvalue and eigenvector maps and the
ESPIRiT reconstruction have been implemented in Mat-
Lab (MathWorks, Natick, MA) and in the C programming
language using the FFTW (22) (http://www.fftw.org) and
ACML (http://www.amd.com/acml, AMD, Sunnyvale, CA)
libraries. For the computation of the eigendecomposition
of Gq, a version using orthogonal iteration has been imple-
mented, which allows the efficient computation of the
eigenvectors of only the largest eigenvalues. The number
of iterations was set to 30.

The basic assumptions of the present work have been
confirmed by computing the SVD of the calibration matrix
and computing all eigenvalue and eigenvector maps for a
single section of a 3D RF-spoiled gradient-echo data set
using a calibration region of size 24 × 24 and a kernel size
of 6 × 6.

In the following experiments, the quality of the com-
puted sensitivity maps has been evaluated in different
ways. If not mentioned otherwise, a calibration region of
size 20 × 20 and kernel size of 5 × 5 has been used. In this
work, the size of the null space has been estimated by set-
ting a cut-off relative to the maximum singular value. The
effect of this parameter has been evaluated for different val-
ues σ2

cut-off = 10−k for k = 1 . . . 5 by computing eigenvalue
maps and computing sensitivity maps corresponding to the
largest eigenvalue. For these sensitivity maps, it has been
tested how well fully-sampled data can be reproduced. In
detail, fully-sampled coil images mj are projected onto the
subspace spanned by the maps (see Eq. [2]) and then the
original images mj are subtracted to obtain the projection
onto its orthogonal complement:

⎛
⎝Ŝi

N∑
j=1

ŜH
j − I

⎞
⎠ mj for 1 ≤ i ≤ N . [20]

This shows that the part of the images mj which is in the
null space as approximated by the maps. Only noise should
remain and any residual signal indicates imperfections
of the sensitivities. For better visualization, the residual
images for all channels have been combined by computing
the point-wise root of the sum of absolute squares.

For the same data, the reconstruction quality of ESPIRiT
has been compared with other autocalibrating paral-
lel imaging algorithms. The following algorithms have
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been used: SENSE reconstruction using sensitivities esti-
mated from the fully sampled k-space center according
to (9), nonlinear inverse reconstruction (NLINV) (11), and
GRAPPA (3) as described in the present work. The null
space has been determined using σ2

cut-off = 0.001 and sensi-
tivity maps have then been computed at all locations with
eigenvalues larger than a threshold 0.9 and set to zero else-
where. Reconstructions have been performed for a single
section of a 3D data set orthogonal to the readout direc-
tion, which has retrospectively been undersampled along
both phase-encoding direction by factors 3 × 2 and 2 × 2.
GRAPPA kernels have been regularized by Tikhonov reg-
ularization with 3 × 10−4 relative to the 2-norm of AH A.
SENSE and ESPRiT reconstructions have been regular-
ized with 0.001 (using normalized sensitivities and Fourier
transform), while NLINV was used with nine Newton steps.

Again using the same parameters, the quality of the
calibration of different methods has been compared by
computing how well fully-sampled data can be reproduced
(as described above). For GRAPPA, a combined reconstruc-
tion kernel has been computed for a regular undersampling
of 3×2 and used in place of Ŝi

∑N
j ŜH

j in Eq. [20]. It should
be noted that the computation of all necessary GRAPPA ker-
nels depends on the sampling scheme, and the combination
into a single convolution kernel is possible for regular sam-
pling on a grid. Then, all kernels can be applied everywhere
using a convolution, because the sampling pattern matched
to a patch at a shifted location between the intended grid
positions yields PrRr = 0.

To study the effect of different noise level on the cali-
bration, gaussian white noise has been added to k-space to
create data with 10× and 20× the noise level of the original
acquisition. Using the same parameters as above, ESPIRiT
calibration has been performed and the accuracy of the
obtained sensitivity maps has been evaluated by project-
ing fully-sampled coil images mj of the original data onto
the subspace spanned by the maps (see Eq. [2]). In addi-
tion, images have been reconstructed for all noise levels
for undersampling in both phase-encoding directions by
2 × 2 using ESPIRiT and GRAPPA.

ESPIRiT has similar properties as GRAPPA is demon-
strated with examples, where the FOV is smaller than the
object. Eigenvalue and eigenvector maps have been com-
puted for a data set with full FOV, with reduced FOV
in one dimension, and with reduced FOV in two dimen-
sions. The ability to reconstruct proper images in this
case by using multiple maps is demonstrated for spin-echo
data, which has been undersampled by a factor of two in
the phase-encoding (lateral) direction, and compared with
other reconstruction algorithms. Here, a lower threshold of
0.8 has been used for calculation of the sensitivity maps to
avoid truncation artifacts.

Finally, the behavior for other kinds of data corruption
has been investigated with two examples. The first exam-
ple used single-shot fly-back EPI (TE = 78.4 ms, ΔTE =
1.504 ms, BW = 125 kHz, matrix size: 128×48, FOV: 35 mm,
slice thickness: 4 mm) of a human brain without fat sup-
pression. Maps and corresponding images from an ESPIRiT
reconstruction have been computed (calibration region:
24 × 24, kernel size: 6 × 6, σ2

cut-off = 0.0002, threshold: 0.9).
The second example used 3D fast spin-echo MRI (TR/TE
= 1,600/20.8 ms, 37 echos, BW = 62.5 kHz, matrix size:

FIG. 5. Eigenvalue maps computed when using a different number
of kernels to estimate the row space V‖ of the calibration matrix
A (rows). The percentages with respect to the total number of ker-
nels are shown, corresponding to 101, 57, 44, 33, 21 kernels out of
200. The rightmost column shows a projection of fully sampled coil
images onto the null space as approximated by the sensitivities
using Eq. [20] (scaled by a factor 5 compared to the corresponding
anatomical images in the following figures). If this projection con-
tains residual energy in addition to noise, this indicates errors in the
calibration.

320 × 288 × 236, resolution: 0.5 mm × 0.5 mm × 0.6 mm)
of a human knee, which has been accelerated by a factor
of 8.4 using variable-density Poisson-disc sampling (23).
Here, 3D sensitivity maps have been computed (calibra-
tion region: 243, kernel size: 63, σ2

cut-off = 0.001, threshold:
0.9) for an eight-channel coil compressed to six virtual
channels (24). Each section along the readout direction has
been reconstructed with a compressed-sensing �1-ESPIRiT
reconstruction with wavelet regularization. Volumes corre-
sponding to the different maps have then been combined as
described before to obtain a single volume for comparison
with a similar �1-SPIRiT (4,21) reconstruction.

RESULTS

The basic assumptions of the present work have been
validated by computing the SVD of a calibration matrix
constructed from experimental eight-channel data (Fig. 2).
The data used to construct A was of size 24×24×8, and the
kernel size (window size) was 6×6. These correspond to A
being a [(24−6+1)2 × (6 * 6 * 8)] = [361×288] matrix. The
figure shows the calibration data in k-space and the magni-
tude of the associated A, U , Σ, and V matrices. It confirms
that A indeed has a null space, which relates to the fact
that the rows of A are correlated. That sensitivity maps can
be estimated using the procedure outlined in the present
work is demonstrated in Figure 4. It shows eigenvalue and
eigenvector maps, which have been obtained by a point-
wise eigendecomposition of the operator W. There exists
an eigenvalue “=1” everywhere in the area of support of
the image, and the corresponding eigenvector has the struc-
ture of normalized coil sensitivities. The last row shows the
corresponding individual coil images for comparison.

Figure 5 shows eigenvalue maps computed using a row
space V‖ with different size K , which has been estimated by
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FIG. 6. Images of a human brain. Fully sampled data from an eight-
channel coil has been retrospectively undersampled by factors of 2×
2 and 3 × 2. Reconstruction has been performed using SENSE with
autocalibration (SENSE/auto), nonlinear inversion (NLINV), GRAPPA,
and ESPIRiT. The projection of fully sampled individual coil images
onto the null space has been computed for all methods and com-
bined to a single image scaled by a factor of 5 (bottom row). For
GRAPPA, the projection corresponds to a reconstruction operator
corresponding to a regular 2 × 3 undersampling pattern. If the null
space contains residual energy in addition to noise, this indicates
errors in the calibration.

a cut-off σcut-off relative to the largest singular value of the
calibration matrix. Here and in the following, the calibra-
tion matrix of size [(20−5+1)2×(5*5*8)] = [256×200] has
been computed from a calibration region of size 20×20×8
and for a kernel size of 5 × 5. For the values σ2

cut-off = 10−k

with k = 1 . . . 5, the number of kernels in V‖ are K =
21, 33, 44, 57, 101, respectively, from a total of 200 kernels.
For higher thresholds, the estimated V‖ gets smaller until
parts of the signal gets incorrectly included into the null
space V⊥. In this case, even the largest eigenvalue of Gq

becomes smaller than one inside the support of the image.
For lower thresholds, the null space gets very small and
does not fully capture all correlations in the data. In the
extreme case, when there is no null space left, all eigen-
values are “=1” (not shown). Both extremes lead to errors
in the sensitivities, which is evident by visual inspection
of the sensitivities and indicated by residual energy in the
projection of fully-sampled coil images onto the null space
as approximated by the maps using Eq. [20]. Very good sen-
sitivities can be obtained for a large range of values between
σ2

cut-off = 10−4 . . . 10−3.
Reconstructions using the estimated sensitivities are

compared to other reconstruction algorithms for under-
sampling factors of 2 × 2 and 3 × 2 (see Fig. 6). For
2 × 2 undersampling, ESPIRiT and NLINV reconstruct
artifact-free images, which have slightly better quality than

the images reconstructed with SENSE and GRAPPA. For
higher acceleration, all reconstructions start to deterio-
rate showing increased noise and aliasing artifacts (the
trade-off is controlled by the regularization parameter).
Under the experimental conditions chosen here, GRAPPA
shows more severe artifacts and noise amplification com-
pared to the other three algorithms, indicating errors in
the calibration of the GRAPPA kernels. In contrast, the
ESPIRiT algorithm, which uses sensitivities estimated from
exactly the same calibration matrix as GRAPPA, allows
a better reconstruction similar to the other SENSE-based
algorithms. This is further confirmed by a direct evalua-
tion of the quality of the maps. The last row of Figure 6
shows the projection of the coil images obtained from fully-
sampled data onto the null space of different reconstruction
methods. For NLINV and ESPIRiT, the signal is almost com-
pletely removed and only noise remains, while for the other
two algorithms some remaining signal indicates errors in
the calibration.

Data with different noise-level (original, 10×, 20×) has
been used for calibration and reconstruction using ESPIRiT
and GRAPPA (Fig. 7). The projection of the coil images of
the original data onto the null space defined by ESPIRiT
sensitivities shows only slightly increasing error even for
a very high noise level. The images reconstructed from
2×2 undersampled data with the original noise level using
ESPIRiT and GRAPPA are identical the images shown in
Figure 6 and show better image quality for ESPIRiT than
for GRAPPA, which is slightly compromised by aliasing
artifacts. For higher noise levels, the images from both algo-
rithms get disturbed by noise, although ESPIRiT is less
affected than GRAPPA.

In the following experiments, the FOV has been choosen
to be smaller than the head of the subject. Figure 8 shows
maps from a measurement, where the FOV has been
reduced in one and in two dimensions. Up to four eigen-
vectors for eigenvalue “=1” appear in overlapping areas.
This corresponds to the observation that a single smooth
sensitivity map is not able to model the data correctly, but
that this is possible using multiple maps. Figure 9 shows
respective reconstructions from a two-fold undersampled
scan. The methods assuming a single set of smooth sensi-
tivity maps, i.e., SENSE with direct calibration and NLINV,
are not able to recover correct coil sensitivities. The recon-
structions show a severe artifact in the center of the image,
which is absent for GRAPPA and ESPIRIT.

Multiple eigenvalues can also appear for other reasons.
Figure 10 shows images of a highly accelerated 3D fast
spin-echo acquisition of a human knee presumably cor-
rupted by motion. An additional eigenvalue close to one
appears in the parts of the image, which are affected by
motion, and the corresponding ESPIRiT reconstructions
yield multiple image components. A comparison between
�1-ESPIRiT using only the first and using two maps shows
that the use of additional maps can be beneficial. Restrict-
ing the reconstruction to use only one map as in SENSE
causes a loss of signal, while the use of two maps yields
image quality similar to �1-SPIRiT. Supporting Informa-
tion Figure 11 shows eigenvalue maps for a single-shot
EPI scan of a human brain without fat suppression. Here,
an additional eigenvalue close to one appears in the parts
of the image, which are affected by the shifted fat signal.
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FIG. 7. The effect of noise on the calibration of the sensitivity maps has been studied by adding noise to fully sampled data (noise levels:
1×, 10×, 20×). First column: Fully sampled images corresponding to the first channel for different noise levels. Second column: Sensitivity
map of the first channel as estimated using the ESPIRiT calibration. Third column: The projection of the fully sampled original data onto the
nullspace defined by the sensitivities (scaled by a factor of 5). Fourth and fifth columns: Reconstruction results for ESPIRiT and GRAPPA
for 2 × 2 undersampling.

The corresponding ESPIRiT reconstructions yield multiple
images which reflect the different signal components.

DISCUSSION

Null Space of the Calibration Matrix

Doing a coil-by-coil calibration in k-space involves build-
ing the calibration matrix A. The linear dependence
between the samples causes A to have a null space. Val-
ues in the row space of A correspond to the underlying
signal, whereas those in the null space are not consistent
and correspond to noise. This idea to analyze a correla-
tion matrix to identify signal and noise subspaces has been
known for a long time in frequency estimation (25–27).
Similar ideas have been used multichannel blind decon-
volution (28,29) and exploited for autocalibrated parallel
MRI (30,31). The idea is also used in recent work about
calibrationless parallel MRI reconstruction using low-rank
matrix completion (32).

The vectors that span the null space can be used to
synthesize missing samples. This leads to a null-space
reconstruction (13,19), which can be understood as an
improved version of the SPIRiT algorithm (4). In the null-
space reconstruction, the reconstruction operator is con-
structed directly from the SVD of the calibration matrix
and is guaranteed to only pass components in row space
and none in null space, which is not necessarily true for
the original SPIRiT operator.

Properties of GRAPPA

As shown in the present work, GRAPPA kernels are also
related to null-space vectors of the calibration matrix. This
insight leads to a better understanding of GRAPPA, whose
properties have sometimes been described as paradoxi-
cal (33,34). GRAPPA kernels have a specific structure to
allow reconstruction in a single step: they only have entries
where samples have been acquired and are required to
have a one in the center. Due to these restrictions, the
least-squares solution often only approximates the null-
space constraint and this approximation becomes worse
with higher acceleration as fewer and fewer entries are
allowed and GRAPPA becomes less and less accurate. The
examples shown in the present work use a relatively small
kernel size, which makes them more susceptible to this
effect. SPiRiT and null-space kernels do not depend on the
sampling pattern and make use of all but one samples in
each patch, allowing a more accurate approximation of the
null-space constraint.

GRAPPA kernels are usually not uniquely defined by the
null-space constraint. This makes it possible to choose the
one with the smallest norm using regularization, which
avoids noise amplification during the reconstruction. A
paradoxical effect related to this is that the quality of
a GRAPPA reconstruction can improve with increasing
noise in the calibration area, which has been empirically
described in Ref. 34. The existence of a null space of the cal-
ibration matrix implies that its condition number is infinite
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FIG. 8. The effect of reduced FOV of the calibration lines. Top: When the supported FOV of the calibration covers the entire image, there is a
single eigenvalue “=1” at each spatial position and a single set of sensitivity maps. Bottom: When the the supported FOV of the calibration is
smaller than the image, there are multiple eigenvalues “=1” at positions that exhibit folding. For each eigenvalue “=1,” there is an associated
set of sensitivity maps that is needed to faithfully represent the data. GRAPPA-like autocalibration methods implicitly use all the sensitivities
with eigenvalues “=1” and are not prone to the FOV limitation that is described in Ref. 14. The eigenvalue approach is a tool to find these
sensitivities explicitly. These sensitivities can be used in a SENSE-like ESPIRiT reconstruction that exhibits the same robustness to the
calibration FOV as autocalibrating methods.

in the ideal noise-less case and becomes finite only due
to noise (or explicit regularization). Another property of
GRAPPA which has remained somewhat mysterious is the
ability to reconstruct images even when the FOV becomes
smaller than the object (14,33). In this case, even the
calibration data itself becomes undersampled. As shown
here for null-space kernels, this is related to the appear-
ance of multiple eigenvectors to the eigenvalue one in the
reconstruction operator.

Computation of Sensitivity Maps

This work links GRAPPA, SPIRiT, and the null-space
method to SENSE-based reconstruction techniques which
make explicit use of coil sensitivities. The sensitivities can
be calculated from an eigendecomposition of the recon-
struction operator, which can be performed efficiently in
the image domain. This local computation of the sen-
sitivities has some similarity to a previously published

FIG. 9. Reconstruction from two-fold undersamed data acquired with a FOV smaller than the object. In this case, a single set of sensitivity
maps on the restricted FOV cannot represent the signal correctly. Direct calibration and nonlinear inversion cannot recover the sensitivities,
and the corresponing reconstructed images have a severe artifact in the center of the image (SENSE/auto and NLINV). GRAPPA and ESPIRiT
are able to reconstruct the center of the image correctly.
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FIG. 10. A single sagittal section
from a motion-corrupted 3D scan
of a human knee (readout direction:
superior–inferior). Additional eigen-
values appear and the reconstruc-
tion with two sets of sensitivity
maps yields two images (top). When
restricting the �1-ESPIRiT recon-
struction to use only one set of maps,
the signal corresponding to the sec-
ond component is lost and addi-
tional artifacts appear. The combined
image from �1-ESPIRiT using two
maps and the image reconstructed
with �1-SPIRIT do not suffer from this
problem (bottom).

method for the estimation of the sensitivities from a local
correlation matrix in image space (20,35) and could also
be thought of as a generalization of the subspace-based
method presented in Ref. 36. Using these sensitivities for
image reconstruction offers all advantages of SENSE, i.e.
linear scaling with the number of receive channels with
respect to computational demand, optimal reconstruction
quality, straightforward extension to non-Cartesian sam-
pling, and integration of various types of regularization
techniques.

With a sufficiently large calibration area, the technique
described in the present work allows the estimation of the
sensitivities with very high precision, as demonstrated by
direct evaluation of their accuray and by comparison with
other methods. Notably, this is possible even though the
kernels are usually too small to fully capture all correla-
tions in k-space. Iterative enforcement of the constraints as
in SPIRiT at all positions in k-space leads to additional con-
sistency conditions, which are not visible in a small patch
of k-space. This is similar to how a repeated application of
a filter with small support can achieve a sharper transition
from stop to pass band than what is possible with a single
application. Computing the eigenvector to the eigenvalue
“=1” of the reconstruction directly extracts a consistent
subspace, which then describes also correlations in k-space
which might reach further than the size of the kernel.

Reconstruction with Multiple Maps

Multiple eigenvectors to the eigenvalue one appear when
the data does not conform to the SENSE model. By
extending a SENSE reconstruction to use multiple maps,

these additional signal components can be taken into
account. For example, it is possible to reconstruct images
from undersampled data without a central aliasing artifact
when using a small FOV, which is possible with GRAPPA
and SPIRiT, but not with basic SENSE or NLINV. It should
be noted that NLINV can also recover a correct image in
this situation, when explicitely using an extended FOV in
the reconstruction (18). Other errors might also lead to the
occurrence of additional eigenvalues, as long as the cal-
ibration region is affected. For example, in the case of a
shifted fat ghost in single-shot EPI, the appearance of an
additional map corresponds to the fact that the fat signal is
compatible with shifted coil sensitivities (37,38). Because
the two components do not correspond to water and fat,
but to an arbitrary mixture, a separation or a removal of the
fat signal is not directly possible. Nevertheless, the use of
two maps could allow a parallel MRI reconstruction, which
would have errors related to the fat signal when using
only one map. For other errors, additional maps might also
allow an improved reconstruction, such as in the exam-
ple of with motion corruption, although this depends on
the exact nature of the corruption and cannot always be
expected. While noise behavior using a single set of maps
is identical to SENSE-based methods, this changes when
multiple maps are used. In this case, g-factor maps can be
computed using a straightforward extension of the formula
given by Pruessmann et al. (2) for periodic sampling and
with Monte-Carlo methods in the general case.

Computation Time

Using a multithreaded implementation on two CPUs with
six cores, calibration for a single 2D slice and iterative
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reconstruction using two maps each took less than 1 s for all
presented examples. Calibration and compressed-sensing
parallel-imaging reconstruction of the complete 3D knee
data set took about 1:30 and 4:30 min, respectively. With
an implementation using similar to (21) using four GPUs,
the 3D reconstruction can be performed in 2 min. Because
the point-wise eigendecomposition is parallelizable, a sim-
ilar speed-up is expected from a GPU implementation of the
calibration, which is already in development.

CONCLUSIONS

In this article, the gap between the two main approaches
to parallel MRI has finally been bridged. We have shown
that all parallel imaging methods restrict the solution to a
subspace spanned by the coil-sensitivities. Based on this
observation, properties of methods such as GRAPPA and
SPIRiT can be analyzed and better understood. In addition,
a new hybrid reconstruction method has been presented,
which combines the advantages from both approaches.
While other related methods which operate in k-space such
as nullspace method (PRUNO) may achieve comparable
image quality, they don’t offer the flexibility and efficiency
of the proposed image-domain method. Nevertheless, more
work will necessary to define the most optimal method for
a given application.
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